An Introduction to Extreme Value Analysis
|
|
|
- Whitney Welch
- 9 years ago
- Views:
Transcription
1 An Introduction to Extreme Value Analysis Graduate student seminar series Whitney Huang Department of Statistics Purdue University March 6, 2014 Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
2 Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
3 Outline 1 Motivation 2 Extreme Value Theorem 3 Example: Fort Collins Precipitation Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
4 Usual vs Extremes Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
5 Why study extremes? Although infrequent, extremes usually have large impact. Goal: to quantify the tail behavior often requires extrapolation. Applications: hydrology: flooding climate: temperature, precipitation, wind, finance insurance/reinsurance engineering: structural design, reliability Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
6 Outline 1 Motivation 2 Extreme Value Theorem 3 Example: Fort Collins Precipitation Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
7 Probability Framework Let X 1,, X n iid F and define Mn = max{x 1,, X n } Then the distribution function of M n is P(M n x) = P(X 1 x,, X n x) = P(X 1 x) P(X n x) = F n (x) Remark { F n (x) === n 0 if F (x) < 1 1 if F (x) = 1 the limiting distribution is degenerate. Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
8 Asymptotic: Classical Limit Laws Recall the Central Limit Theorem: S n nµ nσ d N(0, 1) rescaling is the key to obtain a non-degenerate distribution Question: Can we get the limiting distribution of M n b n a n for suitable sequence {a n } > 0 and {b n }? Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
9 Asymptotic: Classical Limit Laws Recall the Central Limit Theorem: S n nµ nσ d N(0, 1) rescaling is the key to obtain a non-degenerate distribution Question: Can we get the limiting distribution of M n b n a n for suitable sequence {a n } > 0 and {b n }? Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
10 Theorem (Fisher Tippett Gnedenko theorem) If there exist sequences of constants a n > 0 and b n such that, as n ( ) Mn b n d P x G(x) a n for some non-degenerate distribution G, then G belongs to either the Gumbel, the Fréchet or the Weibull family Gumbel: G(x) = { exp(exp( x)) < x < ; 0 x 0, Fréchet: G(x) = exp( x α ) x > 0, α > 0; { exp( ( x) Weibull: G(x) = α ) x < 0, α > 0, 1 x 0; Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
11 Generalized Extreme Value Distribution (GEV) This family encompasses all three extreme value limit families: where x + = max(x, 0) { [ G(x) = exp 1 + ξ( x µ σ ] 1 } ) ξ + µ and σ are location and scale parameters ξ is a shape parameter determining the rate of tail decay, with ξ > 0 giving the heavy-tailed (Fréchet) case ξ = 0 giving the light-tailed (Gumbel) case ξ < 0 giving the bounded-tailed (Weibull) case Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
12 Max-Stability and GEV Definition A distribution G is said to be max-stable if G k (a k x + b k ) = G(x), k N for some constants a k > 0 and b k Taking powers of a distribution function results only in a change of location and scale A distribution is max-stable it is a GEV distribution Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
13 Quantiles and Return Levels Quantiles of Extremes { [ G(x p ) = exp x p = µ σ ξ 1 + ξ( x p µ ) σ ] 1 ξ + } = 1 p [ 1 { log(1 p) ξ }] 0 < p < 1 In the extreme value terminology, x p is the return level associated with the return period 1 p Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
14 Block Maximum Approach 1 Determine the block size and compute maximal for blocks 2 Fit the GEV to the maximal and assess fit 3 Perform inference for return levels, probabilities, etc Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
15 Block Maximum Approach 1 Determine the block size and compute maximal for blocks 2 Fit the GEV to the maximal and assess fit 3 Perform inference for return levels, probabilities, etc Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
16 Block Maximum Approach 1 Determine the block size and compute maximal for blocks 2 Fit the GEV to the maximal and assess fit 3 Perform inference for return levels, probabilities, etc Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
17 Threshold Exceedance Approach Motivation: The block maximum method ignores much of the data which may also relevant to extreme we would like to use the data more efficient. Alternatives: Threshold Exceedance Approach 1 Select an appropriate threshold u, extract the exceedances from the dataset 2 Fit an appropriate model to exceedances 3 Perform inference for return levels, probabilities, etc Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
18 Threshold Exceedance Approach Motivation: The block maximum method ignores much of the data which may also relevant to extreme we would like to use the data more efficient. Alternatives: Threshold Exceedance Approach 1 Select an appropriate threshold u, extract the exceedances from the dataset 2 Fit an appropriate model to exceedances 3 Perform inference for return levels, probabilities, etc Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
19 Threshold Exceedance Approach Motivation: The block maximum method ignores much of the data which may also relevant to extreme we would like to use the data more efficient. Alternatives: Threshold Exceedance Approach 1 Select an appropriate threshold u, extract the exceedances from the dataset 2 Fit an appropriate model to exceedances 3 Perform inference for return levels, probabilities, etc Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
20 Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
21 GPD for Exceedances P(X i > x + u X i > u) = np(x i > x + u) np(x i > u) ( 1 + ξ x+u b n a n = ( ξ u bn a n ) 1 ξ ξx a n + ξ(u b n ) Survival function of generalized Pareto distribution ) 1 ξ Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
22 Theorem (Pickands Balkema de Haan theorem) Let X 1, iid F, and let F u be their conditional excess distribution function. Pickands (1975), Balkema and de Haan (1974) posed that for a large class of underlying distribution functions F, and large u, F u is well approximated by the generalized Pareto distribution GPD. That is: F u (y) GPD ξ,σ (y) u where GPD ξ,σ (y) = { 1 (1 + ξy σ ) 1 ξ ξ 0, 1 exp( y σ ) ξ = 0; Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
23 Threshold Selection Bias variance trade off: threshold too low bias because of the model asymptotics being invalid; threshold too high variance is large due to few data points Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
24 Outline 1 Motivation 2 Extreme Value Theorem 3 Example: Fort Collins Precipitation Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
25 Example: Fort Collins Precipitation Spike corresponds to 1997 event, recording station not at center of storm. Question: How unusual was event? Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
26 How unusual was the Fort Collins event? Measured value for 1997 event is 6.18 inches. Take a look at data preceding the event ( ) and try to estimate the return period associated with this event It is equivalent to ask What is the probability the annual maximum event is larger than 6.18 inches? Requires extrapolation into the tail. Largest observation ( ) is 4.09 inches inches. We will approach this problem in two ways: 1 Model all (non-zero) data 2 Model only extreme data Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
27 Modeling all precipitation data Let Y t be the daily summer (April October) precipitation for Fort Collins, CO. { Yt > 0 with probability p Assume ˆp = Y t = 0 with probability 1 p Model: Y t Y t > 0 Gamma(α, β) Maximum likelihood estimates: ˆα = 0.784, ˆβ = 3.52 Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
28 Modeling all precipitation data cont d P(Y t > 6.18) = P(Y t > 6.18 Y t > 0)P(Y t > 0) = (1 F gamma(ˆα, ˆβ) (6.18))(0.218) = ( )(0.218) = Let M be the annual maximum precipitation P(M > 6.18) = 1 P(M < 6.18) = 1 P(Y t < 6.18) 214 = 1 (1 P(Y t > 6.18)) 214 = 1 ( ) 214 = Return period estimate = ( ) 1 = 145, 815, 245 years Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
29 Modeling all precipitation data: Diagnostics Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
30 Modeling Annual Maximal Let M n = max X t. Assume M n GEV (µ, σ, ξ) t=1,,n P(M n x) = exp { [ 1 + ξ( x µ σ ) ] 1 ξ Maximum Likelihood estimates: ˆµ = 1.11, ˆσ = 0.46, ˆξ = P(ann max > 6.18) = 1 P(M n 6.18) = Return period estimate = 1 = 121 years } Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
31 Modeling Annual Maximal: Diagnostics Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
32 Modeling Annual Maximal: Diagnostics Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
33 Temporal Dependence Question: Is the GEV still the limiting distribution for block maxima of a stationary (but not independent) sequence {X i }? Answer: Yes, so long as mixing conditions hold. (Leadbetter et al., 1983) What does this mean for inference? Block maximum approach: GEV still correct for marginal. Since block maximum data likely have negligible dependence, proceed as usual Threshold exceedance approach: GPD is correct for the marginal. If extremes occur in clusters, estimation affected as likelihood assumes independence of threshold exceedances Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
34 Temporal Dependence Question: Is the GEV still the limiting distribution for block maxima of a stationary (but not independent) sequence {X i }? Answer: Yes, so long as mixing conditions hold. (Leadbetter et al., 1983) What does this mean for inference? Block maximum approach: GEV still correct for marginal. Since block maximum data likely have negligible dependence, proceed as usual Threshold exceedance approach: GPD is correct for the marginal. If extremes occur in clusters, estimation affected as likelihood assumes independence of threshold exceedances Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
35 Temporal Dependence Question: Is the GEV still the limiting distribution for block maxima of a stationary (but not independent) sequence {X i }? Answer: Yes, so long as mixing conditions hold. (Leadbetter et al., 1983) What does this mean for inference? Block maximum approach: GEV still correct for marginal. Since block maximum data likely have negligible dependence, proceed as usual Threshold exceedance approach: GPD is correct for the marginal. If extremes occur in clusters, estimation affected as likelihood assumes independence of threshold exceedances Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
36 Temporal Dependence Question: Is the GEV still the limiting distribution for block maxima of a stationary (but not independent) sequence {X i }? Answer: Yes, so long as mixing conditions hold. (Leadbetter et al., 1983) What does this mean for inference? Block maximum approach: GEV still correct for marginal. Since block maximum data likely have negligible dependence, proceed as usual Threshold exceedance approach: GPD is correct for the marginal. If extremes occur in clusters, estimation affected as likelihood assumes independence of threshold exceedances Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
37 Temporal Dependence Question: Is the GEV still the limiting distribution for block maxima of a stationary (but not independent) sequence {X i }? Answer: Yes, so long as mixing conditions hold. (Leadbetter et al., 1983) What does this mean for inference? Block maximum approach: GEV still correct for marginal. Since block maximum data likely have negligible dependence, proceed as usual Threshold exceedance approach: GPD is correct for the marginal. If extremes occur in clusters, estimation affected as likelihood assumes independence of threshold exceedances Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
38 Remarks on Univariate Extremes To estimate the tail, EVT uses only extreme observations Tail parameter ξ is extremely important but hard to estimate Threshold exceedance approaches allow the user to retain more data than block-maximum approaches, thereby reducing the uncertainty with parameter estimates Temporal dependence in the data is more of an issue in threshold exceedance models. One can either decluster, or alternatively, adjust inference Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
39 Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
40 For Further Reading S. Coles An Introduction to Statistical Modeling of Extreme Values. Springer, J. Beirlant, Y Goegebeur, J. Segers, and J Teugels Statistics of Extremes: Theory and Applications. Wiley, L. de Haan, and A. Ferreira Extreme Value Theory: An Introduction. Springer, S. I. Resnick Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, Whitney Huang (Purdue University) An Introduction to Extreme Value Analysis March 6, / 31
An Introduction to Extreme Value Theory
An Introduction to Extreme Value Theory Petra Friederichs Meteorological Institute University of Bonn COPS Summer School, July/August, 2007 Applications of EVT Finance distribution of income has so called
An introduction to the analysis of extreme values using R and extremes
An introduction to the analysis of extreme values using R and extremes Eric Gilleland, National Center for Atmospheric Research, Boulder, Colorado, U.S.A. http://www.ral.ucar.edu/staff/ericg Graybill VIII
An application of extreme value theory to the management of a hydroelectric dam
DOI 10.1186/s40064-016-1719-2 RESEARCH Open Access An application of extreme value theory to the management of a hydroelectric dam Richard Minkah * *Correspondence: [email protected] Department of Statistics,
Statistical methods to expect extreme values: Application of POT approach to CAC40 return index
Statistical methods to expect extreme values: Application of POT approach to CAC40 return index A. Zoglat 1, S. El Adlouni 2, E. Ezzahid 3, A. Amar 1, C. G. Okou 1 and F. Badaoui 1 1 Laboratoire de Mathématiques
Extreme Value Analysis of Corrosion Data. Master Thesis
Extreme Value Analysis of Corrosion Data Master Thesis Marcin Glegola Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, The Netherlands July 2007 Abstract
Operational Risk Management: Added Value of Advanced Methodologies
Operational Risk Management: Added Value of Advanced Methodologies Paris, September 2013 Bertrand HASSANI Head of Major Risks Management & Scenario Analysis Disclaimer: The opinions, ideas and approaches
CATASTROPHIC RISK MANAGEMENT IN NON-LIFE INSURANCE
CATASTROPHIC RISK MANAGEMENT IN NON-LIFE INSURANCE EKONOMIKA A MANAGEMENT Valéria Skřivánková, Alena Tartaľová 1. Introduction At the end of the second millennium, a view of catastrophic events during
Applying Generalized Pareto Distribution to the Risk Management of Commerce Fire Insurance
Applying Generalized Pareto Distribution to the Risk Management of Commerce Fire Insurance Wo-Chiang Lee Associate Professor, Department of Banking and Finance Tamkang University 5,Yin-Chuan Road, Tamsui
Statistical Software for Weather and Climate
Statistical Software for Weather and Climate Eric Gilleland, National Center for Atmospheric Research, Boulder, Colorado, U.S.A. http://www.ral.ucar.edu/staff/ericg Effects of climate change: coastal systems,
Estimation and attribution of changes in extreme weather and climate events
IPCC workshop on extreme weather and climate events, 11-13 June 2002, Beijing. Estimation and attribution of changes in extreme weather and climate events Dr. David B. Stephenson Department of Meteorology
Extreme Value Theory with Applications in Quantitative Risk Management
Extreme Value Theory with Applications in Quantitative Risk Management Henrik Skaarup Andersen David Sloth Pedersen Master s Thesis Master of Science in Finance Supervisor: David Skovmand Department of
COMPARISON BETWEEN ANNUAL MAXIMUM AND PEAKS OVER THRESHOLD MODELS FOR FLOOD FREQUENCY PREDICTION
COMPARISON BETWEEN ANNUAL MAXIMUM AND PEAKS OVER THRESHOLD MODELS FOR FLOOD FREQUENCY PREDICTION Mkhandi S. 1, Opere A.O. 2, Willems P. 3 1 University of Dar es Salaam, Dar es Salaam, 25522, Tanzania,
Extreme Value Theory for Heavy-Tails in Electricity Prices
Extreme Value Theory for Heavy-Tails in Electricity Prices Florentina Paraschiv 1 Risto Hadzi-Mishev 2 Dogan Keles 3 Abstract Typical characteristics of electricity day-ahead prices at EPEX are the very
Contributions to extreme-value analysis
Contributions to extreme-value analysis Stéphane Girard INRIA Rhône-Alpes & LJK (team MISTIS). 655, avenue de l Europe, Montbonnot. 38334 Saint-Ismier Cedex, France [email protected] Abstract: This
Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session STS040) p.2985
Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session STS040) p.2985 Small sample estimation and testing for heavy tails Fabián, Zdeněk (1st author) Academy of Sciences of
EVIM: A Software Package for Extreme Value Analysis in MATLAB
EVIM: A Software Package for Extreme Value Analysis in MATLAB Ramazan Gençay Department of Economics University of Windsor [email protected] Faruk Selçuk Department of Economics Bilkent University [email protected]
An analysis of the dependence between crude oil price and ethanol price using bivariate extreme value copulas
The Empirical Econometrics and Quantitative Economics Letters ISSN 2286 7147 EEQEL all rights reserved Volume 3, Number 3 (September 2014), pp. 13-23. An analysis of the dependence between crude oil price
Order Statistics. Lecture 15: Order Statistics. Notation Detour. Order Statistics, cont.
Lecture 5: Statistics 4 Let X, X 2, X 3, X 4, X 5 be iid random variables with a distribution F with a range of a, b). We can relabel these X s such that their labels correspond to arranging them in increasing
CHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
Contributions to Modeling Extreme Events on Financial and Electricity Markets
Contributions to Modeling Extreme Events on Financial and Electricity Markets Inauguraldissertation zur Erlangung des Doktorgrades der Wirtschafts- und Sozialwissenschaftlichen Fakultät der Universität
Basics of Statistical Machine Learning
CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu [email protected] Modern machine learning is rooted in statistics. You will find many familiar
The R programming language. Statistical Software for Weather and Climate. Already familiar with R? R preliminaries
Statistical Software for Weather and Climate he R programming language Eric Gilleland, National Center for Atmospheric Research, Boulder, Colorado, U.S.A. http://www.ral.ucar.edu/staff/ericg R Development
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
A Basic Introduction to Missing Data
John Fox Sociology 740 Winter 2014 Outline Why Missing Data Arise Why Missing Data Arise Global or unit non-response. In a survey, certain respondents may be unreachable or may refuse to participate. Item
The Extremes Toolkit (extremes)
The Extremes Toolkit (extremes) Weather and Climate Applications of Extreme Value Statistics Eric Gilleland National Center for Atmospheric Research (NCAR), Research Applications Laboratory (RAL) Richard
Working Paper: Extreme Value Theory and mixed Canonical vine Copulas on modelling energy price risks
Working Paper: Extreme Value Theory and mixed Canonical vine Copulas on modelling energy price risks Authors: Karimalis N. Emmanouil Nomikos Nikos London 25 th of September, 2012 Abstract In this paper
Life Table Analysis using Weighted Survey Data
Life Table Analysis using Weighted Survey Data James G. Booth and Thomas A. Hirschl June 2005 Abstract Formulas for constructing valid pointwise confidence bands for survival distributions, estimated using
Uncertainty quantification for the family-wise error rate in multivariate copula models
Uncertainty quantification for the family-wise error rate in multivariate copula models Thorsten Dickhaus (joint work with Taras Bodnar, Jakob Gierl and Jens Stange) University of Bremen Institute for
A Simple Formula for Operational Risk Capital: A Proposal Based on the Similarity of Loss Severity Distributions Observed among 18 Japanese Banks
A Simple Formula for Operational Risk Capital: A Proposal Based on the Similarity of Loss Severity Distributions Observed among 18 Japanese Banks May 2011 Tsuyoshi Nagafuji Takayuki
From value at risk to stress testing: The extreme value approach
Journal of Banking & Finance 24 (2000) 1097±1130 www.elsevier.com/locate/econbase From value at risk to stress testing: The extreme value approach Francßois M. Longin * Department of Finance, Groupe ESSEC,
A Comparative Software Review for Extreme Value Analysis
A Comparative Software Review for Extreme Value Analysis Eric Gilleland Research Applications Laboratory, National Center for Atmospheric Research, U.S.A. Mathieu Ribatet Institute of Mathematics, University
Exact Nonparametric Tests for Comparing Means - A Personal Summary
Exact Nonparametric Tests for Comparing Means - A Personal Summary Karl H. Schlag European University Institute 1 December 14, 2006 1 Economics Department, European University Institute. Via della Piazzuola
Probabilistic Real-Time Systems
Probabilistic Real-Time Systems Liliana Cucu-Grosjean, INRIA Nancy-Grand Est [email protected] The results presented are joint work with PROARTIS partners / 3 Luxembourg June 9th, 202 Outline Probabilistic
Multivariate Extremes, Max-Stable Process Estimation and Dynamic Financial Modeling
Multivariate Extremes, Max-Stable Process Estimation and Dynamic Financial Modeling by Zhengjun Zhang A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial
Semi-Supervised Support Vector Machines and Application to Spam Filtering
Semi-Supervised Support Vector Machines and Application to Spam Filtering Alexander Zien Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics ECML 2006 Discovery
A software review for extreme value analysis
Extremes (2013) 16:103 119 DOI 10.1007/s10687-012-0155-0 A software review for extreme value analysis Eric Gilleland Mathieu Ribatet Alec G. Stephenson Received: 8 September 2011 / Revised: 12 June 2012
Introduction to Markov Chain Monte Carlo
Introduction to Markov Chain Monte Carlo Monte Carlo: sample from a distribution to estimate the distribution to compute max, mean Markov Chain Monte Carlo: sampling using local information Generic problem
Inference on the parameters of the Weibull distribution using records
Statistics & Operations Research Transactions SORT 39 (1) January-June 2015, 3-18 ISSN: 1696-2281 eissn: 2013-8830 www.idescat.cat/sort/ Statistics & Operations Research c Institut d Estadstica de Catalunya
Maximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
Climate Extremes Research: Recent Findings and New Direc8ons
Climate Extremes Research: Recent Findings and New Direc8ons Kenneth Kunkel NOAA Cooperative Institute for Climate and Satellites North Carolina State University and National Climatic Data Center h#p://assessment.globalchange.gov
Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk
Corrected Diffusion Approximations for the Maximum of Heavy-Tailed Random Walk Jose Blanchet and Peter Glynn December, 2003. Let (X n : n 1) be a sequence of independent and identically distributed random
Generating Random Samples from the Generalized Pareto Mixture Model
Generating Random Samples from the Generalized Pareto Mixture Model MUSTAFA ÇAVUŞ AHMET SEZER BERNA YAZICI Department of Statistics Anadolu University Eskişehir 26470 TURKEY [email protected]
BIG DATA: CONVENTIONAL METHODS MEET UNCONVENTIONAL DATA
BIG DATA: CONVENTIONAL METHODS MEET UNCONVENTIONAL DATA Harvard Medical School & Harvard School of Public Health [email protected] October 14, 2014 1 / 7 THE SETTING Unprecedented advances in
15 Limit sets. Lyapunov functions
15 Limit sets. Lyapunov functions At this point, considering the solutions to ẋ = f(x), x U R 2, (1) we were most interested in the behavior of solutions when t (sometimes, this is called asymptotic behavior
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
Linear Classification. Volker Tresp Summer 2015
Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong
INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)
INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulation-based method for estimating the parameters of economic models. Its
Reliability estimators for the components of series and parallel systems: The Weibull model
Reliability estimators for the components of series and parallel systems: The Weibull model Felipe L. Bhering 1, Carlos Alberto de Bragança Pereira 1, Adriano Polpo 2 1 Department of Statistics, University
Hypothesis Testing for Beginners
Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easy-to-read notes
GENERALIZED PARETO FIT TO THE SOCIETY OF ACTUARIES LARGE CLAIMS DATABASE
GENERALIZED PARETO FIT TO THE SOCIETY OF ACTUARIES LARGE CLAIMS DATABASE Ana C. Cebrián, Michel Denuit and Philippe Lambert Dpto. Metodos Estadisticos. Ed. Matematicas Universidad de Zaragoza Zaragoza
What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference
0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures
Quantitative Models for Operational Risk: Extremes, Dependence and Aggregation
Quantitative Models for Operational Risk: Extremes, Dependence and Aggregation V. Chavez-Demoulin, P. Embrechts and J. Nešlehová Department of Mathematics ETH-Zürich CH-8092 Zürich Switzerland http://www.math.ethz.ch/~valerie/
The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.
Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium
1 Maximum likelihood estimation
COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N
Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks
1 Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks Yang Yang School of Mathematics and Statistics, Nanjing Audit University School of Economics
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
. (3.3) n Note that supremum (3.2) must occur at one of the observed values x i or to the left of x i.
Chapter 3 Kolmogorov-Smirnov Tests There are many situations where experimenters need to know what is the distribution of the population of their interest. For example, if they want to use a parametric
Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C
ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska
Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. Gacovska-Barandovska Smirnov (1949) derived four
Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu
Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of
Survival Analysis of Left Truncated Income Protection Insurance Data. [March 29, 2012]
Survival Analysis of Left Truncated Income Protection Insurance Data [March 29, 2012] 1 Qing Liu 2 David Pitt 3 Yan Wang 4 Xueyuan Wu Abstract One of the main characteristics of Income Protection Insurance
Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)
Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February
L3: Statistical Modeling with Hadoop
L3: Statistical Modeling with Hadoop Feng Li [email protected] School of Statistics and Mathematics Central University of Finance and Economics Revision: December 10, 2014 Today we are going to learn...
Graphs. Exploratory data analysis. Graphs. Standard forms. A graph is a suitable way of representing data if:
Graphs Exploratory data analysis Dr. David Lucy [email protected] Lancaster University A graph is a suitable way of representing data if: A line or area can represent the quantities in the data in
Multivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
MODELLING, ESTIMATING AND VALIDATING MULTIDIMENSIONAL DISTRIBUTION FUNCTIONS -WITH APPLICATIONS TO RISK MANAGEMENT- By Markus Junker D 368
MODELLING, ESTIMATING AND VALIDATING MULTIDIMENSIONAL DISTRIBUTION FUNCTIONS -WITH APPLICATIONS TO RISK MANAGEMENT- By Markus Junker D 368 Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern
Message-passing sequential detection of multiple change points in networks
Message-passing sequential detection of multiple change points in networks Long Nguyen, Arash Amini Ram Rajagopal University of Michigan Stanford University ISIT, Boston, July 2012 Nguyen/Amini/Rajagopal
Chapter 6: Point Estimation. Fall 2011. - Probability & Statistics
STAT355 Chapter 6: Point Estimation Fall 2011 Chapter Fall 2011 6: Point1 Estimat / 18 Chap 6 - Point Estimation 1 6.1 Some general Concepts of Point Estimation Point Estimate Unbiasedness Principle of
Lecture 8: Gamma regression
Lecture 8: Gamma regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Models with constant coefficient of variation Gamma regression: estimation and testing
Linda Staub & Alexandros Gekenidis
Seminar in Statistics: Survival Analysis Chapter 2 Kaplan-Meier Survival Curves and the Log- Rank Test Linda Staub & Alexandros Gekenidis March 7th, 2011 1 Review Outcome variable of interest: time until
Value-at-Risk for Fixed Income portfolios A comparison of alternative models
Value-at-Risk for Fixed Income portfolios A comparison of alternative models Gangadhar Darbha National Stock Exchange, Mumbai, India December 2001 Abstract The paper presents a case for a new method for
Non Parametric Inference
Maura Department of Economics and Finance Università Tor Vergata Outline 1 2 3 Inverse distribution function Theorem: Let U be a uniform random variable on (0, 1). Let X be a continuous random variable
Un point de vue bayésien pour des algorithmes de bandit plus performants
Un point de vue bayésien pour des algorithmes de bandit plus performants Emilie Kaufmann, Telecom ParisTech Rencontre des Jeunes Statisticiens, Aussois, 28 août 2013 Emilie Kaufmann (Telecom ParisTech)
Financial Time Series Analysis (FTSA) Lecture 1: Introduction
Financial Time Series Analysis (FTSA) Lecture 1: Introduction Brief History of Time Series Analysis Statistical analysis of time series data (Yule, 1927) v/s forecasting (even longer). Forecasting is often
i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by
Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a p-dimensional parameter
A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails
12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint
