Attention windows of second level fixations. Input image. Attention window of first level fixation

Size: px
Start display at page:

Download "Attention windows of second level fixations. Input image. Attention window of first level fixation"

Transcription

1 HandSegmentationUsingLearning-BasedPredictionand VericationforHandSignRecognition DepartmentofComputerScience YuntaoCuiandJohnJ.Weng mentationschemeusingattentionimagesfrommultiple Thispaperpresentsaprediction-and-vericationseg- EastLansing,MI48824,USA MichiganStateUniversity canhandlealargenumberofdierentdeformableobjectspresentedincomplexbackgrounds.theschemeingareferenceimageofthestaticbackground[8],or eachsequencerepresentsahandsign.theexperimen- a3%falserejectionrate. menthandsinthesequencesofintensityimages,where talresultshoweda95%correctsegmentationratewith 1Introduction vericationscheme.thesystemhasbeentestedtoseg-elsor2-dvelocity-eldmodels[2].thesecondtype extractingthemotionentitybasedon3-dmotionmod- (e.g.[9]).thesemodelstypicallyneedagoodinitial positiontoconverge.theyalsoneedarelativelyclean ofapproachestashapetodeformablemovingobjects imagegradient. backgroundsincetheexternalforcesaredenedbythe guidedbythepastknowledgethroughaprediction-and- xations.amajoradvantageofthisschemeisthatit isalsorelativelyecientsincethesegmentationis cultiesfacedbythevision-basedapproachissegmenta- tion(e.g.[1,3,4,7,11,13]).oneofthemajordi- amountofresearchonvision-basedhandsignrecognimanmachineinterface.recently,thereisasignicantionofthemovinghandfromsometimescomplexback- suchasuniformbackground. grounds.toavoidtheaboveproblem,someofthesys- temsrelyonmarkers.theothersuserestrictivesetups Theabilitytointerprethandsignsisessentialforhu- Inordertoovercomethedicultiesfacedbythesegmentationmethodsfordeformableobjectsmentionevironment,itisnotverydiculttoroughlydetermine thepositionofamovingobjectintheimageusingmotioninformation.however,itisnotsimpleifthetaskis toextractthecontouroftheobjectfromvariousbackgrounds.severalmotionsegmentationmethodshavefigure1:anillustrationoftwolevelxationsofaninput handimage. thattheobjectofinterestismovinginastationaryen- choiceofvisualcueforvisualattention.ifweassume ofanalyzingtemporalsequence,motionisanobvious toperformthetaskofhandsegmentation.inthecase Inthispaper,wepresentalearning-basedapproachbackgroundinterference. thereconstructionisnotabletofullygetridofthe positioninarectangularattentionimagetogetherwith thebackground.theattentionimagewentthrougha reconstructionbasedonlearningwhichcanreducethe backgroundinterferencetoacertaindegree.however, proach[5].inthatapproach,theobjectwasassumedto above,wehaveproposedaneigen-subspacelearningap- beenproposed.theseapproachesfallintotwocategories.approachesintherstcategoryaredesignedto ofapproachesachievesasegmentationbyeitherbuild- dealwithrigidmovingobjects(e.g.[2,8]).thistypesolvethesegmentationproblemcompletely.similar kindofmultiplexationshasahierarchalstructure.as showninfig.1,therstlevelofthexationconcentratesontheentirehand,whilethenextlevelofthe xationtakescareofdierentpartsofthehand.the tohumanvision,multiplexationsareneeded.this attentionwindowoftherstlevelxationusuallycontainsapartofthebackground.butaswecontinue Oneattentionwindowfromasinglexationcannot zoomingintheobjectfromdierentxations,theat- Input image Attention window of first level fixation Attention windows of second level fixations

2 tentionwindowsbecomefocusingondierentpartsof theobject.oneimportantfeatureoftheseattention windowsisthattheytypicallycontainmuchlessbackgroundthantheattentionwindowoftherstlevelxation.theseattentionimagesfrommultiplexations canbeusedasimportantvisualcuestosegmentthe objectofinterestfromtheinputimage.inthispaper, wepresentalearning-basedapproachwhicheciently utilizestheattentionimagesobtainedfromthemultiple xationsthroughaprediction-and-vericationscheme toperformthetaskofhandsegmentation. 2ValidSegmentation Inthissection,wedenetheverierftoevaluate thesegmentationusingfunctioninterpolationbasedon trainingsamples.givenaninputimage,wecanconstructanattentionimageofthehandasshowninfig. 2.Input image Attention image Extract and scale the hand Figure2:Theillustrationofconstructingattentionimages. 2.1TheMostExpressiveFeatures(MEF) LetanattentionimageFofmrowsandncolumns bean(mn)-dimensionalvector.forexample,theset ofimagepixelsff(i;j)j0i<m;0j<ng canbewrittenasavectorv=(v1;v2;;vd)where vmi+j=f(i;j)andd=mn.typicallydisvery large.thekarhunen-loeveprojection[12]isavery ecientwaytoreduceahigh-dimensionalspacetoa low-dimensionalsubspace.thevectorsproducedbythe Karhunen-Loeveprojectionaretypicallycalledtheprinciplecomponents.Wecallthesevectorsthemostexpressivefeatures(MEF)inthattheybestdescribethe samplepopulationinthesenseoflineartransform[4]. 2.2ApproximationasFunctionInterpolation AfterprojectinghandattentionimagestoalowdimensionalMEFspace,wearenowreadytoapproximatetheverierfusingfunctioninterpolation. Denition1GivenatrainingvectorXk;iofgesture kinthemefspace,agaussianbasisfunctionsiis si(x)=e?kx?xk;ik2,whereisapositivedampingfactor,andkkdenotestheeuclideandistance. Averysmalltendstoreducethecontributionof neighboringtrainingsamples. Denition2GivenasetofntrainingsamplesLk= fxk;1;xk;2;;xk;ngofgesturek,thecondencelevel oftheinputxbelongstoclasskisdenedas:gk(x)= Pni=1cisi(X),wherethesiisaGaussianbasisfunctionandthecoecientsci'saretobedeterminedbythe trainingsamples. Thecoecientsci'saredeterminedasfollows.Given ntrainingsamples,wehavenequations gk(xk;i)=nxi=1cisi(xk;i); (1) whicharelinearwithrespecttothecoecientsci's.if wesetgk(xk;i)equalto1,wecansolvetheaboveequationsforciusinggauss-jordaneliminationmethod. ThecondenceleveldenedinDenition2canbe usedtoverifyasegmentationresult. Denition3GivenasegmentationresultSandacon- dencelevell,theverierfoutputsvalidsegmentation forgesturekifgk(s)>l. Intuitively,asegmentationresultSisvalidifthereis atrainingsamplethatissucientlyclosetoit. 3PredicationforValidSegmentation Thissectioninvestigatestheproblemhowtonda validsegmentation.ourapproachistousetheattentionimagesfrommultiplexationsoftraininghandimages.givenahandattentionimage,axationimage isdeterminedbyitsxationposition(s;t)andascale r.fig.3showstheattentionimagesofthe19xations fromonetrainingsample. Figure3:Theattentionimagesfrom19xationsofa trainingsample.therstoneisthesameastheoriginal handattentionimage. 3.1Overview Givenatrainingset,weobtainasetofattention imagesfrommultiplexationsforeachimageintheset. Eachattentionimagefromaxationisassociatedwith thesegmentationmaskoforiginalhandattentionimage, thescalerandthepositionofthexation(s;t).these informationisnecessarytorecoverthesegmentationfor theentireobject. Duringthesegmentationstage,werstusethemotioninformationtoselectvisualattention.Then,we

3 trydierentxationsontheinputimage.anattentionimagefromaxationofaninputimageisused toquerythetrainingset.thesegmentationmaskassociatedwiththequeryresultisthepredication.the predictedsegmentationmaskisthenappliedtotheinputimage.finally,weverifythesegmentationresult toseeiftheextractedsubimagecorrespondstoahand gesturethathasbeenlearned.iftheanswerisyes,we ndthesolution.thissolutioncanfurthergothrough arenementprocess.fig.4givestheoutlineofthe scheme. 3.2OrganizationofAttentionImagesfrom Fixations Inordertoachieveafastretrieval,webuildahierarchicalstructuretoorganizethedata. Denition4Ahierarchicalquasi-VoronoidiagramP ofsisasetofpartitionsp=fp1;p2;;pmg,where everypi=fpi;1;;pi;nig,i=1;2;;misapartitionofs.pi+1=fpi+1;1;;pi+1;ni+1gisaner VoronoidiagrampartitionofPiinthesensethatcorrespondingtoeveryelementPi;k2Pi,Pi+1containsa VoronoipartitionfPi+1;s;;Pi+1;tgofPi;k. 0,1 1,2 1,3 1,4 1,5 1,6 1,7 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,10 2,14 2,12 Figure5:A2-Dillustrationofahierarchicalquasi-Voronoi diagram. ThegraphicdescriptioninFig.5givesansimpli- edbutintuitiveexplanationofthehierarchicalquasi- Voronoidiagram.Thestructureisatree.Theroot correspondstotheentirespaceofallthepossibleinputs.thechildrenoftherootpartitionthespaceinto largecells,asshownbythicklinesinfig.5.thechildrenofaparentsubdividetheparent'scellfutureinto smallercells,andsoon. 3.3PredictionasQueryingtheTraining Set GivenatrainingsetL,ahierarchicalquasi-Voronoi diagramp=fp1;p2;;pngcorrespondingtoland aquerysamplex,thepredictionproblemistonda trainingsamplex02l,suchthatkx?x0kkx?x00k foranyx002lwithx006=x0.thetypeofquerymentionedaboveisanearestneighborproblem,alsoknown aspost-oceproblem[10].therestilllacksofecient solutionsforthecasewithdimensionhigherthanthree. Inthissection,wewillpresentanecientalgorithm whenthetrainingsetisd-supportiveasdenedbelow. Denition5LetSbeasetwhichcontainsallpossible samples.atrainingsetl=fl1;l2;;lngisadsupportivetrainingsetifforanytestsamplex2s, thereexistisuchthatkx?lik<d,wherekkisthe Euclideandistance. Nexttwotheoremsshowhowtoprunethesearch patheswhenthetrainingsetisd-supportive. Theorem1Wehaveasetofd-supportivetrainingset L=fL1;L2;;Lng,ahierarchicalquasi-VoronoidiagramP=fP1;P2;;PngcorrespondingtoLanda querysamplex2s.lettheithpartitionbepi= fpi;1;pi;2;;pi;nigandc=fc1;c2;;cnigbethe correspondingcentersofregionsinpi.assumec1be thecentertoxsuchthatkc1?xkkci?xkforany i6=1.letc2beanyothercenterandp1beaboundary hyperplanebetweenregionsrepresentedbyc1andc2as illustratedinfig.6.thentheregionofc2doesnot containthenearesttrainingsampletoxifthedistance betweenxandthehyperplanep1isgreaterthand. d a b e f boundary hyperplane M P1 P2 m C 1 C 2 X Figure6:A2Dillustrationofnearestneighborquerytheorems. Inordertoavoidtocalculatethepointtohyperplane distanceinahighdimensionalspace,wecanusefollowingequivalenttheorem. Theorem2LetkC1?C2k=r,f=r2,e=r2?d, kc1?xk=aandkc2?xk=basshowninfig.6. TheregionofC2doesnotcontainthenearesttraining sampletoxifa2?e2<b2?f2. FortheproofTheorem1andTheorem2,thereader isreferredto[6]. 4Experiments Wehaveappliedoursegmentationschemetothetask ofhandsegmentationintheexperiments.thenumber ofgesturesweusedinourexperimentis40.thesegestureshaveappearedinthesignswhichhavebeenused

4 input sequence Confident?Figure4:Overviewofthesegmentationscheme. Motion based visual attention Extractor attention images recalled mask from multiple fixations Information needed by the Verifier approximate function (e.g., illustratedinfig.7.thesizeofattentionwindowused coefficients) intheexperimentis3232pixels. totestthehandsignrecognitionsystem[4].theyareverierfforthatgesture.givenasetoftrainingsam- plesl=fx1;x2;;xngforgesturek,weempirically information for gesture k gesture 1 functionasfollows: pleswereusedtoobtainedtheapproximationofthe determinedthedampingfactorintheinterpolation Predictor gesture k gesture n no yes index Thesecondtypeoftrainingwastogeneratetheat- =0:2Pn?1 i=1kxi?xi+1k n?1 : (2) Discard Refinement proximationforverierfwhichwouldbeusedlater 4.1Training iments.thersttypeoftrainingistogettheap- tocheckthevalidationofthesegmentation.foreach gesture,anumberbetween(27and36)oftrainingsam- Twotypesoftrainingwereconductedintheexper- Figure7:40handgesturesusedintheexperiment. Thetotalnumberoftrainingattentionimagesis HandSegmentation presentedintheattentionwindowwouldbediscarded. tentionimageswithmorethan30%backgroundpixels ples.inthecurrentimplementation,theselectionofthe foreachtrainingsampleasshowninfig.3.theattentionimagesfrommultiplexationsoftrainingsammentationtaskfromatemporalsequenceofintensity xationsismechanical.totally19xationswereused images.eachsequencerepresentsacompletehandsign. Fig.8(a)showstwosamplesequences. weutilizemotioninformationtondamotionattention window.theattentionalgorithmcandetecttherough Thetrainedsystemwastestedtoperformtheseg- Inordertospeeduptheprocessofthesegmentation,

5 (a) (b) attentionareshownusingdarkrectangular;(c)theresultsofthesegmentationareshownaftermaskingothebackground. Figure8:Thesamplesoftheexperimentalresults.(a)Theinputtestingsequences;(b)Theresultsofmotion-basedvisual

6 positionofamovingobject,buttheaccuracyisnot guaranteedasshowninfig.8(b).wesolvethisproblembydoingsomelimitedsearchbasedonthemotion attentionwindow.inthecurrentimplementation,given amotionattentionwindowwithmrowsandncolumns, wetrythecandidateswithsizefrom(0:5m;0:5n)to (2m;2n)usingstepsize(0:5m;0:5n). Wetestedthesystemwith802images(161sequences)whichwerenotusedinthetraining.Aresult wasrejectedifthesystemcouldnotndavalidsegmentationwithacondencelevell.thesegmentation wasconsideredasacorrectoneifthecorrectgesture segmentationcwasretrievedandplacedintheright positionofthetestimage.forthecaseofl=0:2,we haveachieved95%correctsegmentationratewith3% falserejectionrate.fig.8(c)showssomesegmentationresults.wesummarizetheexperimentalresultsin Table1.ThetimewasobtainedonaSGI-INDIGO2 workstation. Table1:Summaryoftheexperimentaldata NumberofCorrect FalseTime testimagessegmentationrejectionperimage % 3%58.3sec. 5ConclusionsandFutureWork Asegmentationschemeusingattentionimagesfrom multiplexationsispresentedinthispaper.themajoradvantageofthisschemeisthatitcanhandlea largenumberofdierentdeformableobjectspresented invariouscomplexbackgrounds.theschemeisalso relativelyecientsincethesearchofthesegmentation isguidedbythepastknowledgethroughapredicationand-vericationscheme. Inthecurrentimplementation,thexationsaregeneratedmechanically.Thenumberofxationsandthe positionsofxationsarethesameregardlessofthetypes ofgestures.thisisnotveryecient.somegestures maybeverysimplesothatafewxationsareenough torecognizethem.nevertheless,inordertoachievethe optimalperformance,dierentgesturesmayrequiredifferentpositionsofxations.inthefuture,weplanto investigatethegenerationofthexationsalsobasedon learning.thepreviousxationsareusedtoguidethe nextaction.thenextactioncouldbe(a)termination oftheprocessofgeneratingxationifthegesturehas alreadybeenrecognized;or(b)ndingtheappropriate positionfornextxation. Acknowledgements TheauthorswouldliketothankYuZhong,Kal Rayes,DougNeal,andValerieBolsterformakingthemselvesavailablefortheexperiments.ThisworkwassupportedinpartbyNSFgrantNo.IRI andONR grantno.n References [1]A.BobickandA.Wilson,\Astate-basedtechnique forthesummarizationandrecognitionofgesture", inproc.5thint'lconf.computervision,pp ,boston,1995. [2]P.BouthemyandE.Francois,\Motionsegmentationandqualitativedynamicsceneanalysisfroman imagesequence",ininternationaljournalofcomputervision,vol.10,pp ,1993. [3]R.Cipolla,Y.OkamotoandY.Kuno,\Robust structurefrommotionusingmotionparallax",in IEEEConf.ComputerVisionandPatternRecog., pp ,1993. [4]Y.Cui,D.SwetsandJ.Weng,\Learning-based handsignrecognitionusingshoslif-m",inproc. 5thInt'lConf.ComputerVision,pp , Boston,1995. [5]Y.CuiandJ.Weng,"2Dobjectsegmentationfrom foveaimagesbasedoneigen-subspacelearning", Proc.IEEEInt'lSymposiumonComputerVision, CoralGables,FL,Nov.20-22,1995. [6]Y.CuiandJ.Weng,\Alearning-basedpredictionand-vericationsegmentationschemeforhandsign imagesequences",technicalreportcps-95-43, ComputerScienceDepartment,MichiganState University,Dec.,1995. [7]T.DarrellandA.Pentland,\Space-timegestures",inIEEEConf.ComputerVisionandPatternRecog.,pp ,1993. [8]G.W.Donohoe,D.R.HushandN.Ahmed, \Changedetectionfortargetdetectionandclassicationinvideosequences",inProc.Int'lConf. Acoust.,Speech,SignalProcessing,pp , [9]M.Kass,A.WitkinandD.Terzopoulos,\Snakes: activecontourmodels",inproc.1sticcv,pp ,1987. [10]D.Knuth,TheArtofComputerProgrammingIII: SortingandSearching,Addison-Wesley,Reading, Mass.,1973. [11]J.J.KuchandT.S.Huang,\Visionbasedhand modelingandtracking",inproc.international ConferenceonComputerVision,June,1995. [12]M.M.Loeve,ProbabilityTheory,Princeton,NJ: VanNostrand,1955. [13]T.E.StarnerandA.Pentland,\Visualrecognition ofamericansignlanguageusinghiddenmarkov models",inproc.internationalworkshoponautomaticface-andgesture-recognition",june1995.

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

hp calculators HP 12C Net Present Value Cash flow and NPV calculations Cash flow diagrams The HP12C cash flow approach Practice solving NPV problems

hp calculators HP 12C Net Present Value Cash flow and NPV calculations Cash flow diagrams The HP12C cash flow approach Practice solving NPV problems Cash flow and NPV calculations Cash flow diagrams The HP12C cash flow approach Practice solving NPV problems How to modify cash flow entries Cash Flow and NPV calculations Cash flow analysis is an extension

More information

hp calculators HP 12C Internal Rate of Return Cash flow and IRR calculations Cash flow diagrams The HP12C cash flow approach

hp calculators HP 12C Internal Rate of Return Cash flow and IRR calculations Cash flow diagrams The HP12C cash flow approach Cash flow and IRR calculations Cash flow diagrams The HP12C cash flow approach Practice with solving cash flow problems related to IRR How to modify cash flow entries Cash Flow and IRR calculations Cash

More information

Data Mining Techniques Chapter 6: Decision Trees

Data Mining Techniques Chapter 6: Decision Trees Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................

More information

Tutorial: Assigning Prelogin Criteria to Policies

Tutorial: Assigning Prelogin Criteria to Policies CHAPTER 4 This tutorial provides an overview of the CSD configuration sequence. The configuration chapters that follow provide detailed instructions on the attributes. The sections are as follows: Overview

More information

Quick Start. Creating a Scoring Application. RStat. Based on a Decision Tree Model

Quick Start. Creating a Scoring Application. RStat. Based on a Decision Tree Model Creating a Scoring Application Based on a Decision Tree Model This Quick Start guides you through creating a credit-scoring application in eight easy steps. Quick Start Century Corp., an electronics retailer,

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

Adabas Archiving. Mike Conena, Database Administrator Commonwealth of Massachusetts

Adabas Archiving. Mike Conena, Database Administrator Commonwealth of Massachusetts Adabas Archiving Mike Conena, Database Administrator Commonwealth of Massachusetts What is it? A tool to archive Data from Adabas Files What are the benefits? Minimizes only necessary data on primary databases

More information

Purchase Agent Installation Guide

Purchase Agent Installation Guide Purchase Agent Installation Guide Before Installing Purchase Agent... 1 Installing Purchase Agent..... 2 Installing Purchase Agent Help Files... 8 Post Installation Getting Started... 13 BEFORE INSTALLING

More information

Applied Biosystems Real-Time System Computer Setup Guide

Applied Biosystems Real-Time System Computer Setup Guide Applied Biosystems Real-Time System Computer Setup Guide Unpack the computer boxes and set the proper voltage. 1. Unpack the computer boxes and place the monitor, computer, keyboard, and mouse on the bench

More information

DYNAMICS AS A PROCESS, HELPING UNDERGRADUATES UNDERSTAND DESIGN AND ANALYSIS OF DYNAMIC SYSTEMS

DYNAMICS AS A PROCESS, HELPING UNDERGRADUATES UNDERSTAND DESIGN AND ANALYSIS OF DYNAMIC SYSTEMS Session 2666 DYNAMICS AS A PROCESS, HELPING UNDERGRADUATES UNDERSTAND DESIGN AND ANALYSIS OF DYNAMIC SYSTEMS Louis J. Everett, Mechanical Engineering Texas A&M University College Station, Texas 77843 LEverett@Tamu.Edu

More information

How-To Guide Importing a Portal Public Key into an ECC client

How-To Guide Importing a Portal Public Key into an ECC client How-To Guide Importing a Portal Public Key into an ECC client Shows how to import Portal Public Key Certificates and grant single sign on access to ECC clients using the imported key certificate. Wolfgang

More information

PMLead. Project Management Professional. edition. Based on PMBOK Guide 4 th. www.pmlead.net

PMLead. Project Management Professional. edition. Based on PMBOK Guide 4 th. www.pmlead.net PMLead Project Management Professional Based on PMBOK Guide 4 th edition www.pmlead.net SECTION II Chapter 3 Project Management Processes Chapter 3 Project Process Groups A process is a set of interrelated

More information

DRAFT Standard Operating Procedure for Long-Term Archiving of PM 2.5 Filters and Extracts

DRAFT Standard Operating Procedure for Long-Term Archiving of PM 2.5 Filters and Extracts Page 1 of 6 DRAFT Standard Operating Procedure for Long-Term Archiving of PM 2.5 Filters and Extracts Environmental and Industrial Sciences Division Research Triangle Institute Research Triangle Park,

More information

A Cognitive Approach to Vision for a Mobile Robot

A Cognitive Approach to Vision for a Mobile Robot A Cognitive Approach to Vision for a Mobile Robot D. Paul Benjamin Christopher Funk Pace University, 1 Pace Plaza, New York, New York 10038, 212-346-1012 benjamin@pace.edu Damian Lyons Fordham University,

More information

DataTrak 2.95.0 Release Notes

DataTrak 2.95.0 Release Notes The following is an overview of this release. Release Date: Thursday, Release Number: 2.95.0 Enhancements: In this release, we made the following enhancements: Billing Info - We improved validation of

More information

International Journal of Computer Trends and Technology (IJCTT) volume 4 Issue 8 August 2013

International Journal of Computer Trends and Technology (IJCTT) volume 4 Issue 8 August 2013 A Short-Term Traffic Prediction On A Distributed Network Using Multiple Regression Equation Ms.Sharmi.S 1 Research Scholar, MS University,Thirunelvelli Dr.M.Punithavalli Director, SREC,Coimbatore. Abstract:

More information

The Correlation Coefficient

The Correlation Coefficient The Correlation Coefficient Lelys Bravo de Guenni April 22nd, 2015 Outline The Correlation coefficient Positive Correlation Negative Correlation Properties of the Correlation Coefficient Non-linear association

More information

June 2011. TerraSAR-X-based Flood Mapping Service

June 2011. TerraSAR-X-based Flood Mapping Service June 2011 TerraSAR-X-based Flood Mapping Service Service TerraSAR-X-based Flood Mapping Product Flood extent map Product specifications Flood mask / water mask Input / output data Summary Content Date

More information

USER GUIDE MANTRA WEB EXTRACTOR. www.altiliagroup.com

USER GUIDE MANTRA WEB EXTRACTOR. www.altiliagroup.com USER GUIDE MANTRA WEB EXTRACTOR www.altiliagroup.com Page 1 of 57 MANTRA WEB EXTRACTOR USER GUIDE TABLE OF CONTENTS CONVENTIONS... 2 CHAPTER 2 BASICS... 6 CHAPTER 3 - WORKSPACE... 7 Menu bar 7 Toolbar

More information

NOTE-TAKING. Rutgers School of Nursing

NOTE-TAKING. Rutgers School of Nursing NOTE-TAKING Rutgers School of Nursing WHEN TO TAKE NOTES BEFORE DURING AFTER I. Before Class: Preparation (mental and physical) Read Textbook BEFORE Class Start Taking Notes BEFORE Class The SQ3R Method

More information

Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm

Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm 1 Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm Hani Mehrpouyan, Student Member, IEEE, Department of Electrical and Computer Engineering Queen s University, Kingston, Ontario,

More information

Architectural Design Structured Design. Xin Feng

Architectural Design Structured Design. Xin Feng Architectural Design Structured Design Xin Feng Structured Analysis Method Based on the Data Flow Diagrams Specification Data flow diagram Design Structured tree This is NOT an OO-Method!!! Data Flow Model

More information

THE PROCESS APPROACH IN ISO 9001:2015

THE PROCESS APPROACH IN ISO 9001:2015 International Organization for Standardization BIBC II, Chemin de Blandonnet 8, CP 401, 1214 Vernier, Geneva, Switzerland Tel: +41 22 749 01 11, Web: www.iso.org THE PROCESS APPROACH IN ISO 9001:2015 Purpose

More information

Copyright 2013 CTB/McGraw-Hill LLC. 1

Copyright 2013 CTB/McGraw-Hill LLC. 1 TerraNova, Third Edition Science and Social Studies Joan Buzick DRC/CTB Assessment Consultant Organizing for Assessment Success Today s Webinar Objectives Why test Science and Social Studies with TerraNova3

More information

Simulation of processes in a mining enterprise with Tecnomatix Plant Simulation

Simulation of processes in a mining enterprise with Tecnomatix Plant Simulation Simulation of processes in a mining enterprise with Tecnomatix Plant Simulation Vladimir Medvedev Simulation of ore extraction on the open mountain works Page 2 Simulation objective To verify current control

More information

A New Robust Algorithm for Video Text Extraction

A New Robust Algorithm for Video Text Extraction A New Robust Algorithm for Video Text Extraction Pattern Recognition, vol. 36, no. 6, June 2003 Edward K. Wong and Minya Chen School of Electrical Engineering and Computer Science Kyungpook National Univ.

More information

SQLFlow: PL/SQL Multi-Diagrammatic Source Code Visualization

SQLFlow: PL/SQL Multi-Diagrammatic Source Code Visualization SQLFlow: PL/SQL Multi-Diagrammatic Source Code Visualization Samir Tartir Department of Computer Science University of Georgia Athens, Georgia 30602 USA Email: startir@uga.edu ABSTRACT: A major problem

More information

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 6367(Print), ISSN 0976 6367(Print) ISSN 0976 6375(Online)

More information

Intelligent Learning Content Management System based on SCORM Standard. Dr. Shian-Shyong Tseng

Intelligent Learning Content Management System based on SCORM Standard. Dr. Shian-Shyong Tseng Intelligent Learning Content Management System based on SCORM Standard Dr. Shian-Shyong Tseng Department of Computer Science, National Chiao Tung University (NCTU), Taiwan (R.O.C) 2008 Researching Topics

More information

ABAQUS Tutorial. 3D Modeling

ABAQUS Tutorial. 3D Modeling Spring 2011 01/21/11 ABAQUS Tutorial 3D Modeling This exercise intends to demonstrate the steps you would follow in creating and analyzing a simple solid model using ABAQUS CAE. Introduction A solid undergoes

More information

Optimized bandwidth usage for real-time remote surveillance system

Optimized bandwidth usage for real-time remote surveillance system University of Edinburgh College of Science and Engineering School of Informatics Informatics Research Proposal supervised by Dr. Sethu Vijayakumar Optimized bandwidth usage for real-time remote surveillance

More information

Value Engineering VE with Risk Assessment RA

Value Engineering VE with Risk Assessment RA Preparation Conclude & Report Value Engineering VE with Risk Assessment RA yes START Plan for VE and RA Value Engineering Job Plan 1 2 Function Information Analysis 3 Creative 4 Evaluation 5 Develop recommendations

More information

CHAPTER 1. Introduction to CAD/CAM/CAE Systems

CHAPTER 1. Introduction to CAD/CAM/CAE Systems CHAPTER 1 1.1 OVERVIEW Introduction to CAD/CAM/CAE Systems Today s industries cannot survive worldwide competition unless they introduce new products with better quality (quality, Q), at lower cost (cost,

More information

Notecard Question & Answer Technique

Notecard Question & Answer Technique Academic Resources Notecard Question & Answer Technique To succeed in college, important ideas from lectures and textbooks must be identified, organized, recorded, practiced and stored in long term memory

More information

Data Masking Secure Sensitive Data Improve Application Quality. Becky Albin Chief IT Architect Becky.Albin@softwareag.com

Data Masking Secure Sensitive Data Improve Application Quality. Becky Albin Chief IT Architect Becky.Albin@softwareag.com Data Masking Secure Sensitive Data Improve Application Quality Becky Albin Chief IT Architect Becky.Albin@softwareag.com Data Masking for Adabas The information provided in this PPT is entirely subject

More information

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

More information

PROCESS DOCKET - PRINT CHECKS

PROCESS DOCKET - PRINT CHECKS PROCESS DOCKET - PRINT CHECKS Docket > Process Docket (Normal) The Process Docket - Specifications screen will display. Enter the following: RUN TYPE: Toggle to Trial (default) or Normal. EXTRACT TYPE:

More information

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

More information

Multi-factor Authentication in Banking Sector

Multi-factor Authentication in Banking Sector Multi-factor Authentication in Banking Sector Tushar Bhivgade, Mithilesh Bhusari, Ajay Kuthe, Bhavna Jiddewar,Prof. Pooja Dubey Department of Computer Science & Engineering, Rajiv Gandhi College of Engineering

More information

Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010

Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010 Decision Support Optimization through Predictive Analytics - Leuven Statistical Day 2010 Ernst van Waning Senior Sales Engineer May 28, 2010 Agenda SPSS, an IBM Company SPSS Statistics User-driven product

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 3-7, 3-8 The remaining discrete random

More information

Quantitative market research for incremental improvement innovations. Professor Eric von Hippel MIT Sloan School of Management

Quantitative market research for incremental improvement innovations. Professor Eric von Hippel MIT Sloan School of Management Quantitative market research for incremental improvement innovations Professor Eric von Hippel MIT Sloan School of Management Incremental innovation is important. Quantitative market research can identify

More information

UML TUTORIALS THE USE CASE MODEL

UML TUTORIALS THE USE CASE MODEL UML TUTORIALS THE USE CASE MODEL www.sparxsystems.com.au Sparx Systems 2004 Page 1/5 describes the proposed functionality of the new system. A Use Case represents a discrete unit of interaction between

More information

REPLACEMENT OF HVAC AND ELECTRICAL EQUIPMENT IN BUILDING W-143 NAVAL FACILITIES ENGINEERING COMMAND ~ MID-ATLANTIC AREA C AREA B AREA C AREA B AREA D

REPLACEMENT OF HVAC AND ELECTRICAL EQUIPMENT IN BUILDING W-143 NAVAL FACILITIES ENGINEERING COMMAND ~ MID-ATLANTIC AREA C AREA B AREA C AREA B AREA D AREA B AREA C AREA B AREA A AREA C AREA D AREA A AREA D NAVAL FACILITIES ENGINEERING COMMAND ~ MID-ATLANTIC AREA B AREA A AREA C AREA D AREA A AREA D NAVAL FACILITIES ENGINEERING COMMAND ~ MID-ATLANTIC

More information

Large Scale Systems Design G52LSS

Large Scale Systems Design G52LSS G52LSS Refine Requirements Lecture 13 Use Case Analysis Use Case Diagrams and Use Cases Steps of Use Case Analysis Example: University Registration System Learning outcomes: understand the importance of

More information

IST722 Data Warehousing

IST722 Data Warehousing IST722 Data Warehousing Components of the Data Warehouse Michael A. Fudge, Jr. Recall: Inmon s CIF The CIF is a reference architecture Understanding the Diagram The CIF is a reference architecture CIF

More information

LTR DESCRIPTION DATE APPROVED

LTR DESCRIPTION DATE APPROVED ISSUER: DRAWING NO WI 005-197-501 APPROVAL REV A DATE 12-18-2012 Installation Instruction Tr/IPs MCU P/N 005-197-501 ENGINEERING: PRODUCTION/MATERIAL: QA APPROVAL: 12.18.12 REVISION HISTORY LTR DESCRIPTION

More information

jorge s. marques image processing

jorge s. marques image processing image processing images images: what are they? what is shown in this image? What is this? what is an image images describe the evolution of physical variables (intensity, color, reflectance, condutivity)

More information

EXTENDED ANGEL: KNOWLEDGE-BASED APPROACH FOR LOC AND EFFORT ESTIMATION FOR MULTIMEDIA PROJECTS IN MEDICAL DOMAIN

EXTENDED ANGEL: KNOWLEDGE-BASED APPROACH FOR LOC AND EFFORT ESTIMATION FOR MULTIMEDIA PROJECTS IN MEDICAL DOMAIN EXTENDED ANGEL: KNOWLEDGE-BASED APPROACH FOR LOC AND EFFORT ESTIMATION FOR MULTIMEDIA PROJECTS IN MEDICAL DOMAIN Sridhar S Associate Professor, Department of Information Science and Technology, Anna University,

More information

ORIENTATIONS INVENTORY

ORIENTATIONS INVENTORY ORIENTATIONS INVENTORY Instructions for questions (1-18 and 20-26): Place a check mark in the blank next to the statement that is more true for you or true most of the time. 1. When planning the activities

More information

SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS The SN54165 and SN74165 devices SN54165, SN54LS165A, SN74165, SN74LS165A PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments

More information

Next Generation of Global Production Management Using Sensing and Analysis Technology

Next Generation of Global Production Management Using Sensing and Analysis Technology Hitachi Review Vol. 65 (2016), No. 5 47 Featured Articles Next Generation of Global Production Management Using Sensing and Analysis Technology Hideya Isaka Hiroto Nagayoshi Hiroshi Yoshikawa Toshihiro

More information

Building Information Modelling (BIM); How it Improves Building Performance. R.P. Kumanayake Lecturer, Department of Civil Engineering

Building Information Modelling (BIM); How it Improves Building Performance. R.P. Kumanayake Lecturer, Department of Civil Engineering Building Information Modelling (BIM); How it Improves Building Performance R.P. Kumanayake Lecturer, Department of Civil Engineering R.M.P.S. Bandara Lecturer, Department of Mechanical Engineering Faculty

More information

SpotCell Automatic Dialer System

SpotCell Automatic Dialer System Application Note 108 11-Jun-00 SpotCell Automatic Dialer System Overview All SpotCell adaptive repeaters now come equipped with built-in alarming capabilities which have been designed to be compatible

More information

Client Security Risk Assessment Questionnaire

Client Security Risk Assessment Questionnaire Select the appropriate answer from the drop down in the column, and provide a brief description in the section. 1 Do you have a member of your organization with dedicated information security duties? 2

More information

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

More information

Procedure for obtaining Biometric Device Certification (Authentication)

Procedure for obtaining Biometric Device Certification (Authentication) Procedure for obtaining Biometric Device Certification (Authentication) (BDCS(A)-03-02) ISSUE 1 STQC - IT Services STQC Directorate, Department of Information Technology, Ministry of Communications & Information

More information

Software Specification and Architecture 2IW80

Software Specification and Architecture 2IW80 Software Specification and Architecture 2IW80 Julien Schmaltz (slides partly from M. Mousavi and A. Serebrenik) Lecture 03: Use Cases Before we start The system shall give access to the database to any

More information

Unit I. Introduction

Unit I. Introduction Unit I Introduction Product Life Cycles Products also have life cycles The Systems Development Life Cycle (SDLC) is a framework for describing the phases involved in developing and maintaining information

More information

Automatic Analysis of Browser-based Security Protocols

Automatic Analysis of Browser-based Security Protocols Automatic Analysis of Browser-based Security Protocols Avinash Sudhodanan Alessandro Armando (FBK, coordinator) Roberto Carbone (FBK, tutor) Luca Compagna (SAP, tutor) FP7-PEOPLE-2012-ITN Outline Context

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Media Cloud Service with Optimized Video Processing and Platform

Media Cloud Service with Optimized Video Processing and Platform Media Cloud Service with Optimized Video Processing and Platform Kenichi Ota Hiroaki Kubota Tomonori Gotoh Recently, video traffic on the Internet has been increasing dramatically as video services including

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

Blender Exercise. ME 321, Spring 2010. Before coming to the lab, read sections 1 through 3 of this document.

Blender Exercise. ME 321, Spring 2010. Before coming to the lab, read sections 1 through 3 of this document. Blender Exercise ME 32, Spring 200 Before coming to the lab, read sections through 3 of this document. Engineering of Everyday Things Gerald Recktenwald Portland State University gerry@me.pdx.edu eet.cecs.pdx.edu

More information

A Study of Immersive Game Contents System Design and Modeling for Virtual Reality Technology

A Study of Immersive Game Contents System Design and Modeling for Virtual Reality Technology , pp.411-418 http://dx.doi.org/10.14257/ijca.2014.7.10.38 A Study of Immersive Game Contents System Design and Modeling for Virtual Reality Technology Jung-Yoon Kim 1 and SangHun Nam 2 1 Graduate School

More information

EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.

EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an

More information

The Scientific Data Mining Process

The Scientific Data Mining Process Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In

More information

Newton s Laws of Motion Project

Newton s Laws of Motion Project Newton s Laws of Motion Project Sir Isaac Newton lived during the 1s. Like all scientists, he made observations about the world around him. Some of his observations were about motion. His observations

More information

Face Locating and Tracking for Human{Computer Interaction. Carnegie Mellon University. Pittsburgh, PA 15213

Face Locating and Tracking for Human{Computer Interaction. Carnegie Mellon University. Pittsburgh, PA 15213 Face Locating and Tracking for Human{Computer Interaction Martin Hunke Alex Waibel School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract Eective Human-to-Human communication

More information

Region of Interest Access with Three-Dimensional SBHP Algorithm CIPR Technical Report TR-2006-1

Region of Interest Access with Three-Dimensional SBHP Algorithm CIPR Technical Report TR-2006-1 Region of Interest Access with Three-Dimensional SBHP Algorithm CIPR Technical Report TR-2006-1 Ying Liu and William A. Pearlman January 2006 Center for Image Processing Research Rensselaer Polytechnic

More information

Biometric Authentication using Online Signature

Biometric Authentication using Online Signature University of Trento Department of Mathematics Outline Introduction An example of authentication scheme Performance analysis and possible improvements Outline Introduction An example of authentication

More information

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,

More information

Evaluation & Validation: Credibility: Evaluating what has been learned

Evaluation & Validation: Credibility: Evaluating what has been learned Evaluation & Validation: Credibility: Evaluating what has been learned How predictive is a learned model? How can we evaluate a model Test the model Statistical tests Considerations in evaluating a Model

More information

Prospectus for the Essential Physics package.

Prospectus for the Essential Physics package. Prospectus for the Essential Physics package. Essential Physics is a new textbook and learning package aimed at the College Physics audience, covering the standard introductory physics topics without using

More information

Reviewed by Ok s a n a Afitska, University of Bristol

Reviewed by Ok s a n a Afitska, University of Bristol Vol. 3, No. 2 (December2009), pp. 226-235 http://nflrc.hawaii.edu/ldc/ http://hdl.handle.net/10125/4441 Transana 2.30 from Wisconsin Center for Education Research Reviewed by Ok s a n a Afitska, University

More information

Assessment Report Sample Candidate

Assessment Report Sample Candidate Assessment Report Sample Candidate Abstract Reasoning Aptitude-Rx Generated on: 27-Mar-2015 Page 2 2016 Willis Towers Watson. All rights reserved. Contents Introduction to Assessment Report...3 Total Score...4

More information

PROGRESSION THROUGH CALCULATIONS FOR SUBTRACTION

PROGRESSION THROUGH CALCULATIONS FOR SUBTRACTION PROGRESSION THROUGH CALCULATIONS FOR SUBTRACTION Knowing and using number facts Foundation Find one more or one less than a number from 1 to 10 Stage Year 1 Derive and recall all pairs of numbers with

More information

Software Testing and Software Development Lifecycles

Software Testing and Software Development Lifecycles Software Testing and Software Development Lifecycles Executive Summary This paper outlines a number of commonly used software development lifecycle models, with particular emphasis on the testing activities

More information

OFFICIAL SECURITY CHARACTERISTIC MOBILE DEVICE MANAGEMENT

OFFICIAL SECURITY CHARACTERISTIC MOBILE DEVICE MANAGEMENT SECURITY CHARACTERISTIC MOBILE DEVICE MANAGEMENT Version 1.3 Crown Copyright 2015 All Rights Reserved 49358431 Page 1 of 12 About this document This document describes the features, testing and deployment

More information

Automatic Fall Incident Detection in Compressed Video for Intelligent Homecare

Automatic Fall Incident Detection in Compressed Video for Intelligent Homecare Automatic Fall Incident in Compressed Video for Intelligent Homecare Chia-Wen Lin and Zhi-Hong Ling Department of Electrical Engineering National Chung Cheng University Hsinchu 300, Taiwan cwlin@ee.nthu.edu.tw

More information

Development and evaluation of wireless 3D video conference system using decision tree and behavior network

Development and evaluation of wireless 3D video conference system using decision tree and behavior network RESEARCH Open Access Development and evaluation of wireless 3D video conference system using decision tree and behavior network Yunsick Sung 1 and Kyungeun Cho 2* Abstract Video conferencing is a communication

More information

What Leads to Innovation? An Analysis of Collaborative Problem-Solving

What Leads to Innovation? An Analysis of Collaborative Problem-Solving What Leads to Innovation? An Analysis of Collaborative Problem-Solving Randy M. Casstevens Department of Computational Social Science George Mason University Fairfax, VA 3 rcasstev@gmu.edu January 3, Abstract

More information

Personal Digital Library: collections and virtual documents

Personal Digital Library: collections and virtual documents Personal Digital Library: collections and virtual documents Manuscriptorium version 2.0 2009/10/15 Introduction Under the auspices of the ENRICH project the requirements of various types of end users of

More information

WORKER PERFORMANCE AND VENTILATION: ANALYSES OF INDIVIDUAL DATA FOR CALL-CENTER WORKERS

WORKER PERFORMANCE AND VENTILATION: ANALYSES OF INDIVIDUAL DATA FOR CALL-CENTER WORKERS WORKER PERFORMANCE AND VENTILATION: ANALYSES OF INDIVIDUAL DATA FOR CALL-CENTER WORKERS CC Federspiel 1*, G Liu 2, M Lahiff 3, D Faulkner 4, DL Dibartolomeo 4, WJ Fisk 4, PN Price 4 and DP Sullivan 4 1

More information

18-731 Midterm. Name: Andrew user id:

18-731 Midterm. Name: Andrew user id: 18-731 Midterm 6 March 2008 Name: Andrew user id: Scores: Problem 0 (10 points): Problem 1 (10 points): Problem 2 (15 points): Problem 3 (10 points): Problem 4 (20 points): Problem 5 (10 points): Problem

More information

Search and Information Retrieval

Search and Information Retrieval Search and Information Retrieval Search on the Web 1 is a daily activity for many people throughout the world Search and communication are most popular uses of the computer Applications involving search

More information

Management Information System Prof. B. Mahanty Department of Industrial Engineering & Management Indian Institute of Technology, Kharagpur

Management Information System Prof. B. Mahanty Department of Industrial Engineering & Management Indian Institute of Technology, Kharagpur (Refer Slide Time: 00:54) Management Information System Prof. B. Mahanty Department of Industrial Engineering & Management Indian Institute of Technology, Kharagpur Lecture - 18 Data Flow Diagrams - III

More information

Design of Data Entry Systems Pam Kellogg, Research Informatics, Family Health International

Design of Data Entry Systems Pam Kellogg, Research Informatics, Family Health International Design of Data Entry Systems Pam Kellogg,, Family Health International 1 Data Entry Design Topics CRFs Annotated CRFs Record Layouts Data Dictionaries Code lists Data entry screens Testing QA Documentation

More information

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V. .4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a two-dimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5

More information

Technology in Music Therapy and Special Education. What is Special Education?

Technology in Music Therapy and Special Education. What is Special Education? Technology in Music Therapy and Special Education What is Special Education? Disabilities are categorized into the following areas: o Autism, visual impairment, hearing impairment, deaf- blindness, multiple

More information

from Larson Text By Susan Miertschin

from Larson Text By Susan Miertschin Decision Tree Data Mining Example from Larson Text By Susan Miertschin 1 Problem The Maximum Miniatures Marketing Department wants to do a targeted mailing gpromoting the Mythic World line of figurines.

More information

Journal of Industrial Engineering Research. Adaptive sequence of Key Pose Detection for Human Action Recognition

Journal of Industrial Engineering Research. Adaptive sequence of Key Pose Detection for Human Action Recognition IWNEST PUBLISHER Journal of Industrial Engineering Research (ISSN: 2077-4559) Journal home page: http://www.iwnest.com/aace/ Adaptive sequence of Key Pose Detection for Human Action Recognition 1 T. Sindhu

More information

Factorising quadratics

Factorising quadratics Factorising quadratics An essential skill in many applications is the ability to factorise quadratic expressions. In this unit you will see that this can be thought of as reversing the process used to

More information

Umbrella: A New Component-Based Software Development Model

Umbrella: A New Component-Based Software Development Model 2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore Umbrella: A New Component-Based Software Development Model Anurag Dixit and P.C.

More information

APPLICATION OF DATA MINING TECHNIQUES FOR BUILDING SIMULATION PERFORMANCE PREDICTION ANALYSIS. email paul@esru.strath.ac.uk

APPLICATION OF DATA MINING TECHNIQUES FOR BUILDING SIMULATION PERFORMANCE PREDICTION ANALYSIS. email paul@esru.strath.ac.uk Eighth International IBPSA Conference Eindhoven, Netherlands August -4, 2003 APPLICATION OF DATA MINING TECHNIQUES FOR BUILDING SIMULATION PERFORMANCE PREDICTION Christoph Morbitzer, Paul Strachan 2 and

More information

Web Application Testing. Web Performance Testing

Web Application Testing. Web Performance Testing Web Application Testing Web Performance Testing Objectives of Performance Testing Evaluate runtime compliance to performance requirements Check different properties such as throughput (bits/sec, packets/sec)

More information

NEW CHALLENGES IN COLLABORATIVE VIRTUAL FACTORY DESIGN

NEW CHALLENGES IN COLLABORATIVE VIRTUAL FACTORY DESIGN 02 NEW CHALLENGES IN COLLABORATIVE VIRTUAL FACTORY DESIGN Stefano Mottura, Giampaolo Viganò, Luca Greci, Marco Sacco Emanuele Carpanzano Institute of Industrial Technologies and Automation National Research

More information

The Sun: Our nearest star

The Sun: Our nearest star The Sun: Our nearest star Property Surface T Central T Luminosity Mass Lifetime (ms) Value 5500K 15x10 6 K 2 x 10 33 ergs 4 x 10 33 grams 10 billion years Solar Structure Build a model and find the central

More information

Factors and Products

Factors and Products CHAPTER 3 Factors and Products What You ll Learn use different strategies to find factors and multiples of whole numbers identify prime factors and write the prime factorization of a number find square

More information