Digital Classification vs. Visual Interpretation: a case study in humid tropical forests of the Peruvian Amazon

Size: px
Start display at page:

Download "Digital Classification vs. Visual Interpretation: a case study in humid tropical forests of the Peruvian Amazon"

Transcription

1 Digital Classification vs. Visual Interpretation: a case study in humid tropical forests of the Peruvian Amazon Carlos Javier Puig 1, Glenn Hyman 2 and Sandra Bolaños 3 1, 2, 3 International Center for Tropical Agriculture (CIAT) Km 17, carretera Cali-Palmira. AA 6713, Cali, Colombia 1 jpuig01@hotmail.com; 2 g.hyman@cgiar.org; 3 s.bolanos@cgiar.org Abstract Remote sensing specialists classify land use and land cover from satellite imagery by visual interpretation or by digital classification. The latter method is widely accepted among the scientific community because of its statistical validation and automatic processing. However, precision and accuracy are difficult to achieve in tropical environments where landscape heterogeneity is common and field work is difficult. During the last decades, visual interpretation became less popular compared to automatic processing. But now software and hardware are able to manage images and vector information, permitting interactive map editing and more possibilities for visual interpretation. CIAT has been working in the Peruvian Amazon region monitoring tropical forest and land use change near to the city of Pucallpa. Several classifications were made using visual interpretation and digital image processing in the same area. We compared and described both methodologies in a sample area of the Peruvian Amazon region. The normal fragmentation of tropical deforested areas and the diversity of uses and covers affect the selection of good training areas for digital classification. Visual interpretation is imprecise for recognizing and drawing land cover polygons. Both methodologies required similar processing times. Both were affected by the presence of clouds and their shadows, heterogeneity in the distribution of land use and land cover over the study area, minimal details identified from the classifications, and number of classes. Interpreter experience played an important role in processing time for both classifications. Statistically, digital classification is more accurate if a confidence interval of less than 60% is considered; above this value, both classification methodologies were comparable. Kappa statistics were similar. Visual classification is the preferred method for interpreting land use and land cover in low and mediumresolution satellite images, its application being limited to high spatial resolution imagery because of the increase of details to recognize. INTRODUCTION Remote sensing technology, software and data management have continually improved since the middle of the last century. Traditional visual classification of aerial photographs was adapted to the first satellite images. Advances in technology and mathematical algorithms permitted digital image processing and automated classification. Supervised and unsupervised classifications are the two principal methodologies for making land cover maps. Both methods consider the brightness value of pixels and the generation of groups of pixels with similar spectral response, using specific algorithms. Advances in computer, GIS and remote sensing technology offer new possibilities for managing, editing and generating raster and vector data, facilitating the visual interpretation methods. In this case, image data is displayed on a monitor. The interpreter uses a mouse to digitize vectors on top of the displayed imagery. Although automated classification is widely recognized for its statistical validation, visual interpretation has more potential users. Many organizations lack the resources for investing in expensive software and remote sensing training. They could benefit by using easy-to-learn visual interpretation methods with low-cost software. Some previous comparative studies showed that some land cover types in tropical regions have reflectance characteristics easily distinguished on an image. Areas with heterogeneous land covers require the analyst to consider other aspects such as texture, spatial pattern and fragmentation of the landscape for understanding an image (King, 2001). Complex areas poorly 1

2 classified by automatic processing could be masked using visual techniques in order to improve the classification. Our study compares and discusses the advantages and disadvantages of digital classification and visual interpretation for making land cover maps in the lowland tropics. We made both quantitative and qualitative analyses to understand the differences in the two methodologies. MATERIALS AND METHODS This comparative study was carried out for our study area in the Central Peruvian Amazon, near the city of Pucallpa (Fig. 1). The region suffered significant deforestation during the last two decades due to tropical wood extraction, shifting cultivation, cattle ranching, and plantation agriculture. (Hyman et al, 2002; JRC, 1998). identify deforestation hot spots in the global tropical belt. Two Landsat TM satellite image scenes were used; the first corresponds to path 006, row 066 from July 18 th, 1998, and the second also from the same position, but from October 17 th, Historical rain data indicates that June to October corresponds to the dry season in the study area (IIAP, 1996). The study site covered a small area of the whole image. The first image was interpreted using the data from the TREES project. A hierarchical key that involved a wide possibility of classes was used. Scale of 1:100,000 on the screen was the maximum detail used to digitize the image. We classified the second image by digital processing using the K-means algorithm in an unsupervised classification. After several tests, the misclassification areas were edited using masks and recoded to reduce the confusion between classes. Small areas were eliminated with a modal 3x3 kernel filter. Both classifications had five (5) final classes corresponding to forest, non-forest, water bodies, advanced forest re-growth and clouds with their corresponding shadow. The visual interpretation from the TREES project was reclassified to these classes. We acquired 108 GPS points from the study site, most of them located in the non-forested areas. All these points were used to test the classification accuracy of each method. We acquired these sample GPS points during a survey campaign in April and October of Fig. 1. Study site localization To develop the comparison between digital classification and visual interpretation methods, we used satellite imagery from two studies carried out near Pucallpa, Peru. Digital classifications were taken from continuing studies on deforestation and land use by researchers at the International Center for Tropical Agriculture (CIAT). We used maps made by visual interpretation from the Tropical Ecosystem Environment Observations by Satellite (TREES) project, an initiative led by the Joint Research Centre (JRC) of the European Commission (REF). This study involved visual interpretation to An accuracy matrix for each methodology was built to compare the GPS verification data with each classification. Our knowledge of the tropical forest dynamics of the study site, historical survey and census data and image interpretation were used to identify the land use below the corresponding GPS point at 1996 date. We evaluated differences in the two classification methods using difference between proportions test and kappa indices RESULTS and DISCUSSION Two classifications were made over the same scene using two satellite images. We identified five land 2

3 cover classes (forest, non-forest, water, forest regrowth, clouds and shadows). Digital processing by unsupervised classification was used to iteratively combine 40 classes into the final five-class land cover map. We spent about the same amount of time to classify the imagery using the two methods. The length of time for visual classification depends heavily on interpreter experience, image quality, details to recognize and efficiency of hardware and software. Digital classification consumed more of our time than expected because of the iterative reclassification process and our filtering of the image. Narrowing down the number of classes was especially difficult in areas with mountains, diverse slope orientations, differing sun illumination, and high cloud and shadow density. Visual interpretation required that the analyst knows aspects of the study area in addition to the spectral response of the image. Our classification improved because of our knowledge of the relationship between the different land cover classes (context), texture and historical information of the study area (King, 2001). This experience helped us define classes that were more representative of the real terrain conditions (Singh and Czaplewski, 1994). In this tropical region, land use and land cover patterns tend to be heterogeneous, especially deforested landscapes that have several variations of the tree canopy density, regrowth, and land use. Conditions like this hinder the identification of useful training areas for digital supervised classifications. When the interpreter used visual classification sometimes the tendency was to generalize, especially when study area was fragmentedor composed of a mixture of land use cover classes. Small areas with grass and isolated tree groups normally were drawn inside a big polygon of pasture or intervened area without taking account of small patches of forest (De Grandi et al, 1998). Digital classification, on the other hand, recognized the two main classes of pasture and forest, but drawing several polygons ( Fig. 2 ) instead of only a few in the visual interpretation. Statistically, both methods yielded similar precision measures when difference of proportions tests were carried out. Tests withconfidence measures of 60% showed no significant difference between the two methodologies. Below this value, both expressed differences with visual interpretation having greater accuracy. The Kappa test showed the same tendency for both methodologies. Digital processing gave a Kappa statistic of 0.61 (61% precision), while visual interpretation gave a value of 0.61 (61.4% precision). The low accuracy of both methodologies could be influenced by the distribution of GPS control points. They had not been collected using statistical sampling methods. We collected GPS points from places in the field with easy access, concentrated in non-forest areas. Some classes such as forest re-growth had few GCP points compared to that class in the imagery. Additionally, the GCP points were collected using a low precision GPS receiver, a possible cause of misallocation of some points and potential confusion between some classes. Fig. 2. Ways to interpret some characteristics by VC and DC methods. Due to image filtering, small polygons of non-forest or forest re-growth inside of a larger forest area were incorporated into forest class, increasing its overall area. The same situation occurs for non-forest areas. When statistical tests are applied some confusion occurs due to small polygons that are difficult to validate with GPS points taken in the field. Therefore, future experiments should avoid taking verification points over small areas (e.g. 3x3 pixel polygons). These small areas are suppressed by the filtering process. Several studies showd that forest survival depends on how large the intervened areas are. If they are too large only small patches of forest remain, increasing the likelihood of species and biodiversity loss (Murcia, 1996; Bierregaard Jr., 1996). Digital processing considers these patches as forest. Visual interpretation cannot interpret them because they are too small to be considered as forest. Large forest polygons exclude non-forest patches with visual interpretation methods. 3

4 The polygons drawn using visual interpretation do not follow raster pixel boundaries. Verification analyses should avoid using test points near polygon borders since these areas have greater uncertainties. One important advantage of visual interpretation and vector storage of land cover data is that it requires less disk space. However when the interpretation involves large areas or huge polygons, the requirement of float memory is higher and the interpretation becomes slower. We had difficulties working in a networked hardware and software environment. Visual interpretation was much easier with processing and data storage on a local computer. While digital processing can create large numbers of classes, visual interpretation can create theseas well. The European CORINE system and TREES project demonstrated the utility of visual interpretation (Joint Research Centre of the European Commission 2001). When visual interpretation is the chosen classification method, only one person or a team trained under the same conditions should make the classification. This will ensure a homogeneous interpretation over the entire image. For success in the result, the interpreter must have appropriate knowledge of the study area. Sometimes when there is not a complete and appropriate set of image bands to analyze, visual interpretation is recommended to overcome lack of spectral differences in the imagery. CONCLUSION Both methodologies gave us similar precision and processing time for the study area. Digital image classification gave better spatial detail of land use and land cover, although the classes are not always easy to adapt to a classification scheme. Digital classification required more time for editing and processing to reduce errors. Visual interpretation was done by analysts with no formal training in the digital image processing. This is an avantage if extensive remote sensing expertise is not available for a project. One solution to the drawbacks to each method is to use some kind of combination of automatic processing and visual interpretation. The analyst can do an unsupervised classification at the outset, and then correct it with visual interpretation and pixel editing. This combination allows you to mask out clouds, shadow and water, then vectorize the remaining parts of the image visually. Another advantage of visual classification is that it can be done with simple GIS software in case the analyst does not have digital image processing software. We cannot recommend one methodology over another. Our results show that no substantial difference was found between the two methods. But if technicians want to analyze a satellite image using visual interpretation, they can utilize its many advantages and develop their studies with the same confidence as they have with adigital classification method. Visual interpretation was shown to have similar quality compared to digital classification for analyzing medium-resolution satellite data. The increase in spatial resolution for the new generation of satellites could be an important limitation for future studies due the increase in details that have to be identified, requiring more processing time. REFERENCES Bierregaard Jr., R.O. and V.H. Dale. Island in an Ever Changing Sea. The Ecological and Socio-economic Dynamics of Amazonian Rainforest Fragments. In: Schelhas, J. and R. Greenberg (eds). Forest Paches in Tropical Landscapes. Washington, USA. Pp De Grandi, GF; Mayaux, P; Rosenqvist, A; Rauste, Y; Saatchi, S; Simard, M and M. Leysen. Flooded Forest Mapping Regional Scale in the Central Africa Congo River Basin. First Thematic Results Derived by ERS1 and JERS1 Radar Mosaics. Retrieval of Bio- and Geo-Physical Parameters from SAR Data for Land Applications Workshop. ESA-ESTEC, Noordwijk, Netherland. Oct. 98. Hyman, G.; C.J.Puig and S. Bolaños. Multisource Remote Sensing and GIS for Exploring Deforestation Patterns and Processes in the Central Peruvian Amazon. International Symposium on Remote Sensing of Environment. In press. Buenos Aires. April, IIAP (Instituto de Investigación de la Amazonía Peruana). Deforestación en el Area de Influencia de la Carretera Federico Basadre Pucallpa. Dec, 1996). JRC (Join Research Centre). Identification of Deforestation Hot Spot Areas in the Humid Tropics. TREES (TRopical Ecosystem Environment observations by Satellites).. Publications Series B, Research Report N o 4. 99p Joint Research Centre of the European Commission TREES World Wide Web page at the JRC. King, B. Land cover mapping principles: a return to interpretation fundamentals. First annual meeting of the Remote Sensing and Photogrammetry Society. London, UK. Pp Sep,

5 Murcia,C. Forest Management and Pollination of Neotropical Plants. In: Schelhas, J. and R. Greenberg (eds). Forest Paches in Tropical Landscapes. Washington, USA. Pp Singh. KD and RL Czaplewski. Report: Analyses of Alternative Sample Survey Designs. Food and Agricultural Organization of the United Nations. Forest Resources Assessment 1990 Project. Roma, Italy. Feb,

Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science

Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science Materials and Methods Overview Forest cover change is calculated using a sample of 102 observations distributed

More information

VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities

VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities 1 VCS REDD Methodology Module Methods for monitoring forest cover changes in REDD project activities Version 1.0 May 2009 I. SCOPE, APPLICABILITY, DATA REQUIREMENT AND OUTPUT PARAMETERS Scope This module

More information

Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data

Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Aleksi Räsänen*, Anssi Lensu, Markku Kuitunen Environmental Science and Technology Dept. of Biological

More information

Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch

Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch Remote Sensing and Land Use Classification: Supervised vs. Unsupervised Classification Glen Busch Introduction In this time of large-scale planning and land management on public lands, managers are increasingly

More information

Global environmental information Examples of EIS Data sets and applications

Global environmental information Examples of EIS Data sets and applications METIER Graduate Training Course n 2 Montpellier - february 2007 Information Management in Environmental Sciences Global environmental information Examples of EIS Data sets and applications Global datasets

More information

Understanding Raster Data

Understanding Raster Data Introduction The following document is intended to provide a basic understanding of raster data. Raster data layers (commonly referred to as grids) are the essential data layers used in all tools developed

More information

ASSESSMENT OF FOREST RECOVERY AFTER FIRE USING LANDSAT TM IMAGES AND GIS TECHNIQUES: A CASE STUDY OF MAE WONG NATIONAL PARK, THAILAND

ASSESSMENT OF FOREST RECOVERY AFTER FIRE USING LANDSAT TM IMAGES AND GIS TECHNIQUES: A CASE STUDY OF MAE WONG NATIONAL PARK, THAILAND ASSESSMENT OF FOREST RECOVERY AFTER FIRE USING LANDSAT TM IMAGES AND GIS TECHNIQUES: A CASE STUDY OF MAE WONG NATIONAL PARK, THAILAND Sunee Sriboonpong 1 Yousif Ali Hussin 2 Alfred de Gier 2 1 Forest Resource

More information

Environmental Remote Sensing GEOG 2021

Environmental Remote Sensing GEOG 2021 Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class

More information

A KNOWLEDGE-BASED APPROACH FOR REDUCING CLOUD AND SHADOW ABSTRACT

A KNOWLEDGE-BASED APPROACH FOR REDUCING CLOUD AND SHADOW ABSTRACT A KNOWLEDGE-BASED APPROACH FOR REDUCING CLOUD AND SHADOW Mingjun Song, Graduate Research Assistant Daniel L. Civco, Director Laboratory for Earth Resources Information Systems Department of Natural Resources

More information

Image Analysis CHAPTER 16 16.1 ANALYSIS PROCEDURES

Image Analysis CHAPTER 16 16.1 ANALYSIS PROCEDURES CHAPTER 16 Image Analysis 16.1 ANALYSIS PROCEDURES Studies for various disciplines require different technical approaches, but there is a generalized pattern for geology, soils, range, wetlands, archeology,

More information

Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed

Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed Kansas Biological Survey Kansas Applied Remote Sensing Program April 2008 Previous Kansas LULC Projects Kansas LULC Map

More information

Land Cover Mapping of the Comoros Islands: Methods and Results. February 2014. ECDD, BCSF & Durrell Lead author: Katie Green

Land Cover Mapping of the Comoros Islands: Methods and Results. February 2014. ECDD, BCSF & Durrell Lead author: Katie Green Land Cover Mapping of the Comoros Islands: Methods and Results February 2014 ECDD, BCSF & Durrell Lead author: Katie Green About the ECDD project The ECDD project was run by Bristol Conservation & Science

More information

WHAT IS GIS - AN INRODUCTION

WHAT IS GIS - AN INRODUCTION WHAT IS GIS - AN INRODUCTION GIS DEFINITION GIS is an acronym for: Geographic Information Systems Geographic This term is used because GIS tend to deal primarily with geographic or spatial features. Information

More information

AN INVESTIGATION OF THE GROWTH TYPES OF VEGETATION IN THE BÜKK MOUNTAINS BY THE COMPARISON OF DIGITAL SURFACE MODELS Z. ZBORAY AND E.

AN INVESTIGATION OF THE GROWTH TYPES OF VEGETATION IN THE BÜKK MOUNTAINS BY THE COMPARISON OF DIGITAL SURFACE MODELS Z. ZBORAY AND E. ACTA CLIMATOLOGICA ET CHOROLOGICA Universitatis Szegediensis, Tom. 38-39, 2005, 163-169. AN INVESTIGATION OF THE GROWTH TYPES OF VEGETATION IN THE BÜKK MOUNTAINS BY THE COMPARISON OF DIGITAL SURFACE MODELS

More information

Opportunity cost analysis

Opportunity cost analysis Estimating the opportunity costs of REDD+ A training manual Version 1.3 Chapter 7. Opportunity cost analysis Objectives Show how to: 1. Generate an opportunity cost curve of REDD 2. Review effect of changes

More information

The Idiots Guide to GIS and Remote Sensing

The Idiots Guide to GIS and Remote Sensing The Idiots Guide to GIS and Remote Sensing 1. Picking the right imagery 1 2. Accessing imagery 1 3. Processing steps 1 a. Geocorrection 2 b. Processing Landsat images layerstacking 4 4. Landcover classification

More information

Sub-pixel mapping: A comparison of techniques

Sub-pixel mapping: A comparison of techniques Sub-pixel mapping: A comparison of techniques Koen C. Mertens, Lieven P.C. Verbeke & Robert R. De Wulf Laboratory of Forest Management and Spatial Information Techniques, Ghent University, 9000 Gent, Belgium

More information

An Assessment of the Effectiveness of Segmentation Methods on Classification Performance

An Assessment of the Effectiveness of Segmentation Methods on Classification Performance An Assessment of the Effectiveness of Segmentation Methods on Classification Performance Merve Yildiz 1, Taskin Kavzoglu 2, Ismail Colkesen 3, Emrehan K. Sahin Gebze Institute of Technology, Department

More information

Mapping coastal landscapes in Sri Lanka - Report -

Mapping coastal landscapes in Sri Lanka - Report - Mapping coastal landscapes in Sri Lanka - Report - contact : Jil Bournazel jil.bournazel@gmail.com November 2013 (reviewed April 2014) Table of Content List of Figures...ii List of Tables...ii Acronyms...ii

More information

.FOR. Forest inventory and monitoring quality

.FOR. Forest inventory and monitoring quality .FOR Forest inventory and monitoring quality FOR : the asset to manage your forest patrimony 2 1..FOR Presentation.FOR is an association of Belgian companies, created in 2010 and supported by a university

More information

Let s SAR: Mapping and monitoring of land cover change with ALOS/ALOS-2 L-band data

Let s SAR: Mapping and monitoring of land cover change with ALOS/ALOS-2 L-band data Let s SAR: Mapping and monitoring of land cover change with ALOS/ALOS-2 L-band data Rajesh Bahadur THAPA, Masanobu SHIMADA, Takeshi MOTOHKA, Manabu WATANABE and Shinichi rajesh.thapa@jaxa.jp; thaparb@gmail.com

More information

Research On The Classification Of High Resolution Image Based On Object-oriented And Class Rule

Research On The Classification Of High Resolution Image Based On Object-oriented And Class Rule Research On The Classification Of High Resolution Image Based On Object-oriented And Class Rule Li Chaokui a,b, Fang Wen a,b, Dong Xiaojiao a,b a National-Local Joint Engineering Laboratory of Geo-Spatial

More information

River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models

River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models Steven M. de Jong & Raymond Sluiter Utrecht University Corné van der Sande Netherlands Earth Observation

More information

Extraction of Satellite Image using Particle Swarm Optimization

Extraction of Satellite Image using Particle Swarm Optimization Extraction of Satellite Image using Particle Swarm Optimization Er.Harish Kundra Assistant Professor & Head Rayat Institute of Engineering & IT, Railmajra, Punjab,India. Dr. V.K.Panchal Director, DTRL,DRDO,

More information

Geospatial intelligence and data fusion techniques for sustainable development problems

Geospatial intelligence and data fusion techniques for sustainable development problems Geospatial intelligence and data fusion techniques for sustainable development problems Nataliia Kussul 1,2, Andrii Shelestov 1,2,4, Ruslan Basarab 1,4, Sergii Skakun 1, Olga Kussul 2 and Mykola Lavreniuk

More information

SEMI-AUTOMATED CLOUD/SHADOW REMOVAL AND LAND COVER CHANGE DETECTION USING SATELLITE IMAGERY

SEMI-AUTOMATED CLOUD/SHADOW REMOVAL AND LAND COVER CHANGE DETECTION USING SATELLITE IMAGERY SEMI-AUTOMATED CLOUD/SHADOW REMOVAL AND LAND COVER CHANGE DETECTION USING SATELLITE IMAGERY A. K. Sah a, *, B. P. Sah a, K. Honji a, N. Kubo a, S. Senthil a a PASCO Corporation, 1-1-2 Higashiyama, Meguro-ku,

More information

Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with Panchromatic Textural Features

Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with Panchromatic Textural Features Remote Sensing and Geoinformation Lena Halounová, Editor not only for Scientific Cooperation EARSeL, 2011 Multiscale Object-Based Classification of Satellite Images Merging Multispectral Information with

More information

TerraAmazon - The Amazon Deforestation Monitoring System - Karine Reis Ferreira

TerraAmazon - The Amazon Deforestation Monitoring System - Karine Reis Ferreira TerraAmazon - The Amazon Deforestation Monitoring System - Karine Reis Ferreira GEOSS Users & Architecture Workshop XXIV: Water Security & Governance - Accra Ghana / October 2008 INPE National Institute

More information

Selecting the appropriate band combination for an RGB image using Landsat imagery

Selecting the appropriate band combination for an RGB image using Landsat imagery Selecting the appropriate band combination for an RGB image using Landsat imagery Ned Horning Version: 1.0 Creation Date: 2004-01-01 Revision Date: 2004-01-01 License: This document is licensed under a

More information

Information Contents of High Resolution Satellite Images

Information Contents of High Resolution Satellite Images Information Contents of High Resolution Satellite Images H. Topan, G. Büyüksalih Zonguldak Karelmas University K. Jacobsen University of Hannover, Germany Keywords: satellite images, mapping, resolution,

More information

Digital image processing

Digital image processing 746A27 Remote Sensing and GIS Lecture 4 Digital image processing Chandan Roy Guest Lecturer Department of Computer and Information Science Linköping University Digital Image Processing Most of the common

More information

Mapping Land Cover Patterns of Gunma Prefecture, Japan, by Using Remote Sensing ABSTRACT

Mapping Land Cover Patterns of Gunma Prefecture, Japan, by Using Remote Sensing ABSTRACT 1 Mapping Land Cover Patterns of Gunma Prefecture, Japan, by Using Remote Sensing Zhaohui Deng, Yohei Sato, Hua Jia Department of Biological and Environmental Engineering, Graduate School of Agricultural

More information

Texas Prairie Wetlands Project (TPWP) Performance Monitoring

Texas Prairie Wetlands Project (TPWP) Performance Monitoring Texas Prairie Wetlands Project (TPWP) Performance Monitoring Relationship to Gulf Coast Joint Venture (GCJV) Habitat Conservation: Priority Species: Wintering waterfowl species in the Texas portion of

More information

Remote Sensing Method in Implementing REDD+

Remote Sensing Method in Implementing REDD+ Remote Sensing Method in Implementing REDD+ FRIM-FFPRI Research on Development of Carbon Monitoring Methodology for REDD+ in Malaysia Remote Sensing Component Mohd Azahari Faidi, Hamdan Omar, Khali Aziz

More information

Cafcam: Crisp And Fuzzy Classification Accuracy Measurement Software

Cafcam: Crisp And Fuzzy Classification Accuracy Measurement Software Cafcam: Crisp And Fuzzy Classification Accuracy Measurement Software Mohamed A. Shalan 1, Manoj K. Arora 2 and John Elgy 1 1 School of Engineering and Applied Sciences, Aston University, Birmingham, UK

More information

Mapping Forest-Fire Damage with Envisat

Mapping Forest-Fire Damage with Envisat Mapping Forest-Fire Damage with Envisat Mapping Forest-Fire Damage Federico González-Alonso, S. Merino-de-Miguel, S. García-Gigorro, A. Roldán-Zamarrón & J.M. Cuevas Remote Sensing Laboratory, INIA, Ministry

More information

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,

More information

Science Rationale. Status of Deforestation Measurement. Main points for carbon. Measurement needs. Some Comments Dave Skole

Science Rationale. Status of Deforestation Measurement. Main points for carbon. Measurement needs. Some Comments Dave Skole Science Rationale Status of Deforestation Measurement Some Comments Dave Skole Tropical deforestation is related to: Carbon cycle and biotic emissions/sequestration Ecosystems and biodiversity Water and

More information

Analysis of Landsat ETM+ Image Enhancement for Lithological Classification Improvement in Eagle Plain Area, Northern Yukon

Analysis of Landsat ETM+ Image Enhancement for Lithological Classification Improvement in Eagle Plain Area, Northern Yukon Analysis of Landsat ETM+ Image Enhancement for Lithological Classification Improvement in Eagle Plain Area, Northern Yukon Shihua Zhao, Department of Geology, University of Calgary, zhaosh@ucalgary.ca,

More information

PIMAR PROJECT - MONITORING THE ATLANTIC RAINFOREST REMNANTS AND THE URBAN GROWTH OF THE RIO DE JANEIRO CITY (BRAZIL) THROUGH REMOTE SENSING

PIMAR PROJECT - MONITORING THE ATLANTIC RAINFOREST REMNANTS AND THE URBAN GROWTH OF THE RIO DE JANEIRO CITY (BRAZIL) THROUGH REMOTE SENSING PIMAR PROJECT - MONITORING THE ATLANTIC RAINFOREST REMNANTS AND THE URBAN GROWTH OF THE RIO DE JANEIRO CITY (BRAZIL) THROUGH REMOTE SENSING D. P. Cintra a, *, T. Novack b, L. F. G. Rego a, G. A. O. P.

More information

ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY.

ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY. ENVI THE PREMIER SOFTWARE FOR EXTRACTING INFORMATION FROM GEOSPATIAL IMAGERY. ENVI Imagery Becomes Knowledge ENVI software uses proven scientific methods and automated processes to help you turn geospatial

More information

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Graham Emde GEOG 3230 Advanced Remote Sensing February 22, 2013 Lab #1 Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Introduction Wildfires are a common disturbance

More information

GIS: Geographic Information Systems A short introduction

GIS: Geographic Information Systems A short introduction GIS: Geographic Information Systems A short introduction Outline The Center for Digital Scholarship What is GIS? Data types GIS software and analysis Campus GIS resources Center for Digital Scholarship

More information

GIS and Remote Sensing in Diachronic Study of Agriculture in Greece

GIS and Remote Sensing in Diachronic Study of Agriculture in Greece GIS and Remote Sensing in Diachronic Study of Agriculture in Greece Maria Androulidaki a, Michail Salampasis b, Vagis Samathrakis c, Christos Batzios d a Alexander Technology Educational Institute of Thessaloniki,

More information

RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY

RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY RESOLUTION MERGE OF 1:35.000 SCALE AERIAL PHOTOGRAPHS WITH LANDSAT 7 ETM IMAGERY M. Erdogan, H.H. Maras, A. Yilmaz, Ö.T. Özerbil General Command of Mapping 06100 Dikimevi, Ankara, TURKEY - (mustafa.erdogan;

More information

The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories

The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories The Role of SPOT Satellite Images in Mapping Air Pollution Caused by Cement Factories Dr. Farrag Ali FARRAG Assistant Prof. at Civil Engineering Dept. Faculty of Engineering Assiut University Assiut, Egypt.

More information

y = Xβ + ε B. Sub-pixel Classification

y = Xβ + ε B. Sub-pixel Classification Sub-pixel Mapping of Sahelian Wetlands using Multi-temporal SPOT VEGETATION Images Jan Verhoeye and Robert De Wulf Laboratory of Forest Management and Spatial Information Techniques Faculty of Agricultural

More information

Some elements of photo. interpretation

Some elements of photo. interpretation Some elements of photo Shape Size Pattern Color (tone, hue) Texture Shadows Site Association interpretation Olson, C. E., Jr. 1960. Elements of photographic interpretation common to several sensors. Photogrammetric

More information

A HIERARCHICAL APPROACH TO LAND USE AND LAND COVER MAPPING USING MULTIPLE IMAGE TYPES ABSTRACT INTRODUCTION

A HIERARCHICAL APPROACH TO LAND USE AND LAND COVER MAPPING USING MULTIPLE IMAGE TYPES ABSTRACT INTRODUCTION A HIERARCHICAL APPROACH TO LAND USE AND LAND COVER MAPPING USING MULTIPLE IMAGE TYPES Daniel L. Civco 1, Associate Professor James D. Hurd 2, Research Assistant III Laboratory for Earth Resources Information

More information

Time and Trees on the Map Land Cover Database 4

Time and Trees on the Map Land Cover Database 4 Time and Trees on the Map Land Cover Database 4 Key steps producing LCDB v3.0, v3.3 & v4.0 What s planned in v4.1 Applications using LCDB Data quality feedback Research results Satellite data processing

More information

Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite

Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite Remote Sensing and GIS Application In Change Detection Study In Urban Zone Using Multi Temporal Satellite R.Manonmani, G.Mary Divya Suganya Institute of Remote Sensing, Anna University, Chennai 600 025

More information

The Use of Geographic Information Systems in Risk Assessment

The Use of Geographic Information Systems in Risk Assessment The Use of Geographic Information Systems in Risk Assessment With Specific Focus on the RiVAMP Methodology Presented by Nadine Brown August 27, 2012 Climate Studies Group Mona Climate Change Workshop Presentation

More information

Imagery. 1:50,000 Basemap Generation From Satellite. 1 Introduction. 2 Input Data

Imagery. 1:50,000 Basemap Generation From Satellite. 1 Introduction. 2 Input Data 1:50,000 Basemap Generation From Satellite Imagery Lisbeth Heuse, Product Engineer, Image Applications Dave Hawkins, Product Manager, Image Applications MacDonald Dettwiler, 3751 Shell Road, Richmond B.C.

More information

Overview. 1. Types of land dynamics 2. Methods for analyzing multi-temporal remote sensing data:

Overview. 1. Types of land dynamics 2. Methods for analyzing multi-temporal remote sensing data: Vorlesung Allgemeine Fernerkundung, Prof. Dr. C. Schmullius Change detection and time series analysis Lecture by Martin Herold Wageningen University Geoinformatik & Fernerkundung, Friedrich-Schiller-Universität

More information

Improving global data on forest area & change Global Forest Remote Sensing Survey

Improving global data on forest area & change Global Forest Remote Sensing Survey Improving global data on forest area & change Global Forest Remote Sensing Survey work by FAO and partners - Adam Gerrand, E. Lindquist, R. D Annunzio, M. Wilkie, FAO, - F. Achard et al. TREES team at

More information

COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS

COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS B.K. Mohan and S. N. Ladha Centre for Studies in Resources Engineering IIT

More information

APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED

APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED S. J. GOETZ Woods Hole Research Center Woods Hole, Massachusetts 054-096 USA

More information

RESULTS. that remain following use of the 3x3 and 5x5 homogeneity filters is also reported.

RESULTS. that remain following use of the 3x3 and 5x5 homogeneity filters is also reported. RESULTS Land Cover and Accuracy for Each Landsat Scene All 14 scenes were successfully classified. The following section displays the results of the land cover classification, the homogenous filtering,

More information

Crater detection with segmentation-based image processing algorithm

Crater detection with segmentation-based image processing algorithm Template reference : 100181708K-EN Crater detection with segmentation-based image processing algorithm M. Spigai, S. Clerc (Thales Alenia Space-France) V. Simard-Bilodeau (U. Sherbrooke and NGC Aerospace,

More information

Analysis of Land Use/Land Cover Change in Jammu District Using Geospatial Techniques

Analysis of Land Use/Land Cover Change in Jammu District Using Geospatial Techniques Analysis of Land Use/Land Cover Change in Jammu District Using Geospatial Techniques Dr. Anuradha Sharma 1, Davinder Singh 2 1 Head, Department of Geography, University of Jammu, Jammu-180006, India 2

More information

The Wildland-Urban Interface in the United States

The Wildland-Urban Interface in the United States The Wildland-Urban Interface in the United States Susan I. Stewart Northern Research Station, USDA Forest Service, Evanston, IL (sistewart@fs.fed.us) Volker C. Radeloff Department of Forestry, University

More information

APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA

APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA Abineh Tilahun Department of Geography and environmental studies, Adigrat University,

More information

UK Global Forest Monitoring Network: Forest Carbon Tracking

UK Global Forest Monitoring Network: Forest Carbon Tracking UK Global Forest Monitoring Network: Forest Carbon Tracking Andy Shaw Director, Knowledge Exchange, NCEO Head of Strategic Business Development, ISIC GMES/GEO Forum, ISIC, 2011 What is happening to the

More information

2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT. Final Report. Michael Lackner, B.A. Geography, 2003

2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT. Final Report. Michael Lackner, B.A. Geography, 2003 2002 URBAN FOREST CANOPY & LAND USE IN PORTLAND S HOLLYWOOD DISTRICT Final Report by Michael Lackner, B.A. Geography, 2003 February 2004 - page 1 of 17 - TABLE OF CONTENTS Abstract 3 Introduction 4 Study

More information

Forest Biometrics From Space

Forest Biometrics From Space Forest Biometrics From Space Timothy B. Hill Lead Remote Sensing / GIS Analyst Geographic Resource Solutions 1125 16th Street, Suite 213 Arcata, CA 95521 ABSTRACT Geographic Resource Solutions (GRS) recently

More information

Global Climate Change: Carbon Reporting Initiative

Global Climate Change: Carbon Reporting Initiative United States Agency for International Development Cooperative Agreement No. EEM-A-00-06-00024-00 Global Climate Change: Carbon Reporting Initiative January 2012 Submitted by: Nancy Harris Ecosystem Services

More information

Buffelgrass Growth within Urban Sub-Habitats Using High Resolution Aerial Photography

Buffelgrass Growth within Urban Sub-Habitats Using High Resolution Aerial Photography Buffelgrass Growth within Urban Sub-Habitats Using High Resolution Aerial Photography Spencer Padgett spadgett@email.arizona.edu The University of Arizona School of Geography and Development Introduction

More information

2.6 RAINFALL MONITORING NETWORK IN THE AMAZONIAN JUNGLE

2.6 RAINFALL MONITORING NETWORK IN THE AMAZONIAN JUNGLE 2.6 RAINFALL MONITORING NETWORK IN THE AMAZONIAN JUNGLE Bernhard Lee Lindner* College of Charleston, Charleston SC Carlos Arturo Delvasto Fundacion Rio Bugalagrande, Tulua, Colombia 1. INTRODUCTION Our

More information

Review for Introduction to Remote Sensing: Science Concepts and Technology

Review for Introduction to Remote Sensing: Science Concepts and Technology Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director ann@baremt.com Funded by National Science Foundation Advanced Technological Education program [DUE

More information

Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette.

Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette. Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette. Science & Technology Branch. Agriculture and Agri-Food Canada. 1. Introduction Space-Based Crop Mapping at

More information

Field Techniques Manual: GIS, GPS and Remote Sensing

Field Techniques Manual: GIS, GPS and Remote Sensing Field Techniques Manual: GIS, GPS and Remote Sensing Section A: Introduction Chapter 1: GIS, GPS, Remote Sensing and Fieldwork 1 GIS, GPS, Remote Sensing and Fieldwork The widespread use of computers

More information

ENVI Classic Tutorial: Classification Methods

ENVI Classic Tutorial: Classification Methods ENVI Classic Tutorial: Classification Methods Classification Methods 2 Files Used in this Tutorial 2 Examining a Landsat TM Color Image 3 Reviewing Image Colors 3 Using the Cursor Location/Value 4 Examining

More information

GMES-DSL GMES - Downstream Service Land: Austria-Slovenia-Andalusia. Concept for a Harmonized Cross-border Land Information System.

GMES-DSL GMES - Downstream Service Land: Austria-Slovenia-Andalusia. Concept for a Harmonized Cross-border Land Information System. ERA-STAR Regions Project GMES-DSL GMES - Downstream Service Land: Austria-Slovenia-Andalusia. Concept for a Harmonized Cross-border Land Information System Executive Summary submitted by JOANNEUM RESEARCH,

More information

The premier software for extracting information from geospatial imagery.

The premier software for extracting information from geospatial imagery. Imagery Becomes Knowledge ENVI The premier software for extracting information from geospatial imagery. ENVI Imagery Becomes Knowledge Geospatial imagery is used more and more across industries because

More information

How To Update A Vegetation And Land Cover Map For Florida

How To Update A Vegetation And Land Cover Map For Florida Florida Vegetation and Land Cover Data Derived from 2003 Landsat ETM+ Imagery Beth Stys, Randy Kautz, David Reed, Melodie Kertis, Robert Kawula, Cherie Keller, and Anastasia Davis Florida Fish and Wildlife

More information

National and Sub-national Carbon monitoring tools developed at the WHRC

National and Sub-national Carbon monitoring tools developed at the WHRC National and Sub-national Carbon monitoring tools developed at the WHRC Nadine Laporte Woods Hole Research Center A. Baccini, W. Walker, S. Goetz, M. Sun, J. Kellndorfer Kigali, 20 th June 2011 Why measuring

More information

Developments toward a European Land Monitoring Framework. Geoff Smith. Seminar 2 nd December, 2015 Department of Geography, University of Cambridge

Developments toward a European Land Monitoring Framework. Geoff Smith. Seminar 2 nd December, 2015 Department of Geography, University of Cambridge Developments toward a European Land Monitoring Framework Geoff Smith Specto Natura Limited Enable clients to deliver useful, accurate and reliable environmental information from EO. Positioned at the interface

More information

Raster Data Structures

Raster Data Structures Raster Data Structures Tessellation of Geographical Space Geographical space can be tessellated into sets of connected discrete units, which completely cover a flat surface. The units can be in any reasonable

More information

Geospatial Software Solutions for the Environment and Natural Resources

Geospatial Software Solutions for the Environment and Natural Resources Geospatial Software Solutions for the Environment and Natural Resources Manage and Preserve the Environment and its Natural Resources Our environment and the natural resources it provides play a growing

More information

Correlation Analysis of Factors Influencing Changes in Land Use in the Lower Songkhram River Basin, the Northeast of Thailand

Correlation Analysis of Factors Influencing Changes in Land Use in the Lower Songkhram River Basin, the Northeast of Thailand Correlation Analysis of Factors Influencing Changes in Land Use in the Lower Songkhram River Basin, the Northeast of Thailand Rasamee SUWANWERAKAMTORN and Chat CHANTHALUECHA Geo-informatics Centre for

More information

Methods for Monitoring Forest and Land Cover Changes and Unchanged Areas from Long Time Series

Methods for Monitoring Forest and Land Cover Changes and Unchanged Areas from Long Time Series Methods for Monitoring Forest and Land Cover Changes and Unchanged Areas from Long Time Series Project using historical satellite data from SACCESS (Swedish National Satellite Data Archive) for developing

More information

3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension

3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension 3D Model of the City Using LiDAR and Visualization of Flood in Three-Dimension R.Queen Suraajini, Department of Civil Engineering, College of Engineering Guindy, Anna University, India, suraa12@gmail.com

More information

SMEX04 Land Use Classification Data

SMEX04 Land Use Classification Data Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed, or edited by NSIDC. Thus, support for

More information

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model

Objectives. Raster Data Discrete Classes. Spatial Information in Natural Resources FANR 3800. Review the raster data model Spatial Information in Natural Resources FANR 3800 Raster Analysis Objectives Review the raster data model Understand how raster analysis fundamentally differs from vector analysis Become familiar with

More information

Pixel-based and object-oriented change detection analysis using high-resolution imagery

Pixel-based and object-oriented change detection analysis using high-resolution imagery Pixel-based and object-oriented change detection analysis using high-resolution imagery Institute for Mine-Surveying and Geodesy TU Bergakademie Freiberg D-09599 Freiberg, Germany imgard.niemeyer@tu-freiberg.de

More information

ENVI and ArcGIS Integration Bringing Imagery to GIS

ENVI and ArcGIS Integration Bringing Imagery to GIS ITT ENVI and ArcGIS Integration Bringing Imagery to GIS The information contained in this document pertains to software products and services that are subject to the controls of the Export Administration

More information

Introduction to Imagery and Raster Data in ArcGIS

Introduction to Imagery and Raster Data in ArcGIS Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Introduction to Imagery and Raster Data in ArcGIS Simon Woo slides Cody Benkelman - demos Overview of Presentation

More information

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University

More information

Image Draping & navigation within Virtual GIS

Image Draping & navigation within Virtual GIS Image Draping & navigation within Virtual GIS Draping of Geo Corrected data such as aerial imagery or map data enables virtual 3D field tours to be conducted in an area of interest. This document covers

More information

EO Information Services in support of West Africa Coastal vulnerability - Service Utility Review -

EO Information Services in support of West Africa Coastal vulnerability - Service Utility Review - EO Information Services in support of West Africa Coastal vulnerability - Service Utility Review - Christian Hoffmann, GeoVille World Bank HQ, Washington DC Date : 24 February 2012 Content - Project background

More information

Big Data Challenge: Mining Heterogeneous Data. Prof. Mihai Datcu. German Aerospace Center (DLR) Munich Aerospace Faculty

Big Data Challenge: Mining Heterogeneous Data. Prof. Mihai Datcu. German Aerospace Center (DLR) Munich Aerospace Faculty Big Data Challenge: Mining Heterogeneous Data Prof. Mihai Datcu German Aerospace Center (DLR) Munich Aerospace Faculty Sensing & Big Data Big Data: - Computer hardware and the Cloud - Storage Challenges

More information

Sustainability and Wildlife Conservation Updates: the Malaysian Perspectives

Sustainability and Wildlife Conservation Updates: the Malaysian Perspectives Sustainability and Wildlife Conservation Updates: the Malaysian Perspectives MPOC Reach & Remind Friends of the Industry Seminar: Challenges and Opportunities in 2012 Royale Chulan Hotel 16 January 2012

More information

DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7

DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 Contents GIS and maps The visualization process Visualization and strategies

More information

LCCS & GeoVIS for land cover mapping. Experience Sharing of an Exercise

LCCS & GeoVIS for land cover mapping. Experience Sharing of an Exercise LCCS & GeoVIS for land cover mapping Experience Sharing of an Exercise Forest Survey of India Subhash Ashutosh Joint Director Study Area Topographic sheet 53J4 Longitude - 78ºE - 78º15'E Latitude - 30ºN

More information

3D Interactive Information Visualization: Guidelines from experience and analysis of applications

3D Interactive Information Visualization: Guidelines from experience and analysis of applications 3D Interactive Information Visualization: Guidelines from experience and analysis of applications Richard Brath Visible Decisions Inc., 200 Front St. W. #2203, Toronto, Canada, rbrath@vdi.com 1. EXPERT

More information

KEYWORDS: image classification, multispectral data, panchromatic data, data accuracy, remote sensing, archival data

KEYWORDS: image classification, multispectral data, panchromatic data, data accuracy, remote sensing, archival data Improving the Accuracy of Historic Satellite Image Classification by Combining Low-Resolution Multispectral Data with High-Resolution Panchromatic Data Daniel J. Getman 1, Jonathan M. Harbor 2, Chris J.

More information

Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery

Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery WorldView-2 is the first commercial high-resolution satellite to provide eight spectral sensors in the visible to near-infrared

More information

DEVELOPING FLOOD VULNERABILITY MAP FOR NORTH KOREA INTROUDUCTION

DEVELOPING FLOOD VULNERABILITY MAP FOR NORTH KOREA INTROUDUCTION DEVELOPING FLOOD VULNERABILITY MAP FOR NORTH KOREA Soojeong Myeong, Research Fellow Hyun Jung Hong, Researcher Korea Environment Institute Seoul, South Korea 122-706 sjmyeong@yahoo.com hjhong@kei.re.kr

More information

USE OF REMOTE SENSING FOR MONITORING WETLAND PARAMETERS RELEVANT TO BIRD CONSERVATION

USE OF REMOTE SENSING FOR MONITORING WETLAND PARAMETERS RELEVANT TO BIRD CONSERVATION USE OF REMOTE SENSING FOR MONITORING WETLAND PARAMETERS RELEVANT TO BIRD CONSERVATION AURELIE DAVRANCHE TOUR DU VALAT ONCFS UNIVERSITY OF PROVENCE AIX-MARSEILLE 1 UFR «Sciences géographiques et de l aménagement»

More information

P.M. Rich, W.A. Hetrick, S.C. Saving Biological Sciences University of Kansas Lawrence, KS 66045

P.M. Rich, W.A. Hetrick, S.C. Saving Biological Sciences University of Kansas Lawrence, KS 66045 USING VIEWSHED MODELS TO CALCULATE INTERCEPTED SOLAR RADIATION: APPLICATIONS IN ECOLOGY by P.M. Rich, W.A. Hetrick, S.C. Saving Biological Sciences University of Kansas Lawrence, KS 66045 R.O. Dubayah

More information