ANSYS Dynamics Solutions

Size: px
Start display at page:

Download "ANSYS Dynamics Solutions"

Transcription

1 ANSYS Dynamics Solutions 11.0 RELEASE ANSYS Analysis Compression Tools Rotor Dynamics Additional tools useful for modeling rotating machinery, such as electric turbo generators, in modal, harmonic and transient dynamic analyses The design mantra "lighter, faster, stronger" is pervasive across industries from consumer electronics to space exploration. But as machines with rotating components get lighter, faster and stronger as well as spin faster, they are increasingly susceptible to selfinduced system-destroying vibrations. Customers in the rotating machinery and other industries use ANSYS software to analyze: Bending deflection of shafts Torsional oscillations Misalignments of rotor axis Balancing of rotating parts The ANSYS Family of Products The ANSYS Dynamics Solution Set ANSYS software provides extensive dynamics solution capabilities, including: Modal analysis: for calculating the natural frequencies and mode shapes of a structure Harmonic analysis: for determining the response of a structure to harmonically time-varying loads, such as those typically seen in rotating machinery Transient dynamic analysis: for determining the response of a structure to arbitrarily time-varying loads in linear and nonlinear simulation environments. The most general and comprehensive of all dynamics analysis types, transient dynamics can be subdivided into: Rigid dynamics Flexible dynamics Spectrum analysis: an extension of modal analysis for calculating stresses and strains due to a response spectrum or a power spectral density (PSD) input (random vibrations) Static analysis: often used to determine displacements, stresses, etc. under linear and nonlinear static loading conditions. Static analyses also can be used in conjunction with dynamic analyses for improved efficiencies, such as a prestressed modal simulation (as is typically done in the turbine development process). Modeling gyroscopic moment, rotor whirl and instability in multi-platen disk drive with ANSYS rotor dynamics tool set Analysis compression tools: Dynamics analyses, particularly those with extensive nonlinearities, can be computationally demanding. Therefore, additional analysis compression tools include: Rotor dynamics: useful for modeling rotating machinery, such as electric turbogenerators, in modal, harmonic and transient dynamic analyses Component modal synthesis: for breaking up a single large problem into several reduced-order problems Distributed ANSYS: for solving large models using multiple processors Variational Technology: exposed in the ANSYS DesignXplorer VT product; used to rapidly explore parametric model variations far faster than can be done when searching for an optimal configuration using traditional approaches

2 11.0 RELEASE Analysis Compression Tools High-Performance Computing The high-performance computing option of ANSYS software decreases solution time for full transient structural, static structural and modal analyses. Shown are the solution times and speedup factors for solving a 112-million degreeof-freedom modal analysis problem. Distributed ANSYS (DANSYS): solving large models using multiple processors Multiprocessing is one way to reduce analysis time. Multiprocessing computer environments (consisting of multiprocessor servers or networked workstations or clusters) may be employed to generate analysis results much more quickly. DANSYS runs equally well on both shared memory parallel (SMP) machines, such as high-end servers, and a distributed memory parallel (DMP) cluster. DANSYS supports a wide variety of analysis types including: Static linear or nonlinear analyses structural Single field thermal analyses (DOF: TEMP) Full transient analyses for single-field structural and single-field thermal analysis Modal analyses using block Lanczos and PCG _ Lanczos solutions Structural harmonic analyses Low-frequency electromagnetic analysis Coupled-field analyses including structural _ thermal, piezoresistive, electroelastic, piezoelectric, thermal _ electric, structural _ thermoelectric, thermal _ piezoelectric ANSYS Modal Analysis A modal analysis typically is used to determine the vibration characteristics (natural frequencies and mode shapes) of a structure or machine component in the design stage. It also can serve as a starting point for another more-detailed dynamic analysis, such as harmonic response or full transient dynamic analysis. Modal analysis is one of the most basic dynamic analysis types available in ANSYS software yet it can be more computationally time consuming than a typical static analysis. A reduced solver, utilizing automatically or manually selected master degreesof-freedom (DOFs), is used to drastically reduce the problem size and solution time. Multiple time-saving modal solution methods are available in ANSYS software for mode extraction from the reduced solution, such as: Block Lanczos method: typically used for large symmetric eigenvalue problems; utilizes a sparse matrix solver PCG Lanczos method: for very large symmetric eigenvalue problems (500,000+ DOFs); especially useful to obtain a solution for the lowest modes to learn how the model will behave Subspace method: for large symmetric eigenvalue problems, though in most cases the Block Lanczos method is preferred for shorter run times with equivalent accuracy Reduced (Householder) method: faster than the subspace method because it uses reduced (condensed) system matrices to calculate the solution; normally less accurate because the reduced mass matrix is approximate Unsymmetric method: used for problems with unsymmetric matrices, such as fluid structure interaction (FSI) problems Damped method: for problems in which damping cannot be ignored, such as journal bearing problems QR damped method: faster than the damped method; uses the reduced modal damped matrix to calculate complex damped frequencies Finite element representation of body-in-white model of prototype SUV as simulated with block Lanczos method modal analysis to find critical low-frequency natural vibration modes, which can cause passenger discomfort if excited

3 ANSYS Harmonic Analysis Used extensively by companies that produce rotating machinery, ANSYS harmonic analysis is employed to predict the sustained dynamic behavior of structures to consistent cyclic loading. Examples of rotating machines that produce or are subjected to harmonic loading include: Turbines Gas turbines for aircraft and power generation Steam turbines Wind turbines Water turbines Turbopumps Internal combustion engines Electric motors and generators Gas and fluid pumps Disc drives A harmonic analysis can be used to verify whether or not a machine design will successfully overcome resonance, fatigue and other harmful effects of forced vibrations. ANSYS geometry tools allow import and editing of chiller model from CAD system in preparation for rotating component analysis. Images courtesy Trane, a business of American Standard. Analysis Compression Tools ANSYS VT Accelerator TM software speeds up the solution of nonlinear structural static or transient analyses by reducing the total number of iterations for analyses not involving contact or plasticity. Additionally, the harmonic sweep feature of ANSYS VT Accelerator provides a high-performance solution for forced-frequency simulations in structural analysis over a range of user-defined frequencies. The structural material may have frequencydependent elasticity or damping. Component modal synthesis: breaking up a single large problem into several reduced-order problems saves time and processing resources; it also offers the following additional advantages: More accurate than a Guyan reduction for modal, harmonic and transient analyses The ability to include experimental results, as the substructure model need not be purely mathematical Rotordynamics investigation of rotating components of chiller assembly can be accelerated by using advanced techniques such as component mode synthesis (CMS). Chiller assembly results from modal and harmonic analyses are used to predict stability vibration characteristics of machine before an expensive prototype is produced.

4 11.0 RELEASE Analysis Compression Tools ANSYS DesignXplorer TM ANSYS DesignXplorer software, which is based on Design of Experiments (DOE), works from within the ANSYS Workbench TM environment to perform DOE analyses of any ANSYS Workbench simulation, including those with CAD parameters. DOE is not limited in the types of analyses. ANSYS DesignXplorer allows the user to study, quantify and graph various structural and thermal analysis responses on parts and assemblies. It incorporates both traditional and nontraditional optimization through a goal-driven optimization method. When coupled with ANSYS VT Accelerator software, ANSYS DesignXplorer can effectively work with structural transient analyses. ANSYS Transient Dynamic Analysis Transient dynamic analysis (sometimes called time _ history analysis) is a technique used to determine the dynamic response of a structure under the action of any general time-dependent loads. Transient dynamic analyses are used to determine the time-varying displacements, strains, stresses and forces in a structure as it responds to any combination of static and time-varying loads while simultaneously considering the effects of inertia or damping. Transient dynamic analysis in ANSYS software can be broadly classified as one of two types: Rigid dynamics: In an assembly, all parts are considered to be infinitely stiff, no mesh is required and a special solver is used to drastically reduce the amount of compu-tational resources required. The primary focus of a rigid dynamics simulation is mechanism operation, part velocities and accelerations, as well as joint forces encountered during the range of mechanism motion. The new ANSYS rigid dynamics product is used for this type of simulation. Flexible dynamics: Some or all parts of an assembly are meshed and considered flexible based on the materials from which they are made. A flexible dynamics simulation typically is done after a rigid dynamics simulation is used to verify the model setup. Flexible dynamics simulation can provide information about machine performance, such as: Will a machine or mechanism work adequately with light, more-flexible members, or will stiffer but heavier members be required? Will the forces transmitted through joints exceed the strength of the materials being used? At what rotational or translation speed will the mechanism experience plastic deformation and begin to fail? Will the mechanism s natural frequencies be excited and lead to instability? Will the repeated loading/unloading lead to fatigue and, if so, where? A flexible dynamics simulation can be performed using ANSYS Structural, ANSYS Mechanical or ANSYS Multiphysics products. Images courtesy Dale Earnhardt Inc.

5 ANSYS Random Vibration Analyses ANSYS random vibration analyses are used to determine the response of structures to random or timedependent loading conditions, such as earthquakes, wind loads, ocean wave loads, jet engine thrust, rocket motor vibrations, and more. The random vibration analysis can be much less computationally intensive than a full transient dynamic analysis while still providing design-guiding results. Types of random vibration analyses include: Response spectrum: single and multi-point base excitation in which the results of a modal analysis are used with a known spectrum to calculate the model s displacements and stresses Dynamic design analysis method (DDAM): a technique used to evaluate the shock resistance of shipboard equipment. It is similar to the response spectrum method except the loading is derived from empirical equations and shock design tables. Power spectral density: a statistical-based random vibration method in which the input load histories are specified based on a probability distribution of the loading taking that particular value. An example application is the calculation of the probable response of a sensitive automotive electronic component to the engine and drive train vibrations while the vehicle travels rapidly down a rough road. Exhaust manifold/catalytic converter assembly model utilized in PSD random vibration analysis

6 11.0 RELEASE ANSYS Static Analysis A static analysis can be a very smart first step in a dynamics simulation. Before investing in a dynamics simulation, a static analysis can be used for: Model verification, answering questions such as: Is contact set up correctly between parts of an assembly? Are the defined boundary conditions providing the expected support? Is the mesh refined in the locations of potentially significant distortion or stress concentrations? Is there an inadvertent mesh discontinuity? Do you need to model nonlinearities, which are computationally expensive, or do the static results suggest that the potential nonlinearities aren t required? Efficiently pre-loading or pre-stressing a model Apply a constant rotational velocity to a turbine, for instance, pre-stressing the entire structure including the turbine blades prior to a bird strike analysis. Apply temperature loading from a previous thermal simulation to pre-stress the model thermally in a single iteration before running a multi-iteration dynamics analysis. The ANSYS Advantage ANSYS software provides customers with a competitive advantage through: ANSYS Workbench, which provides a unified product development environment offering integration across a wide range of design processes ranging from geometry modeling and editing, meshing and pre-processing to advanced analysis (structural, thermal, electromagnetics, CFD, etc.) to robust design optimization Providing industry s broadest range of physics capability in one integrated analysis environment Advanced meshing solutions to efficiently address high-aspect ratio geometry commonly associated with complex product applications Advanced material models and contact types for simulating plastics, rubber, sliding surfaces and large deformations

7 Dynamics Functionality by Product ANSYS ANSYS ANSYS ANSYS ANSYS Multiphysics Mechanical Structural Professional Professional NLS NLT Structural Dynamic Analysis Type Modal X X X X X Spectrum X X X X X Harmonic X X X X X Random vibration X X X Structural Linear Functionality Substructuring X X X Component mode synthesis X X X Cyclic symmetry X X X X X Mode superposition X X X X X Structural Nonlinear Functionality Geometric X X X X Note 1 Material X X X X X Element X X X X X Large strain X X X X Large deflection X X X X Stress stiffening X X X X Spin softening X X X X Material Modeling Linear elasticity X X X X X Inelastic X X X X Rate-independent X X X X Rate-dependent X X X X Non-metal plasticity X X X X Shape memory alloys X X X X Cast iron X X X X Hyperelasticity (isotropic/anisotropic) X X X X Viscoplasticity and viscoelasticity X X X X Creep and swelling X X X X Material damping X X X X User materials X X X X Temperature-dependent properties X X X X X Solver Types Iterative X X X X X Sparse direct X X X X X Frontal (wavefront) X X X X X Distributed memory PCG Note 2 Note 2 Note 2 Note 2 Note 2 Distributed memory JCG Note 2 Note 2 Note 2 Note 2 Note 2 Distributed sparse (Dsparse) Note 2 Note 2 Note 2 Note 2 Note 2 Algebraic multi-grid (AMG) Note 2 Note 2 Note 2 Note 2 Note 2 General Parametric simulation X X X X X CAD parameter access Note 3 Note 3 Note 3 Note 3 Note 3 ANSYS Parametric Design Language X X X X X Design optimization Note 4 Note 4 Note 4 Note 4 Note 4 Note 1: Not available for 2-D plane and 3-D solid elements Note 2: Available in ANSYS Mechanical HPC add-on module Note 3: Available through either the ANSYS DesignModeler add-on or with ANSYS Workbench when used with a geometry interface and a parametrically supported CAD system Note 4: Available through the ANSYS DesignXplorer add-on module Note 5: Rigid dynamics is available in a separate module, ANSYS Rigid Dynamics

8 11.0 RELEASE ANSYS, Inc. Solutions ANSYS designs, develops, markets and globally supports engineering simulation solutions used to predict how product designs will behave in manufacturing and real-world environments. Its integrated, modular and extensible set of solutions addresses the needs of organizations in a wide range of industries. ANSYS solutions qualify risk, enabling organizations to know if their designs are acceptable or unacceptable not just that they will function as designed. ANSYS helps organizations achieve: Innovative and high-quality products and processes Fewer physical prototypes and test setups Faster return on investment due to reduced development time A more flexible and responsive information-based development process enabling the modification of designs at later stages of development A front-end simulation strategy that offers a superior method for bringing products to market in less time and with fewer costs About ANSYS, Inc. ANSYS, Inc., founded in 1970, develops and globally markets engineering simulation software and technologies widely used by engineers and designers across a broad spectrum of industries. The Company focuses on the development of open and flexible solutions that enable users to analyze designs directly on the desktop, providing a common platform for fast, efficient and cost-conscious product development, from design concept to final-stage testing and validation. The Company and its global network of channel partners provide sales, support and training for customers. Headquartered in Canonsburg, Pennsylvania, U.S.A., with more than 40 strategic sales locations throughout the world, ANSYS, Inc. and its subsidiaries employ approximately 1,400 people and distribute ANSYS products through a network of channel partners in over 40 countries. ANSYS, Inc. Southpointe 275 Technology Drive Canonsburg, PA U.S.A ansysinfo@ansys.com Toll Free U.S.A./Canada: Toll Free Mexico: Europe: eu.sales@ansys.com ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used under license. All other brand, product, service and feature names or trademarks are the property of their respective owners. Image Credits: Some images courtesy Aavid Thermalloy, ICT Prague and Silesian University of Technology Institute of Thermal Technology ANSYS, Inc. All Rights Reserved. Printed in U.S.A. MKT

Realize Your Product Promise. Mechanical Products

Realize Your Product Promise. Mechanical Products Realize Your Product Promise Mechanical Products Courtesy Dale Earnhardt, Engineering Inc. Transient analysis of rigid/flexible suspension mechanism using kinematic joints, springs and contacts The trusted

More information

Overview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B.

Overview. also give you an idea of ANSYS capabilities. In this chapter, we will define Finite Element Analysis and. Topics covered: B. 2. FEA and ANSYS FEA and ANSYS Overview In this chapter, we will define Finite Element Analysis and also give you an idea of ANSYS capabilities. Topics covered: A. What is FEA? B. About ANSYS FEA and ANSYS

More information

Benchmark Tests on ANSYS Parallel Processing Technology

Benchmark Tests on ANSYS Parallel Processing Technology Benchmark Tests on ANSYS Parallel Processing Technology Kentaro Suzuki ANSYS JAPAN LTD. Abstract It is extremely important for manufacturing industries to reduce their design process period in order to

More information

The Value of High-Performance Computing for Simulation

The Value of High-Performance Computing for Simulation White Paper The Value of High-Performance Computing for Simulation High-performance computing (HPC) is an enormous part of the present and future of engineering simulation. HPC allows best-in-class companies

More information

Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics

Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National

More information

Best practices for efficient HPC performance with large models

Best practices for efficient HPC performance with large models Best practices for efficient HPC performance with large models Dr. Hößl Bernhard, CADFEM (Austria) GmbH PRACE Autumn School 2013 - Industry Oriented HPC Simulations, September 21-27, University of Ljubljana,

More information

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM 1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different

More information

Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

More information

PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL

PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL P. Kolar, T. Holkup Research Center for Manufacturing Technology, Faculty of Mechanical Engineering, CTU in Prague, Czech

More information

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 190-202, Article ID: IJMET_07_01_020 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Titelmasterformat durch Klicken bearbeiten

Titelmasterformat durch Klicken bearbeiten Titelmasterformat durch Klicken bearbeiten ANSYS AIM Product simulation for every engineer Erke Wang CADFEM GmbH Georg Scheuerer ANSYS Germany GmbH Christof Gebhardt CADFEM GmbH All products involve multiple

More information

SOLIDWORKS SIMULATION GET DESIGN INSIGHTS TO DRIVE MARKET WINNING INNOVATION

SOLIDWORKS SIMULATION GET DESIGN INSIGHTS TO DRIVE MARKET WINNING INNOVATION SOLIDWORKS SIMULATION GET DESIGN INSIGHTS TO DRIVE MARKET WINNING INNOVATION SOPHISTICATED SIMULATION IS NO LONGER JUST FOR SPECIALISTS What if? It s the inspiration that fuels innovation and with SolidWorks

More information

Nonlinear Analysis Using Femap with NX Nastran

Nonlinear Analysis Using Femap with NX Nastran Nonlinear Analysis Using Femap with NX Nastran Chip Fricke, Principal Applications Engineer, Agenda Nonlinear Analysis Using Femap with NX Nastran Who am I? Overview of Nonlinear Analysis Comparison of

More information

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS

THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS THE COMPOSITE DISC - A NEW JOINT FOR HIGH POWER DRIVESHAFTS Dr Andrew Pollard Principal Engineer GKN Technology UK INTRODUCTION There is a wide choice of flexible couplings for power transmission applications,

More information

Safakcan Tuncdemir 1, William M. Bradley *2. 1. Introduction

Safakcan Tuncdemir 1, William M. Bradley *2. 1. Introduction Modeling and Experimental Verification of the Power Transfer and Thermal Characteristics of Piezoelectric Transformers Subjected to Combined Mechanical and Electrical Loading Safakcan Tuncdemir 1, William

More information

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

More information

Linear Dynamics with Abaqus

Linear Dynamics with Abaqus Linear Dynamics with Abaqus 2016 About this Course Course objectives Upon completion of this course you will be able to: Extract eigenmodes about a certain frequency Determine whether the number of extracted

More information

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus

Abaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus Abaqus Technology Brief Automobile Roof Crush Analysis with Abaqus TB-06-RCA-1 Revised: April 2007. Summary The National Highway Traffic Safety Administration (NHTSA) mandates the use of certain test procedures

More information

Dynamics of Offshore Wind Turbines

Dynamics of Offshore Wind Turbines Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference Maui, Hawaii, USA, June 19-24, 2011 Copyright 2011 by the International Society of Offshore and Polar Engineers

More information

SOLIDWORKS SIMULATION

SOLIDWORKS SIMULATION SOLIDWORKS SIMULATION GET ENGINEERING INSIGHTS WITH VIRTUAL SIMULATION SOPHISTICATED SIMULATION IS NO LONGER JUST FOR SPECIALISTS Concurrent Engineering for more informed design SOLIDWORKS Simulation gives

More information

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment Fluid Structure Interaction VI 3 Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment J. Hengstler & J. Dual Department of Mechanical and Process

More information

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 34-44, Article ID: IJCIET_07_02_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Equivalent Spring Stiffness

Equivalent Spring Stiffness Module 7 : Free Undamped Vibration of Single Degree of Freedom Systems; Determination of Natural Frequency ; Equivalent Inertia and Stiffness; Energy Method; Phase Plane Representation. Lecture 13 : Equivalent

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

DYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL

DYNAMIC RESPONSE OF CONCRETE GRAVITY DAM ON RANDOM SOIL International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 21-31, Article ID: IJCIET_06_11_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING ACCELERATING COMMERCIAL LINEAR DYNAMIC AND Vladimir Belsky Director of Solver Development* Luis Crivelli Director of Solver Development* Matt Dunbar Chief Architect* Mikhail Belyi Development Group Manager*

More information

Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture

Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture White Paper Intel Xeon processor E5 v3 family Intel Xeon Phi coprocessor family Digital Design and Engineering Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture Executive

More information

Aerospace Systems. Industry Spotlight

Aerospace Systems. Industry Spotlight 4 Aerospace Systems Engineering simulation is an integral part of the development process for critical components and major subsystems on today s aircraft from nose to tail. By Simon Pereira Senior Application

More information

List of Problems Solved Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p.

List of Problems Solved Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p. Preface p. v List of Problems Solved p. xiii Introduction p. 1 Concept p. 1 Nodes p. 3 Elements p. 4 Direct Approach p. 5 Linear Spring p. 5 Heat Flow p. 6 Assembly of the Global System of Equations p.

More information

CHAPTER 4 4 NUMERICAL ANALYSIS

CHAPTER 4 4 NUMERICAL ANALYSIS 41 CHAPTER 4 4 NUMERICAL ANALYSIS Simulation is a powerful tool that engineers use to predict the result of a phenomenon or to simulate the working situation in which a part or machine will perform in

More information

Simulation of Fluid-Structure Interactions in Aeronautical Applications

Simulation of Fluid-Structure Interactions in Aeronautical Applications Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing Martin.Kuntz@ansys.com December 2003 3 rd FENET Annual Industry

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Simulation in design of high performance machine tools

Simulation in design of high performance machine tools P. Wagner, Gebr. HELLER Maschinenfabrik GmbH 1. Introduktion Machine tools have been constructed and used for industrial applications for more than 100 years. Today, almost 100 large-sized companies and

More information

HydrOcean, your numerical hydrodynamic partner

HydrOcean, your numerical hydrodynamic partner HydrOcean, your numerical hydrodynamic partner Contact: Luke Berry, Account Manager Luke.berry@hydrocean.fr Tel: +33 (0)2 40 20 60 94 Who We Are Overview Founded in 2007 by E. Jacquin Spinoff from Ecole

More information

Comparison of the Response of a Simple Structure to Single Axis and Multiple Axis Random Vibration Inputs

Comparison of the Response of a Simple Structure to Single Axis and Multiple Axis Random Vibration Inputs Comparison of the Response of a Simple Structure to Single Axis and Multiple Axis Random Vibration Inputs Dan Gregory Sandia National Laboratories Albuquerque NM 87185 (505) 844-9743 Fernando Bitsie Sandia

More information

High-Speed Serial I/O Design Using Response Surface Modeling

High-Speed Serial I/O Design Using Response Surface Modeling AN APPLICATION BRIEF FROM ANSYS, INC. High-Speed Serial I/O Design Using Response Surface Modeling ABSTRACT Response surface modeling (RSM) enables engineers to consider all aspects of a design while only

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

User orientated simulation strategy to analyse large drive trains in SIMPACK

User orientated simulation strategy to analyse large drive trains in SIMPACK User orientated simulation strategy to analyse large drive trains in SIMPACK SIMPACK User Meeting / Dipl.-Ing. Thomas Hähnel / Dipl.-Ing. Mathias Höfgen 21. / 22. November 2007 Content Motivation, state

More information

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Abstract When structures in contact with a fluid

More information

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2012 SolidWorks Simulation Tutorial Page 1 In this tutorial, we will use the SolidWorks Simulation finite element analysis (FEA) program to analyze the response

More information

Mechanical Design of Turbojet Engines. An Introduction

Mechanical Design of Turbojet Engines. An Introduction Mechanical Design of Turbomachinery Mechanical Design of Turbojet Engines An Introduction Reference: AERO0015-1 - MECHANICAL DESIGN OF TURBOMACHINERY - 5 ECTS - J.-C. GOLINVAL University of Liege (Belgium)

More information

MEMS Multiphysics Simulation in ANSYS Workbench David Harrar II, PhD Ozen Engineering, Inc.

MEMS Multiphysics Simulation in ANSYS Workbench David Harrar II, PhD Ozen Engineering, Inc. MEMS Multiphysics Simulation in ANSYS Workbench David Harrar II, PhD Ozen Engineering, Inc. 1 Ozen Engineering, Inc. We are the local ANSYS Channel Partner With over 25 years of experience in FEA and CFD

More information

CFD modelling of floating body response to regular waves

CFD modelling of floating body response to regular waves CFD modelling of floating body response to regular waves Dr Yann Delauré School of Mechanical and Manufacturing Engineering Dublin City University Ocean Energy Workshop NUI Maynooth, October 21, 2010 Table

More information

Course in. Nonlinear FEM

Course in. Nonlinear FEM Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

More information

Automotive Brake Squeal Analysis Using a Complex Modes Approach

Automotive Brake Squeal Analysis Using a Complex Modes Approach Abaqus Technology Brief TB-05-BRAKE-1 Revised: April 2007. Automotive Brake Squeal Analysis Using a Complex Modes Approach Summary A methodology to study friction-induced squeal in a complete automotive

More information

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

More information

Realize Your Product Promise. Maxwell

Realize Your Product Promise. Maxwell Realize Your Product Promise Maxwell DC permanent magnet motor solved by Maxwell with ANSYS RMxprt Build reliability and efficiency into your electromagnetic and electromechanical designs with ANSYS Maxwell.

More information

Accuracy and Tuning in CNC Machine Tools

Accuracy and Tuning in CNC Machine Tools FAMA Technical Article/001 Accuracy and Tuning in CNC Machine Tools Introduction: This article explains how it is possible to achieve a better performance on High Speed CNC Machine Tools. Performance is

More information

Highly flexible couplings

Highly flexible couplings Construction and operation 8.03.00 Instructions for installation 8.03.00 Types of stress 8.04.00 Diagrams for static deformation of the coupling ring 8.05.00 Coupling size 8.07.00 Examples of combinations

More information

FLUID FLOW ANALYSIS OF CENTRIFUGAL FAN BY USING FEM

FLUID FLOW ANALYSIS OF CENTRIFUGAL FAN BY USING FEM International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 45 51, Article ID: IJMET_07_02_007 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

CFD Analysis of Swept and Leaned Transonic Compressor Rotor

CFD Analysis of Swept and Leaned Transonic Compressor Rotor CFD Analysis of Swept and Leaned Transonic Compressor Nivin Francis #1, J. Bruce Ralphin Rose *2 #1 Student, Department of Aeronautical Engineering& Regional Centre of Anna University Tirunelveli India

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014

Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014 Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered

More information

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior

A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior A Study of Durability Analysis Methodology for Engine Valve Considering Head Thermal Deformation and Dynamic Behavior Kum-Chul, Oh 1, Sang-Woo Cha 1 and Ji-Ho Kim 1 1 R&D Center, Hyundai Motor Company

More information

CONVERGE Features, Capabilities and Applications

CONVERGE Features, Capabilities and Applications CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE

More information

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the 11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

More information

Creo Simulate 1.0 April 2011

Creo Simulate 1.0 April 2011 Creo Simulate 1.0 April 2011 Creo Simulate a Creo family app Installed / Un-installed separately Creo Simulate in two modes: Embedded mode module of Creo Parametric Standalone mode In Standalone mode:

More information

Pushing the limits. Turbine simulation for next-generation turbochargers

Pushing the limits. Turbine simulation for next-generation turbochargers Pushing the limits Turbine simulation for next-generation turbochargers KWOK-KAI SO, BENT PHILLIPSEN, MAGNUS FISCHER Computational fluid dynamics (CFD) has matured and is now an indispensable tool for

More information

RESONANCE PASSAGE OF CYCLIC SYMMETRIC STRUCTURES

RESONANCE PASSAGE OF CYCLIC SYMMETRIC STRUCTURES 11 th International Conference on Vibration Problems Z. Dimitrovová et.al. (eds.) Lisbon, Portugal, 9 12 September 213 RESONANCE PASSAGE OF CYCLIC SYMMETRIC STRUCTURES Marius Bonhage* 1, Lars Panning-v.Scheidt

More information

DYNAMIC ANALYSIS ON STEEL FIBRE

DYNAMIC ANALYSIS ON STEEL FIBRE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 179 184, Article ID: IJCIET_07_02_015 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Recommended hardware system configurations for ANSYS users

Recommended hardware system configurations for ANSYS users Recommended hardware system configurations for ANSYS users The purpose of this document is to recommend system configurations that will deliver high performance for ANSYS users across the entire range

More information

Parametric Analysis: The Key to Rapid, Robust Design

Parametric Analysis: The Key to Rapid, Robust Design White Paper Parametric Analysis: The Key to Rapid, Robust Design Parametric studies can drive significant time and costs out of the development process while still ensuring design robustness and ultimate

More information

Material Optimization and Weight Reduction of Drive Shaft Using Composite Material

Material Optimization and Weight Reduction of Drive Shaft Using Composite Material IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 10, Issue 1 (Nov. - Dec. 2013), PP 39-46 Material Optimization and Weight Reduction of Drive Shaft

More information

Design Validation and Improvement Study of HVAC Plumbing Line Assembly under Random Loading Condition

Design Validation and Improvement Study of HVAC Plumbing Line Assembly under Random Loading Condition Design Validation and Improvement Study of HVAC Plumbing Line Assembly under Random Loading Condition Rakesh Jakhwal Senior Engineer Chrysler Group LLC RMZ Millenia II, Perungudi Chennai 600096, India

More information

SOLIDWORKS SOFTWARE OPTIMIZATION

SOLIDWORKS SOFTWARE OPTIMIZATION W H I T E P A P E R SOLIDWORKS SOFTWARE OPTIMIZATION Overview Optimization is the calculation of weight, stress, cost, deflection, natural frequencies, and temperature factors, which are dependent on variables

More information

CFD: What is it good for?

CFD: What is it good for? CFD: What is it good for? Tom O Mahoney TNO Fluid Dynamics Introduction to CFD CFD - Computational Fluid Dynamics Computational the using of computers to simulate the physics of fluids Fluid Either gas

More information

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

More information

PUTTING THE SPIN IN CFD

PUTTING THE SPIN IN CFD W H I T E PA P E R PUTTING THE SPIN IN CFD Overview Engineers who design equipment with rotating components need to analyze and understand the behavior of those components if they want to improve performance.

More information

Application of FEM-Tools in the Engine Development Process

Application of FEM-Tools in the Engine Development Process Application of FEM-Tools in the Engine Development Process H. Petrin, B. Wiesler e-mail: helmut.petrin@avl.com, bruno.wiesler@avl.com AVL List GmbH Graz, Austria Abstract The requirements for the development

More information

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA

RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military

More information

Finite Element Analysis of a Golf Driver and Golf Ball

Finite Element Analysis of a Golf Driver and Golf Ball Professor Suo 1/16 Solid Mechanics Finite Element Analysis of a Golf Driver and Golf Ball Abstract: This paper performs a theoretical stress and frequency analysis of both a 2D and 3D golf driver head

More information

Introduction to ANSYS

Introduction to ANSYS Lecture 3 Introduction to ANSYS Meshing 14. 5 Release Introduction to ANSYS Meshing 2012 ANSYS, Inc. March 27, 2014 1 Release 14.5 Introduction to ANSYS Meshing What you will learn from this presentation

More information

PERPLEXING VARIABLE FREQUENCY DRIVE VIBRATION PROBLEMS. Brian Howes 1

PERPLEXING VARIABLE FREQUENCY DRIVE VIBRATION PROBLEMS. Brian Howes 1 PERPLEXING VARIABLE FREQUENCY DRIVE VIBRATION PROBLEMS Brian Howes 1 1 Beta Machinery Analysis Ltd., Calgary, AB, Canada, T3C 0J7 ABSTRACT Several unusual vibration problems have been seen recently that

More information

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES

SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES SIESMIC SLOSHING IN CYLINDRICAL TANKS WITH FLEXIBLE BAFFLES Kayahan AKGUL 1, Yasin M. FAHJAN 2, Zuhal OZDEMIR 3 and Mhamed SOULI 4 ABSTRACT Sloshing has been one of the major concerns for engineers in

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

PRODUCT INFORMATION. Insight+ Uses and Features

PRODUCT INFORMATION. Insight+ Uses and Features PRODUCT INFORMATION Insight+ Traditionally, CAE NVH data and results have been presented as plots, graphs and numbers. But, noise and vibration must be experienced to fully comprehend its effects on vehicle

More information

Virtual Prototyping of Aerospace Systems Using Integrated LMS Virtual.Lab and IMAGINE AMESim

Virtual Prototyping of Aerospace Systems Using Integrated LMS Virtual.Lab and IMAGINE AMESim Virtual Prototyping of Aerospace Systems Using Integrated LMS Virtual.Lab and IMAGINE AMESim Joel Tollefson Imagine Inc. Aerospace Business Development Hans Van den Wijngaert LMS Product Manager Motion

More information

Mechanical Design Concepts for Non-Mechanical Engineers

Mechanical Design Concepts for Non-Mechanical Engineers Mechanical Design Concepts for Non-Mechanical Engineers By Steve Mackay EIT Micro-Course Series Every two weeks we present a 35 to 45 minute interactive course Practical, useful with Q & A throughout PID

More information

Dynamic Load and Stress Analysis of a Crankshaft

Dynamic Load and Stress Analysis of a Crankshaft 27-1-28 Dynamic Load and Stress Analysis of a Crankshaft Farzin H. Montazersadgh and Ali Fatemi The University of Toledo Copyright 27 SAE International ABSTRACT In this study a dynamic simulation was conducted

More information

Opto-Mechanical I/F for ANSYS

Opto-Mechanical I/F for ANSYS Abstract Opto-Mechanical I/F for ANSYS Victor Genberg, Keith Doyle, Gregory Michels Sigmadyne, Inc., 803 West Ave, Rochester, NY 14611 genberg@sigmadyne.com Thermal and structural output from ANSYS is

More information

Multiphase Flow - Appendices

Multiphase Flow - Appendices Discovery Laboratory Multiphase Flow - Appendices 1. Creating a Mesh 1.1. What is a geometry? The geometry used in a CFD simulation defines the problem domain and boundaries; it is the area (2D) or volume

More information

CFD Analysis of a butterfly valve in a compressible fluid

CFD Analysis of a butterfly valve in a compressible fluid CFD Analysis of a butterfly valve in a compressible fluid 1 G.TAMIZHARASI, 2 S.KATHIRESAN 1 Assistant Professor,Professor,Departmentment of Electronics and Instrumentation,Bharath university, chennai.

More information

An Overview of the Finite Element Analysis

An Overview of the Finite Element Analysis CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry

More information

Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor

Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2006 Cylinder Head Gasket Contact Pressure Simulation for a Hermetic Compressor Pavan P.

More information

Electrical Drive Modeling through a Multiphysics System Simulation Approach

Electrical Drive Modeling through a Multiphysics System Simulation Approach Application Brief Electrical Drive Modeling through a The electric drive system is a key application in power electronics. Optimizing such complex mechatronic system requires in-depth analysis, expertise

More information

Methods to predict fatigue in CubeSat structures and mechanisms

Methods to predict fatigue in CubeSat structures and mechanisms Methods to predict fatigue in CubeSat structures and mechanisms By Walter Holemans (PSC), Floyd Azure (PSC) and Ryan Hevner (PSC) Page 1 Outline Problem Statement What is fatigue? Cyclic loading and strength

More information

Learning Module 6 Linear Dynamic Analysis

Learning Module 6 Linear Dynamic Analysis Learning Module 6 Linear Dynamic Analysis What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner

More information

Battery Thermal Management in Electric Vehicles

Battery Thermal Management in Electric Vehicles White Paper Battery Thermal Management in Electric Vehicles Xiao Hu, Ph.D. Lead Engineer, ANSYS, Inc. Advanced numerical simulation helps accelerate the development of safe, long-lasting and cost-effective

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Shell Elements in ABAQUS/Explicit

Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics Appendix 2 Shell Elements in ABAQUS/Explicit ABAQUS/Explicit: Advanced Topics A2.2 Overview ABAQUS/Explicit: Advanced Topics ABAQUS/Explicit: Advanced Topics A2.4 Triangular

More information

Computational Modeling of Wind Turbines in OpenFOAM

Computational Modeling of Wind Turbines in OpenFOAM Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi hamid.rahimi@uni-oldenburg.de ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational

More information

Frequecy Comparison and Optimization of Forged Steel and Ductile Cast Iron Crankshafts

Frequecy Comparison and Optimization of Forged Steel and Ductile Cast Iron Crankshafts International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 11ǁ November2013 ǁ PP.38-45 Frequecy Comparison and Optimization of Forged Steel

More information

CAE -Finite Element Method

CAE -Finite Element Method 16.810 Engineering Design and Rapid Prototyping CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 11, 2005 Plan for Today Hand Calculations Aero Æ Structures FEM Lecture (ca. 45 min)

More information

High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates

High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Technology Update: Workbench, Geometry, Meshing, Workflow. ANSYS Users Group Meeting Prague, 2011

Technology Update: Workbench, Geometry, Meshing, Workflow. ANSYS Users Group Meeting Prague, 2011 Technology Update: Workbench, Geometry, Meshing, Workflow ANSYS Users Group Meeting Prague, 2011 1 Andreas Kolms Hannover 2 Agenda Workbench Geometry Meshing Workflow 3 The Path to Robust Design Optimization

More information

ADVANCED TOOL FOR FLUID DYNAMICS- CFD AND ITS APPLICATIONS IN AUTOMOTIVE, AERODYNAMICS AND MACHINE INDUSTRY

ADVANCED TOOL FOR FLUID DYNAMICS- CFD AND ITS APPLICATIONS IN AUTOMOTIVE, AERODYNAMICS AND MACHINE INDUSTRY International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 177 186, Article ID: IJMET_07_02_019 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information