OpenCL 1.1 Enhancements for Multi-GPU Performance
|
|
|
- Ashlie Quinn
- 9 years ago
- Views:
Transcription
1 OpenCL 1.1 Enhancements for Multi-GPU Performance Eric Young, NVIDIA Copyright Khronos Group, Page 1
2 Overview NVIDIA Driver Availability Driver Performance Improvements OpenCL 1.1 Improvements OpenCL Multi-threading Example Summary Copyright Khronos Group, Page 2
3 NVIDIA Driver Availability NVIDIA R280 drivers now support OpenCL 1.1! Available on Desktop and Mobile NVIDIA Driver Version Operating System Available on NVIDIA.COM Release WHQL Vista and Windows 7 08/09/ Release Linux 08/01/2011 Copyright Khronos Group, Page 3
4 NVIDIA Performance Improvements Driver Optimizations: - OpenCL driver adds multi-threaded optimizations. - Non-blocking API calls are enqueued and processed via worker threads. - Support for cross multi-gpu device synchronization. - CPU threads will not block during synchronization. - Less driver overhead with this type of synchronization. Data I/O Improvements - For data transfers between CPU and GPU with pageable memory buffers are asynchronous. Copyright Khronos Group, Page 4
5 OpenCL 1.1 Improvements Commands can be sent from different host threads - APIs are thread safe except for clsetkernelarg( ) Support for event callback functions on Host - Enables heterogeneous computing (CPU + GPU) to be more efficient for both serial and parallel algorithms. - No explicit CPU/GPU synchronization required. Copyright Khronos Group, Page 5
6 Callbacks and Events OpenCL 1.0 has support events - clenqueuebarrier(), clenqueuemarker(), clenqueuewaitforevent() for command-queue synchronization. - clwaitforevents() for waiting on a event. OpenCL 1.1 adds callback functions triggered by an event - clseteventcallback() passes a callback function that will be triggered by a user event. The callback function will get launched it a separate thread. - Use callback functions to distribute additional compute workloads on the GPU or CPU. Copyright Khronos Group, Page 6
7 OpenCL Multi-Thread Example CPU thread initializes an array to be copied each GPU. - When each thread finishes, events (CPU Done Event) are set. 8 host threads run on 2 GPU devices. GPU 0 GPU 1 Copyright Khronos Group, Page 7
8 OpenCL Multi-Thread Example CPU is not blocked during enqueuing of commands. Each host thread has an OpenCL command queue and event. Triggering an event trigger will launch the callback function in a separate thread. Copyright Khronos Group, Page 8
9 With OpenCL 1.1 Data upload clenqueuewritebuffer( ) waits for CPU Done Event. clsetkernelcallback( ) - CPU post-process function gets triggered by the GPU Done Event. Upload Data CPU to GPU Launch Kernel on GPU Readback GPU to CPU CPU Done Event Prepare Data on CPU (thread) GPU Done Event Post-process Data on CPU Copyright Khronos Group, Page 9
10 With OpenCL 1.0 clwaitforevents (GPU Done Event) before GPU->CPU readback and launching CPU Post-Process. Explicit CPU/GPU synchronization required. Prepare Data On CPU (thread) No Is GPU Done? Yes Post-Process Data on CPU CPU Done Event Upload Data CPU to GPU Launch Kernel GPU Blocks on GPU Event Readback GPU to CPU Copyright Khronos Group, Page 10
11 oclmultithreads Example of oclmultithreads with multiple GPUs using OpenCL 1.1. [oclmultithreads.exe] starting... Detected 2 OpenCL devices of type CL_DEVICE_TYPE_GPU > OpenCL Device #0 (Tesla C2050), cl_device_id: > OpenCL Device #1 (Quadro 4000), cl_device_id: Tesla C2050: simpleincrement(), cl_device_id: , event_id: 0 Quadro 4000: simpleincrement(), cl_device_id: , event_id: 1 Tesla C2050: simpleincrement(), cl_device_id: , event_id: 2 Quadro 4000: simpleincrement(), cl_device_id: , event_id: 3 Tesla C2050: simpleincrement(), cl_device_id: , event_id: 4 Quadro 4000: simpleincrement(), cl_device_id: , event_id: 5 Tesla C2050: simpleincrement(), cl_device_id: , event_id: 6 Quadro 4000: simpleincrement(), cl_device_id: , event_id: 7 Copyright Khronos Group, Page 11
12 oclmultithreads (contd.) Timing results from each thread and event > event_callback() event_id=0, kernel runtime (ms) > event_callback() event_id=1, kernel runtime (ms) > event_callback() event_id=2, kernel runtime (ms) > event_callback() event_id=4, kernel runtime (ms) > event_callback() event_id=3, kernel runtime (ms) > event_callback() event_id=5, kernel runtime (ms) > event_callback() event_id=6, kernel runtime (ms) > event_callback() event_id=7, kernel runtime (ms) Copyright Khronos Group, Page 12
13 Summary NVIDIA OpenCL driver is multi-threaded: - Enqueuing commands and Data I/O are asynchronous to the application thread (non-blocking). - Improves overlap of the CPU and GPU workloads. OpenCL 1.1 adds - Event triggered callback functions: - Callback functions are non-blocking and run in a separate thread. Take advantage of these features to achieve: - Higher Compute throughput (CPU + GPU efficiency). - Higher GPU utilization (less time idle). - Lower API overhead with single and multiple GPUs. Copyright Khronos Group, Page 13
14 Thank You! Contact: Eric Young Copyright Khronos Group, Page 14
15 OpenCL Programming Guide By Aaftab Munshi, Benedict R Gaster, Timothy G. Mattson, James Fung, Dan Ginsburg Key Features (includes) Understanding OpenCL s core models, concepts, terminology, goals, and rationale Discovering and preparing available resources Programming with OpenCL C, its built-in functions, and runtime API Using buffers, sub-buffers, images, samplers, and events Sharing and synchronizing data with OpenGL and Microsoft s Direct3D Simplifying development with the C++ Wrapper API Using OpenCL Embedded Profiles to support devices ranging from cellphones to supercomputer nodes Building complete applications: image histograms, edge detection filters, physics simulations, Fast Fourier Transforms, optical flow, and more Using OpenCL with PyOpenCL, including issues in porting from C++ to Python Performing matrix multiplication and high-performance sparse matrix multiplication Copyright Khronos Group, Page 15
Next Generation GPU Architecture Code-named Fermi
Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time
Cross-Platform GP with Organic Vectory BV Project Services Consultancy Services Expertise Markets 3D Visualization Architecture/Design Computing Embedded Software GIS Finance George van Venrooij Organic
Stream Processing on GPUs Using Distributed Multimedia Middleware
Stream Processing on GPUs Using Distributed Multimedia Middleware Michael Repplinger 1,2, and Philipp Slusallek 1,2 1 Computer Graphics Lab, Saarland University, Saarbrücken, Germany 2 German Research
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools
SYCL for OpenCL. Andrew Richards, CEO Codeplay & Chair SYCL Working group GDC, March 2014. Copyright Khronos Group 2014 - Page 1
SYCL for OpenCL Andrew Richards, CEO Codeplay & Chair SYCL Working group GDC, March 2014 Copyright Khronos Group 2014 - Page 1 Where is OpenCL today? OpenCL: supported by a very wide range of platforms
COSCO 2015 Heterogeneous Computing Programming
COSCO 2015 Heterogeneous Computing Programming Michael Meyer, Shunsuke Ishikuro Supporters: Kazuaki Sasamoto, Ryunosuke Murakami July 24th, 2015 Heterogeneous Computing Programming 1. Overview 2. Methodology
Press Briefing. GDC, March 2014. Neil Trevett Vice President Mobile Ecosystem, NVIDIA President Khronos. Copyright Khronos Group 2014 - Page 1
Copyright Khronos Group 2014 - Page 1 Press Briefing GDC, March 2014 Neil Trevett Vice President Mobile Ecosystem, NVIDIA President Khronos Copyright Khronos Group 2014 - Page 2 Lots of Khronos News at
Vulkan on NVIDIA GPUs. Piers Daniell, Driver Software Engineer, OpenGL and Vulkan
Vulkan on NVIDIA GPUs Piers Daniell, Driver Software Engineer, OpenGL and Vulkan Who am I? Piers Daniell @piers_daniell Driver Software Engineer - OpenGL, OpenGL ES, Vulkan NVIDIA Khronos representative
Parallel Firewalls on General-Purpose Graphics Processing Units
Parallel Firewalls on General-Purpose Graphics Processing Units Manoj Singh Gaur and Vijay Laxmi Kamal Chandra Reddy, Ankit Tharwani, Ch.Vamshi Krishna, Lakshminarayanan.V Department of Computer Engineering
The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices
WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices
GPU File System Encryption Kartik Kulkarni and Eugene Linkov
GPU File System Encryption Kartik Kulkarni and Eugene Linkov 5/10/2012 SUMMARY. We implemented a file system that encrypts and decrypts files. The implementation uses the AES algorithm computed through
Experiences on using GPU accelerators for data analysis in ROOT/RooFit
Experiences on using GPU accelerators for data analysis in ROOT/RooFit Sverre Jarp, Alfio Lazzaro, Julien Leduc, Yngve Sneen Lindal, Andrzej Nowak European Organization for Nuclear Research (CERN), Geneva,
15-418 Final Project Report. Trading Platform Server
15-418 Final Project Report Yinghao Wang [email protected] May 8, 214 Trading Platform Server Executive Summary The final project will implement a trading platform server that provides back-end support
NVIDIA Tools For Profiling And Monitoring. David Goodwin
NVIDIA Tools For Profiling And Monitoring David Goodwin Outline CUDA Profiling and Monitoring Libraries Tools Technologies Directions CScADS Summer 2012 Workshop on Performance Tools for Extreme Scale
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Qingyu Meng, Alan Humphrey, Martin Berzins Thanks to: John Schmidt and J. Davison de St. Germain, SCI Institute Justin Luitjens
Introduction to GPU hardware and to CUDA
Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware
Lecture 3. Optimising OpenCL performance
Lecture 3 Optimising OpenCL performance Based on material by Benedict Gaster and Lee Howes (AMD), Tim Mattson (Intel) and several others. - Page 1 Agenda Heterogeneous computing and the origins of OpenCL
Introduction to GPU Programming Languages
CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure
Optimizing Application Performance with CUDA Profiling Tools
Optimizing Application Performance with CUDA Profiling Tools Why Profile? Application Code GPU Compute-Intensive Functions Rest of Sequential CPU Code CPU 100 s of cores 10,000 s of threads Great memory
VALAR: A BENCHMARK SUITE TO STUDY THE DYNAMIC BEHAVIOR OF HETEROGENEOUS SYSTEMS
VALAR: A BENCHMARK SUITE TO STUDY THE DYNAMIC BEHAVIOR OF HETEROGENEOUS SYSTEMS Perhaad Mistry, Yash Ukidave, Dana Schaa, David Kaeli Department of Electrical and Computer Engineering Northeastern University,
OpenCL Programming for the CUDA Architecture. Version 2.3
OpenCL Programming for the CUDA Architecture Version 2.3 8/31/2009 In general, there are multiple ways of implementing a given algorithm in OpenCL and these multiple implementations can have vastly different
GPU Profiling with AMD CodeXL
GPU Profiling with AMD CodeXL Software Profiling Course Hannes Würfel OUTLINE 1. Motivation 2. GPU Recap 3. OpenCL 4. CodeXL Overview 5. CodeXL Internals 6. CodeXL Profiling 7. CodeXL Debugging 8. Sources
NVIDIA CUDA GETTING STARTED GUIDE FOR MICROSOFT WINDOWS
NVIDIA CUDA GETTING STARTED GUIDE FOR MICROSOFT WINDOWS DU-05349-001_v6.0 February 2014 Installation and Verification on TABLE OF CONTENTS Chapter 1. Introduction...1 1.1. System Requirements... 1 1.2.
Course materials. In addition to these slides, C++ API header files, a set of exercises, and solutions, the following are useful:
Course materials In addition to these slides, C++ API header files, a set of exercises, and solutions, the following are useful: OpenCL C 1.2 Reference Card OpenCL C++ 1.2 Reference Card These cards will
Case Study on Productivity and Performance of GPGPUs
Case Study on Productivity and Performance of GPGPUs Sandra Wienke [email protected] ZKI Arbeitskreis Supercomputing April 2012 Rechen- und Kommunikationszentrum (RZ) RWTH GPU-Cluster 56 Nvidia
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected]
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected] Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket
Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming
Overview Lecture 1: an introduction to CUDA Mike Giles [email protected] hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.
Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software
GPU Computing Numerical Simulation - from Models to Software Andreas Barthels JASS 2009, Course 2, St. Petersburg, Russia Prof. Dr. Sergey Y. Slavyanov St. Petersburg State University Prof. Dr. Thomas
Mitglied der Helmholtz-Gemeinschaft. OpenCL Basics. Parallel Computing on GPU and CPU. Willi Homberg. 23. März 2011
Mitglied der Helmholtz-Gemeinschaft OpenCL Basics Parallel Computing on GPU and CPU Willi Homberg Agenda Introduction OpenCL architecture Platform model Execution model Memory model Programming model Platform
Enhancing Cloud-based Servers by GPU/CPU Virtualization Management
Enhancing Cloud-based Servers by GPU/CPU Virtualiz Management Tin-Yu Wu 1, Wei-Tsong Lee 2, Chien-Yu Duan 2 Department of Computer Science and Inform Engineering, Nal Ilan University, Taiwan, ROC 1 Department
Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child
Introducing A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Bio Tim Child 35 years experience of software development Formerly VP Oracle Corporation VP BEA Systems Inc.
Introduction to GPU Computing
Matthis Hauschild Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme December 4, 2014 M. Hauschild - 1 Table of Contents 1. Architecture
Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga
Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.
HPC with Multicore and GPUs
HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware
Data Center and Cloud Computing Market Landscape and Challenges
Data Center and Cloud Computing Market Landscape and Challenges Manoj Roge, Director Wired & Data Center Solutions Xilinx Inc. #OpenPOWERSummit 1 Outline Data Center Trends Technology Challenges Solution
Performance Analysis for GPU Accelerated Applications
Center for Information Services and High Performance Computing (ZIH) Performance Analysis for GPU Accelerated Applications Working Together for more Insight Willersbau, Room A218 Tel. +49 351-463 - 39871
Resource Utilization of Middleware Components in Embedded Systems
Resource Utilization of Middleware Components in Embedded Systems 3 Introduction System memory, CPU, and network resources are critical to the operation and performance of any software system. These system
A general-purpose virtualization service for HPC on cloud computing: an application to GPUs
A general-purpose virtualization service for HPC on cloud computing: an application to GPUs R.Montella, G.Coviello, G.Giunta* G. Laccetti #, F. Isaila, J. Garcia Blas *Department of Applied Science University
Petascale Visualization: Approaches and Initial Results
Petascale Visualization: Approaches and Initial Results James Ahrens Li-Ta Lo, Boonthanome Nouanesengsy, John Patchett, Allen McPherson Los Alamos National Laboratory LA-UR- 08-07337 Operated by Los Alamos
Crosswalk: build world class hybrid mobile apps
Crosswalk: build world class hybrid mobile apps Ningxin Hu Intel Today s Hybrid Mobile Apps Application HTML CSS JS Extensions WebView of Operating System (Tizen, Android, etc.,) 2 State of Art HTML5 performance
ANDROID DEVELOPER TOOLS TRAINING GTC 2014. Sébastien Dominé, NVIDIA
ANDROID DEVELOPER TOOLS TRAINING GTC 2014 Sébastien Dominé, NVIDIA AGENDA NVIDIA Developer Tools Introduction Multi-core CPU tools Graphics Developer Tools Compute Developer Tools NVIDIA Developer Tools
Intel DPDK Boosts Server Appliance Performance White Paper
Intel DPDK Boosts Server Appliance Performance Intel DPDK Boosts Server Appliance Performance Introduction As network speeds increase to 40G and above, both in the enterprise and data center, the bottlenecks
GPU Hardware and Programming Models. Jeremy Appleyard, September 2015
GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once
Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011
Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis
NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist
NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get
Using Intel Graphics Performance Analyzer (GPA) to analyze Intel Media Software Development Kitenabled
Using Intel Graphics Performance Analyzer (GPA) to analyze Intel Media Software Development Kitenabled applications The 2 nd Generation Intel Core family of processors provides hardware-accelerated media
Introduction to WebGL
Introduction to WebGL Alain Chesnais Chief Scientist, TrendSpottr ACM Past President [email protected] http://www.linkedin.com/in/alainchesnais http://facebook.com/alain.chesnais Housekeeping If you are
OpenACC 2.0 and the PGI Accelerator Compilers
OpenACC 2.0 and the PGI Accelerator Compilers Michael Wolfe The Portland Group [email protected] This presentation discusses the additions made to the OpenACC API in Version 2.0. I will also present
OpenCL for programming shared memory multicore CPUs
Akhtar Ali, Usman Dastgeer and Christoph Kessler. OpenCL on shared memory multicore CPUs. Proc. MULTIPROG-212 Workshop at HiPEAC-212, Paris, Jan. 212. OpenCL for programming shared memory multicore CPUs
Thesis Proposal: Improving the Performance of Synchronization in Concurrent Haskell
Thesis Proposal: Improving the Performance of Synchronization in Concurrent Haskell Ryan Yates 5-5-2014 1/21 Introduction Outline Thesis Why Haskell? Preliminary work Hybrid TM for GHC Obstacles to Performance
QuickSpecs. NVIDIA Quadro K5200 8GB Graphics INTRODUCTION. NVIDIA Quadro K5200 8GB Graphics. Technical Specifications
J3G90AA INTRODUCTION The NVIDIA Quadro K5200 gives you amazing application performance and capability, making it faster and easier to accelerate 3D models, render complex scenes, and simulate large datasets.
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.
E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices
E6895 Advanced Big Data Analytics Lecture 14: NVIDIA GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist,
Accelerating Intensity Layer Based Pencil Filter Algorithm using CUDA
Accelerating Intensity Layer Based Pencil Filter Algorithm using CUDA Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Technology, Computer Engineering by Amol
Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61
F# Applications to Computational Financial and GPU Computing May 16th Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 Today! Why care about F#? Just another fashion?! Three success stories! How Alea.cuBase
Next Generation Operating Systems
Next Generation Operating Systems Zeljko Susnjar, Cisco CTG June 2015 The end of CPU scaling Future computing challenges Power efficiency Performance == parallelism Cisco Confidential 2 Paradox of the
Parallel & Distributed Optimization. Based on Mark Schmidt s slides
Parallel & Distributed Optimization Based on Mark Schmidt s slides Motivation behind using parallel & Distributed optimization Performance Computational throughput have increased exponentially in linear
Embedded Systems: map to FPGA, GPU, CPU?
Embedded Systems: map to FPGA, GPU, CPU? Jos van Eijndhoven [email protected] Bits&Chips Embedded systems Nov 7, 2013 # of transistors Moore s law versus Amdahl s law Computational Capacity Hardware
Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1
Intro to GPU computing Spring 2015 Mark Silberstein, 048661, Technion 1 Serial vs. parallel program One instruction at a time Multiple instructions in parallel Spring 2015 Mark Silberstein, 048661, Technion
Introduction to OpenCL Programming. Training Guide
Introduction to OpenCL Programming Training Guide Publication #: 137-41768-10 Rev: A Issue Date: May, 2010 Introduction to OpenCL Programming PID: 137-41768-10 Rev: A May, 2010 2010 Advanced Micro Devices
Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff
Process Scheduling CS 241 February 24, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements Mid-semester feedback survey (linked off web page) MP4 due Friday (not Tuesday) Midterm Next Tuesday,
QuickSpecs. NVIDIA Quadro K5200 8GB Graphics INTRODUCTION. NVIDIA Quadro K5200 8GB Graphics. Overview. NVIDIA Quadro K5200 8GB Graphics J3G90AA
Overview J3G90AA INTRODUCTION The NVIDIA Quadro K5200 gives you amazing application performance and capability, making it faster and easier to accelerate 3D models, render complex scenes, and simulate
QuickSpecs. NVIDIA Quadro M6000 12GB Graphics INTRODUCTION. NVIDIA Quadro M6000 12GB Graphics. Overview
Overview L2K02AA INTRODUCTION Push the frontier of graphics processing with the new NVIDIA Quadro M6000 12GB graphics card. The Quadro M6000 features the top of the line member of the latest NVIDIA Maxwell-based
Le langage OCaml et la programmation des GPU
Le langage OCaml et la programmation des GPU GPU programming with OCaml Mathias Bourgoin - Emmanuel Chailloux - Jean-Luc Lamotte Le projet OpenGPU : un an plus tard Ecole Polytechnique - 8 juin 2011 Outline
Appendix L. General-purpose GPU Radiative Solver. Andrea Tosetto Marco Giardino Matteo Gorlani (Blue Engineering & Design, Italy)
141 Appendix L General-purpose GPU Radiative Solver Andrea Tosetto Marco Giardino Matteo Gorlani (Blue Engineering & Design, Italy) 14 15 October 2014 142 General-purpose GPU Radiative Solver Abstract
Direct GPU/FPGA Communication Via PCI Express
Direct GPU/FPGA Communication Via PCI Express Ray Bittner, Erik Ruf Microsoft Research Redmond, USA {raybit,erikruf}@microsoft.com Abstract Parallel processing has hit mainstream computing in the form
10.04.2008. Thomas Fahrig Senior Developer Hypervisor Team. Hypervisor Architecture Terminology Goals Basics Details
Thomas Fahrig Senior Developer Hypervisor Team Hypervisor Architecture Terminology Goals Basics Details Scheduling Interval External Interrupt Handling Reserves, Weights and Caps Context Switch Waiting
CUDA Optimization with NVIDIA Tools. Julien Demouth, NVIDIA
CUDA Optimization with NVIDIA Tools Julien Demouth, NVIDIA What Will You Learn? An iterative method to optimize your GPU code A way to conduct that method with Nvidia Tools 2 What Does the Application
Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture
Last Class: OS and Computer Architecture System bus Network card CPU, memory, I/O devices, network card, system bus Lecture 3, page 1 Last Class: OS and Computer Architecture OS Service Protection Interrupts
WebCL for Hardware-Accelerated Web Applications. Won Jeon, Tasneem Brutch, and Simon Gibbs
WebCL for Hardware-Accelerated Web Applications Won Jeon, Tasneem Brutch, and Simon Gibbs What is WebCL? WebCL is a JavaScript binding to OpenCL. WebCL enables significant acceleration of compute-intensive
BSC vision on Big Data and extreme scale computing
BSC vision on Big Data and extreme scale computing Jesus Labarta, Eduard Ayguade,, Fabrizio Gagliardi, Rosa M. Badia, Toni Cortes, Jordi Torres, Adrian Cristal, Osman Unsal, David Carrera, Yolanda Becerra,
- An Essential Building Block for Stable and Reliable Compute Clusters
Ferdinand Geier ParTec Cluster Competence Center GmbH, V. 1.4, March 2005 Cluster Middleware - An Essential Building Block for Stable and Reliable Compute Clusters Contents: Compute Clusters a Real Alternative
Equalizer. Parallel OpenGL Application Framework. Stefan Eilemann, Eyescale Software GmbH
Equalizer Parallel OpenGL Application Framework Stefan Eilemann, Eyescale Software GmbH Outline Overview High-Performance Visualization Equalizer Competitive Environment Equalizer Features Scalability
On Demand Satellite Image Processing
On Demand Satellite Image Processing Next generation technology for processing Terabytes of imagery on the Cloud WHITEPAPER MARCH 2015 Introduction Profound changes are happening with computing hardware
Parallel Computing with MATLAB
Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best
Automatic CUDA Code Synthesis Framework for Multicore CPU and GPU architectures
Automatic CUDA Code Synthesis Framework for Multicore CPU and GPU architectures 1 Hanwoong Jung, and 2 Youngmin Yi, 1 Soonhoi Ha 1 School of EECS, Seoul National University, Seoul, Korea {jhw7884, sha}@iris.snu.ac.kr
Introduction to Cloud Computing
Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic
GPU for Scientific Computing. -Ali Saleh
1 GPU for Scientific Computing -Ali Saleh Contents Introduction What is GPU GPU for Scientific Computing K-Means Clustering K-nearest Neighbours When to use GPU and when not Commercial Programming GPU
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Gregorio Bernabé Javier Cuenca Domingo Giménez Universidad de Murcia Scientific Computing and Parallel Programming Group XXIX Simposium Nacional de la
BLM 413E - Parallel Programming Lecture 3
BLM 413E - Parallel Programming Lecture 3 FSMVU Bilgisayar Mühendisliği Öğr. Gör. Musa AYDIN 14.10.2015 2015-2016 M.A. 1 Parallel Programming Models Parallel Programming Models Overview There are several
Operating System for the K computer
Operating System for the K computer Jun Moroo Masahiko Yamada Takeharu Kato For the K computer to achieve the world s highest performance, Fujitsu has worked on the following three performance improvements
HPC Cluster Decisions and ANSYS Configuration Best Practices. Diana Collier Lead Systems Support Specialist Houston UGM May 2014
HPC Cluster Decisions and ANSYS Configuration Best Practices Diana Collier Lead Systems Support Specialist Houston UGM May 2014 1 Agenda Introduction Lead Systems Support Specialist Cluster Decisions Job
How To Manage An Sap Solution
... Foreword... 17... Acknowledgments... 19... Introduction... 21 1... Performance Management of an SAP Solution... 33 1.1... SAP Solution Architecture... 34 1.1.1... SAP Solutions and SAP Components...
Parallels Desktop 4 for Windows and Linux Read Me
Parallels Desktop 4 for Windows and Linux Read Me Welcome to Parallels Desktop for Windows and Linux build 4.0.6576. This document contains the information you should know to successfully install Parallels
Parallels Cloud Server 6.0
Parallels Cloud Server 6.0 Parallels Cloud Storage I/O Benchmarking Guide September 05, 2014 Copyright 1999-2014 Parallels IP Holdings GmbH and its affiliates. All rights reserved. Parallels IP Holdings
Using process address space on the GPU
Using process address space on the GPU Jérôme Glisse September 2013 Jérôme Glisse - Using process address space on the GPU 1/18 Outline Motivation Memory management Hardware solution Software solution
SAM XFile. Trial Installation Guide Linux. Snell OD is in the process of being rebranded SAM XFile
SAM XFile Trial Installation Guide Linux Snell OD is in the process of being rebranded SAM XFile Version History Table 1: Version Table Date Version Released by Reason for Change 10/07/2014 1.0 Andy Gingell
How To Understand And Understand An Operating System In C Programming
ELEC 377 Operating Systems Thomas R. Dean Instructor Tom Dean Office:! WLH 421 Email:! [email protected] Hours:! Wed 14:30 16:00 (Tentative)! and by appointment! 6 years industrial experience ECE Rep
TEGRA X1 DEVELOPER TOOLS SEBASTIEN DOMINE, SR. DIRECTOR SW ENGINEERING
TEGRA X1 DEVELOPER TOOLS SEBASTIEN DOMINE, SR. DIRECTOR SW ENGINEERING NVIDIA DEVELOPER TOOLS BUILD. DEBUG. PROFILE. C/C++ IDE INTEGRATION STANDALONE TOOLS HARDWARE SUPPORT CPU AND GPU DEBUGGING & PROFILING
Intel Xeon +FPGA Platform for the Data Center
Intel Xeon +FPGA Platform for the Data Center FPL 15 Workshop on Reconfigurable Computing for the Masses PK Gupta, Director of Cloud Platform Technology, DCG/CPG Overview Data Center and Workloads Xeon+FPGA
Amazon EC2 Product Details Page 1 of 5
Amazon EC2 Product Details Page 1 of 5 Amazon EC2 Functionality Amazon EC2 presents a true virtual computing environment, allowing you to use web service interfaces to launch instances with a variety of
GraySort on Apache Spark by Databricks
GraySort on Apache Spark by Databricks Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, Matei Zaharia Databricks Inc. Apache Spark Sorting in Spark Overview Sorting Within a Partition Range Partitioner
