Embedded Systems: map to FPGA, GPU, CPU?

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Embedded Systems: map to FPGA, GPU, CPU?"

Transcription

1 Embedded Systems: map to FPGA, GPU, CPU? Jos van Eijndhoven Bits&Chips Embedded systems Nov 7, 2013

2 # of transistors Moore s law versus Amdahl s law Computational Capacity Hardware capabilities underutilized Programming bottleneck Introduction of multicore technology Software Performance time 2 Nov 7, 2013

3 Multi-core CPUs are here to stay nvidia Tegra3 AMD Fusion Llano CPUs grow to 2, 4, 8, cores Mobile, desktop, server Multi-threaded programming model to keep cores busy Complex multi-level caches, hardware cache coherency Intel Xeon Phi 3 Nov 7, 2013

4 Creating parallel programs is hard Herb Sutter, chair of the ISO C++ standards committee, Microsoft: Everybody who learns concurrency thinks they understand it, ends up finding mysterious races they thought weren t possible, and discovers that they didn t actually understand it yet after all Edward A. Lee, EECS professor at U.C. Berkeley: Although threads seem to be a small step from sequential computation, in fact, they represent a huge step. They discard the most essential and appealing properties of sequential computation: understandability, predictability, and determinism. 4 Nov 7, 2013

5 Learning raises the feeling of complexity Provides good insight in C++ concurrency C++11 standardizes several concurrency primitives Warns for many many subtle problems The authorative description (4th edition) Apparently requires pages... Safe concurrency by defensive design Shows that Java shares many concurrency issues with C++ 5 Nov 7, 2013

6 Further appetite for performance? General-purpose CPUs are (traditionally) designed to handle code with complex control-flow Their effective usage of silicon for computations is low Area(ALU s)/area(total die) is about 1% How to significantly increase operations/sec/$ and operations/j? Hand-off compute load to: Function-specific hardware accelerators (H264 decode, LTE channel decode, GFX rendering, IP packet processing,...) GP-GPU: general-purpose programmable graphics processor units FPGA accelerators: Field programmable gate arrays 6 Nov 7, 2013

7 Offload CPU: computational efficiency GP-GPU: High floating point performance (>1TFlops) Large off-chip memory bandwidth Needs thousands of concurrent threads Few inter-thread data dependencies and little data-dependent control High-end chips take huge power (>100W) FPGA: High integer performance (>1Tops) Good power efficiency Needs hundreds of concurrent instructions Takes HW design expertise and effort. High-end chips are very expensive (>$1000) 7 Nov 7, 2013

8 CPU FPGA combinations Xilinx 'Zync' or Altera Cyclone with dual-core ARM Or all kinds of boards to fit PC architecture 8 Nov 7, 2013

9 CPU GPGPU combinations AMD Fusion for desktop, gaming, NVidia Tesla for high-end compute Intel Haswell: desktop, laptop, ODROID: ARM quad-core with embedded GP-GPU 9 Nov 7, 2013

10 Intel for embedded: don t underestimate Intel NUC (Next Unit of Compute) core-i3 or i5 on 4 x4 And furthermore: Intel Atom Bay Trail : dual- and quad-core, 22nm, with embedded GP-GPU Intel Quark: 1/10 power of Atom, 32-bit x86 architecture. Arduino-style development board. 10 Nov 7, 2013

11 CPU - Accelerator application mapping Functional partitioning Create SW thread with appropriate functionality Channels for synchronized inter-thread communication Plain shared data for unsynchronized access Application CPU-thread 1 Channel FPGA Accelerator Channel CPU-thread 2 Conceptually nice picture, real implementation hurdles: Application I/O to hardware is shielded by any 'real' operating system Thread control (sleep/wakeup) interacts with Accelerator progress C-code of SW thread mapped to FPGA through high level synthesis 11 Nov 7, 2013

12 Creation of an FPGA Accelerator Software functional reference FPGA hardware implementation Compute kernel: C source code in SW thread inter-thread communication API (channels, shared memory, mutex, ) HLS tooling IP library FPGA HW implementation of compute kernel HW implementation of same communication API High-level synthesis tooling (e.g. Xilinx Vivado) Choose local (embedded) memories for some of the C variables, synthesize shared-memory access for others. Balance amount of hardware with required performance (loop unrolling) 12 Nov 7, 2013

13 HW/SW communication stack CPU-side stack Application SW virtual address space Compute library e.g. lapack, crypto Channel Accelerator-side (FPGA) stack User-level driver Kernel driver Channel Lapack accelerator Crypto accelerator Linux Multi-core CPU with MMU and caches Fifo interfaces to accelerators DMA streaming, caches Shared access to local srams DDR Snoop Control unit PCI-e / AXI memory bus PCIe / AXI interface 13 Nov 7, 2013

14 ARM (A9) multicore example FPGA or GPU DDR L2 Cache 14 Nov 7, 2013

15 Intel (i5) multicore example DDR FPGA or GPU Memory bus Device reads will be pulled from CPU L1/L2/L3 caches PCIe 3.0 improves on writes with new caching hints in the protocol 15 Nov 7, 2013

16 Memory-mapped communication? Shared-memory paradigm to communicate with GPU/FPGA? Matches C/Java programming model Highly efficient, low run-time overhead No system calls for data transport: just CPU load/stores Take advantage of existing on-chip caches to buffer data Sounds nice Can I transfer a C/Java object pointer through my channel, for dereferencing inside my accelerator? Well that would require tackling: Cache coherency issues MMU issues (Virtual Memory paging support) 16 Nov 7, 2013

17 Shared memory with GP-GPU? Today, Nvidia s CUDA is the popular programming environment Based on separated memories (use on-card memory) Explicit data transport to/from GPU card, avoid shared memory Allows a streaming model, where CPU and GPU are concurrently active Providers of integrated GPUs (AMD, Intel, ARM) are working to improve on this programming model: Integrated GPUs do share the global memory with the CPU, no need to really copy data. MMUs are being added to the GPU, allowing to share pointers Cache coherency support remains (for now) only partial, requiring SW-driven transfer of ownership of data segments. 17 Nov 7, 2013

18 Shared memory with FPGA? FPGA vendors are late to provide SW+tools to integrate an accelerator with host CPU+OS: Support for OpenCL programming model is coming Rely on explicit data transport to/from FPGA local memory Creating mmap capable device drivers can be done by yourself? Also, MMU sharing can be implemented by yourself in the FPGA? GPU vendors are ahead of FPGA vendors in attracting customers with SW-oriented tooling. 18 Nov 7, 2013

19 Evaluating an application mapping (1) Vector fabrics did study the mapping of a particular video object recognition algorithm for one of our customers: Its compute kernel contained a 2-D convolution to match images. The software reference implementation performed 0.9G multiplyadds per second on a desktop PC: too low for actual deployment. We created performance estimates for potential mapping to different target architectures. 19 Nov 7, 2013

20 Evaluating an application mapping (2) One week of optimization of the algorithm to an Intel i5 platform Multi-threading to utilize the available 4 cores, and vectorization (SSSE3) to speed-up pixel operations Reaching 25G multiply-adds /sec. One week of mapping the C kernel to an FPGA implementation (not including the CPU-FPGA communication) Rewriting the C kernel for use in a synthesis tool (Xilinx Vivado) Carefully tune on-chip memory architecture for high parallelism Reaching amazingly the same 25G multiply-adds/sec for a (ballpark) 200 FPGA chip. Few days to study mapping to a midrange Nvidia GPU card. A rough estimate showed potential to achieve about 75G multiply-adds/sec. Required the mapping of a much larger code portion to avoid frequent data transfers. Would be a really difficult task. 20 Nov 7, 2013

21 Conclusion Multi-core CPUs are everywhere, yet multi-threaded programming is difficult and error-prone. Heterogeneous system programming adds further complexity. GP-GPU vendors did a nicer approach to the SW-programmer than FPGA vendors, by delivering integrated compilers and OS device drivers (and now proceed with memory-mapped integration). Spending three weeks on code tuning and mapping was sufficient to obtain good insights on heterogeneous architecture opportunities. Don t underestimate the power and potential of Intel 21 Nov 7, 2013

22 Thank you Check for a free demo on concurrency analysis

OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC

OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,

More information

Direct GPU/FPGA Communication Via PCI Express

Direct GPU/FPGA Communication Via PCI Express Direct GPU/FPGA Communication Via PCI Express Ray Bittner, Erik Ruf Microsoft Research Redmond, USA {raybit,erikruf}@microsoft.com Abstract Parallel processing has hit mainstream computing in the form

More information

GPU System Architecture. Alan Gray EPCC The University of Edinburgh

GPU System Architecture. Alan Gray EPCC The University of Edinburgh GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems

More information

Xeon+FPGA Platform for the Data Center

Xeon+FPGA Platform for the Data Center Xeon+FPGA Platform for the Data Center ISCA/CARL 2015 PK Gupta, Director of Cloud Platform Technology, DCG/CPG Overview Data Center and Workloads Xeon+FPGA Accelerator Platform Applications and Eco-system

More information

Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011

Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011 Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis

More information

Next Generation GPU Architecture Code-named Fermi

Next Generation GPU Architecture Code-named Fermi Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time

More information

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?

More information

Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child

Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Introducing A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Bio Tim Child 35 years experience of software development Formerly VP Oracle Corporation VP BEA Systems Inc.

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware

More information

GPU File System Encryption Kartik Kulkarni and Eugene Linkov

GPU File System Encryption Kartik Kulkarni and Eugene Linkov GPU File System Encryption Kartik Kulkarni and Eugene Linkov 5/10/2012 SUMMARY. We implemented a file system that encrypts and decrypts files. The implementation uses the AES algorithm computed through

More information

Seeking Opportunities for Hardware Acceleration in Big Data Analytics

Seeking Opportunities for Hardware Acceleration in Big Data Analytics Seeking Opportunities for Hardware Acceleration in Big Data Analytics Paul Chow High-Performance Reconfigurable Computing Group Department of Electrical and Computer Engineering University of Toronto Who

More information

Data Center and Cloud Computing Market Landscape and Challenges

Data Center and Cloud Computing Market Landscape and Challenges Data Center and Cloud Computing Market Landscape and Challenges Manoj Roge, Director Wired & Data Center Solutions Xilinx Inc. #OpenPOWERSummit 1 Outline Data Center Trends Technology Challenges Solution

More information

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get

More information

GPU Parallel Computing Architecture and CUDA Programming Model

GPU Parallel Computing Architecture and CUDA Programming Model GPU Parallel Computing Architecture and CUDA Programming Model John Nickolls Outline Why GPU Computing? GPU Computing Architecture Multithreading and Arrays Data Parallel Problem Decomposition Parallel

More information

Parallel Programming Survey

Parallel Programming Survey Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory

More information

Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga

Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.

More information

Multi-core Programming System Overview

Multi-core Programming System Overview Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,

More information

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France

More information

Real-Time and Embedded systems, FPGAs and GPUs

Real-Time and Embedded systems, FPGAs and GPUs FYS3240 PC-based instrumentation and microcontrollers Real-Time and Embedded systems, FPGAs and GPUs Spring 2014 Lecture #10 Bekkeng, 23.11.2013 Embedded Computing An embedded system is a computer system

More information

FPGA-based MapReduce Framework for Machine Learning

FPGA-based MapReduce Framework for Machine Learning FPGA-based MapReduce Framework for Machine Learning Bo WANG 1, Yi SHAN 1, Jing YAN 2, Yu WANG 1, Ningyi XU 2, Huangzhong YANG 1 1 Department of Electronic Engineering Tsinghua University, Beijing, China

More information

White Paper COMPUTE CORES

White Paper COMPUTE CORES White Paper COMPUTE CORES TABLE OF CONTENTS A NEW ERA OF COMPUTING 3 3 HISTORY OF PROCESSORS 3 3 THE COMPUTE CORE NOMENCLATURE 5 3 AMD S HETEROGENEOUS PLATFORM 5 3 SUMMARY 6 4 WHITE PAPER: COMPUTE CORES

More information

High Performance or Cycle Accuracy?

High Performance or Cycle Accuracy? CHIP DESIGN High Performance or Cycle Accuracy? You can have both! Bill Neifert, Carbon Design Systems Rob Kaye, ARM ATC-100 AGENDA Modelling 101 & Programmer s View (PV) Models Cycle Accurate Models Bringing

More information

Computer Graphics Hardware An Overview

Computer Graphics Hardware An Overview Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and

More information

This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?

This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture? This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo

More information

FPGA-based Multithreading for In-Memory Hash Joins

FPGA-based Multithreading for In-Memory Hash Joins FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded

More information

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?

More information

Eli Levi Eli Levi holds B.Sc.EE from the Technion.Working as field application engineer for Systematics, Specializing in HDL design with MATLAB and

Eli Levi Eli Levi holds B.Sc.EE from the Technion.Working as field application engineer for Systematics, Specializing in HDL design with MATLAB and Eli Levi Eli Levi holds B.Sc.EE from the Technion.Working as field application engineer for Systematics, Specializing in HDL design with MATLAB and Simulink targeting ASIC/FGPA. Previously Worked as logic

More information

An Introduction to Parallel Computing/ Programming

An Introduction to Parallel Computing/ Programming An Introduction to Parallel Computing/ Programming Vicky Papadopoulou Lesta Astrophysics and High Performance Computing Research Group (http://ahpc.euc.ac.cy) Dep. of Computer Science and Engineering European

More information

Intel Xeon +FPGA Platform for the Data Center

Intel Xeon +FPGA Platform for the Data Center Intel Xeon +FPGA Platform for the Data Center FPL 15 Workshop on Reconfigurable Computing for the Masses PK Gupta, Director of Cloud Platform Technology, DCG/CPG Overview Data Center and Workloads Xeon+FPGA

More information

Parallel Firewalls on General-Purpose Graphics Processing Units

Parallel Firewalls on General-Purpose Graphics Processing Units Parallel Firewalls on General-Purpose Graphics Processing Units Manoj Singh Gaur and Vijay Laxmi Kamal Chandra Reddy, Ankit Tharwani, Ch.Vamshi Krishna, Lakshminarayanan.V Department of Computer Engineering

More information

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip. Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide

More information

Introducing the Singlechip Cloud Computer

Introducing the Singlechip Cloud Computer Introducing the Singlechip Cloud Computer Exploring the Future of Many-core Processors White Paper Intel Labs Jim Held Intel Fellow, Intel Labs Director, Tera-scale Computing Research Sean Koehl Technology

More information

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Modern GPU

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit

More information

FPGA Accelerator Virtualization in an OpenPOWER cloud. Fei Chen, Yonghua Lin IBM China Research Lab

FPGA Accelerator Virtualization in an OpenPOWER cloud. Fei Chen, Yonghua Lin IBM China Research Lab FPGA Accelerator Virtualization in an OpenPOWER cloud Fei Chen, Yonghua Lin IBM China Research Lab Trend of Acceleration Technology Acceleration in Cloud is Taking Off Used FPGA to accelerate Bing search

More information

CFD Implementation with In-Socket FPGA Accelerators

CFD Implementation with In-Socket FPGA Accelerators CFD Implementation with In-Socket FPGA Accelerators Ivan Gonzalez UAM Team at DOVRES FuSim-E Programme Symposium: CFD on Future Architectures C 2 A 2 S 2 E DLR Braunschweig 14 th -15 th October 2009 Outline

More information

Choosing a Computer for Running SLX, P3D, and P5

Choosing a Computer for Running SLX, P3D, and P5 Choosing a Computer for Running SLX, P3D, and P5 This paper is based on my experience purchasing a new laptop in January, 2010. I ll lead you through my selection criteria and point you to some on-line

More information

Multi-Threading Performance on Commodity Multi-Core Processors

Multi-Threading Performance on Commodity Multi-Core Processors Multi-Threading Performance on Commodity Multi-Core Processors Jie Chen and William Watson III Scientific Computing Group Jefferson Lab 12000 Jefferson Ave. Newport News, VA 23606 Organization Introduction

More information

Going Linux on Massive Multicore

Going Linux on Massive Multicore Embedded Linux Conference Europe 2013 Going Linux on Massive Multicore Marta Rybczyńska 24th October, 2013 Agenda Architecture Linux Port Core Peripherals Debugging Summary and Future Plans 2 Agenda Architecture

More information

FPGA Acceleration using OpenCL & PCIe Accelerators MEW 25

FPGA Acceleration using OpenCL & PCIe Accelerators MEW 25 FPGA Acceleration using OpenCL & PCIe Accelerators MEW 25 December 2014 FPGAs in the news» Catapult» Accelerate BING» 2x search acceleration:» ½ the number of servers»

More information

Overview of HPC Resources at Vanderbilt

Overview of HPC Resources at Vanderbilt Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis

More information

Moving Beyond CPUs in the Cloud: Will FPGAs Sink or Swim?

Moving Beyond CPUs in the Cloud: Will FPGAs Sink or Swim? Moving Beyond CPUs in the Cloud: Will FPGAs Sink or Swim? Successful FPGA datacenter usage at scale will require differentiated capability, programming ease, and scalable implementation models Executive

More information

High Performance GPGPU Computer for Embedded Systems

High Performance GPGPU Computer for Embedded Systems High Performance GPGPU Computer for Embedded Systems Author: Dan Mor, Aitech Product Manager September 2015 Contents 1. Introduction... 3 2. Existing Challenges in Modern Embedded Systems... 3 2.1. Not

More information

Embedded Parallel Computing

Embedded Parallel Computing Embedded Parallel Computing Lecture 5 - The anatomy of a modern multiprocessor, the multicore processors Tomas Nordström Course webpage:: Course responsible and examiner: Tomas

More information

GPU Architecture Overview. John Owens UC Davis

GPU Architecture Overview. John Owens UC Davis GPU Architecture Overview John Owens UC Davis The Right-Hand Turn [H&P Figure 1.1] Why? [Architecture Reasons] ILP increasingly difficult to extract from instruction stream Control hardware dominates µprocessors

More information

Shattering the 1U Server Performance Record. Figure 1: Supermicro Product and Market Opportunity Growth

Shattering the 1U Server Performance Record. Figure 1: Supermicro Product and Market Opportunity Growth Shattering the 1U Server Performance Record Supermicro and NVIDIA recently announced a new class of servers that combines massively parallel GPUs with multi-core CPUs in a single server system. This unique

More information

Multi-core Systems What can we buy today?

Multi-core Systems What can we buy today? Multi-core Systems What can we buy today? Ian Watson & Mikel Lujan Advanced Processor Technologies Group COMP60012 Future Multi-core Computing 1 A Bit of History AMD Opteron introduced in 2003 Hypertransport

More information

Kalray MPPA Massively Parallel Processing Array

Kalray MPPA Massively Parallel Processing Array Kalray MPPA Massively Parallel Processing Array Next-Generation Accelerated Computing February 2015 2015 Kalray, Inc. All Rights Reserved February 2015 1 Accelerated Computing 2015 Kalray, Inc. All Rights

More information

Processor to Usher in a New Era of Computing

Processor to Usher in a New Era of Computing Project Denver Processor to Usher in a New Era of Computing Bill Dally January 5, 2011 http://blogs.nvidia.com/2011/01/project-denver-processor-to-usher-in-new-era-of-computing/ Project Denver Announced

More information

Analysis of GPU Parallel Computing based on Matlab

Analysis of GPU Parallel Computing based on Matlab Analysis of GPU Parallel Computing based on Matlab Mingzhe Wang, Bo Wang, Qiu He, Xiuxiu Liu, Kunshuai Zhu (School of Computer and Control Engineering, University of Chinese Academy of Sciences, Huairou,

More information

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it t.diamanti@cineca.it Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate

More information

Mentor Phillip Balister. Advisor Professor Miriam Leeser

Mentor Phillip Balister. Advisor Professor Miriam Leeser Mentor Phillip Balister Advisor Professor Miriam Leeser 1 Why FPGA Acceleration in GNU Radio? Faster performance for some algorithms Frees processor to perform other tasks Low latency, deterministic response

More information

Emerging storage and HPC technologies to accelerate big data analytics Jerome Gaysse JG Consulting

Emerging storage and HPC technologies to accelerate big data analytics Jerome Gaysse JG Consulting Emerging storage and HPC technologies to accelerate big data analytics Jerome Gaysse JG Consulting Introduction Big Data Analytics needs: Low latency data access Fast computing Power efficiency Latest

More information

Exascale Challenges and General Purpose Processors. Avinash Sodani, Ph.D. Chief Architect, Knights Landing Processor Intel Corporation

Exascale Challenges and General Purpose Processors. Avinash Sodani, Ph.D. Chief Architect, Knights Landing Processor Intel Corporation Exascale Challenges and General Purpose Processors Avinash Sodani, Ph.D. Chief Architect, Knights Landing Processor Intel Corporation Jun-93 Aug-94 Oct-95 Dec-96 Feb-98 Apr-99 Jun-00 Aug-01 Oct-02 Dec-03

More information

Qsys and IP Core Integration

Qsys and IP Core Integration Qsys and IP Core Integration Prof. David Lariviere Columbia University Spring 2014 Overview What are IP Cores? Altera Design Tools for using and integrating IP Cores Overview of various IP Core Interconnect

More information

NVIDIA GeForce GTX 580 GPU Datasheet

NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet 3D Graphics Full Microsoft DirectX 11 Shader Model 5.0 support: o NVIDIA PolyMorph Engine with distributed HW tessellation engines

More information

High Efficiency Video Coding (HEVC) or H.265 is a next generation video coding standard developed by ITU-T (VCEG) and ISO/IEC (MPEG).

High Efficiency Video Coding (HEVC) or H.265 is a next generation video coding standard developed by ITU-T (VCEG) and ISO/IEC (MPEG). HEVC - Introduction High Efficiency Video Coding (HEVC) or H.265 is a next generation video coding standard developed by ITU-T (VCEG) and ISO/IEC (MPEG). HEVC / H.265 reduces bit-rate requirement by 50%

More information

~ Greetings from WSU CAPPLab ~

~ Greetings from WSU CAPPLab ~ ~ Greetings from WSU CAPPLab ~ Multicore with SMT/GPGPU provides the ultimate performance; at WSU CAPPLab, we can help! Dr. Abu Asaduzzaman, Assistant Professor and Director Wichita State University (WSU)

More information

Stream Processing on GPUs Using Distributed Multimedia Middleware

Stream Processing on GPUs Using Distributed Multimedia Middleware Stream Processing on GPUs Using Distributed Multimedia Middleware Michael Repplinger 1,2, and Philipp Slusallek 1,2 1 Computer Graphics Lab, Saarland University, Saarbrücken, Germany 2 German Research

More information

Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it

Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket

More information

Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data

Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data Amanda O Connor, Bryan Justice, and A. Thomas Harris IN52A. Big Data in the Geosciences:

More information

GPU Computing - CUDA

GPU Computing - CUDA GPU Computing - CUDA A short overview of hardware and programing model Pierre Kestener 1 1 CEA Saclay, DSM, Maison de la Simulation Saclay, June 12, 2012 Atelier AO and GPU 1 / 37 Content Historical perspective

More information

Enhancing Cloud-based Servers by GPU/CPU Virtualization Management

Enhancing Cloud-based Servers by GPU/CPU Virtualization Management Enhancing Cloud-based Servers by GPU/CPU Virtualiz Management Tin-Yu Wu 1, Wei-Tsong Lee 2, Chien-Yu Duan 2 Department of Computer Science and Inform Engineering, Nal Ilan University, Taiwan, ROC 1 Department

More information

Boosting Long Term Evolution (LTE) Application Performance with Intel System Studio

Boosting Long Term Evolution (LTE) Application Performance with Intel System Studio Case Study Intel Boosting Long Term Evolution (LTE) Application Performance with Intel System Studio Challenge: Deliver high performance code for time-critical tasks in LTE wireless communication applications.

More information

ADVANCED COMPUTER ARCHITECTURE

ADVANCED COMPUTER ARCHITECTURE ADVANCED COMPUTER ARCHITECTURE Marco Ferretti Tel. Ufficio: 0382 985365 E-mail: marco.ferretti@unipv.it Web: www.unipv.it/mferretti, eecs.unipv.it 1 Course syllabus and motivations This course covers the

More information

Full and Para Virtualization

Full and Para Virtualization Full and Para Virtualization Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF x86 Hardware Virtualization The x86 architecture offers four levels

More information

Experiences on using GPU accelerators for data analysis in ROOT/RooFit

Experiences on using GPU accelerators for data analysis in ROOT/RooFit Experiences on using GPU accelerators for data analysis in ROOT/RooFit Sverre Jarp, Alfio Lazzaro, Julien Leduc, Yngve Sneen Lindal, Andrzej Nowak European Organization for Nuclear Research (CERN), Geneva,

More information

RevoScaleR Speed and Scalability

RevoScaleR Speed and Scalability EXECUTIVE WHITE PAPER RevoScaleR Speed and Scalability By Lee Edlefsen Ph.D., Chief Scientist, Revolution Analytics Abstract RevoScaleR, the Big Data predictive analytics library included with Revolution

More information

GPUs for Scientific Computing

GPUs for Scientific Computing GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles mike.giles@maths.ox.ac.uk Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research

More information

Developing reliable Multi-Core Embedded-Systems with NI Linux Real-Time

Developing reliable Multi-Core Embedded-Systems with NI Linux Real-Time Developing reliable Multi-Core Embedded-Systems with NI Linux Real-Time Oliver Bruder National Instruments Switzerland oliver.bruder@ Embedded Product Design Surveys 66% Product designs complete over budget

More information

A survey on platforms for big data analytics

A survey on platforms for big data analytics Singh and Reddy Journal of Big Data 2014, 1:8 SURVEY PAPER Open Access A survey on platforms for big data analytics Dilpreet Singh and Chandan K Reddy * * Correspondence: reddy@cs.wayne.edu Department

More information

E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices

E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices E6895 Advanced Big Data Analytics Lecture 14: NVIDIA GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist,

More information

INF5063: Programming heterogeneous multi-core processors. September 13, 2010

INF5063: Programming heterogeneous multi-core processors. September 13, 2010 INF5063: Programming heterogeneous multi-core processors September 13, 2010 Overview Course topic and scope Background for the use and parallel processing using heterogeneous multi-core processors Examples

More information

Application. EDIUS and Intel s Sandy Bridge Technology

Application. EDIUS and Intel s Sandy Bridge Technology Application Note How to Turbo charge your workflow with Intel s Sandy Bridge processors and chipsets Alex Kataoka, Product Manager, Editing, Servers & Storage (ESS) August 2011 Would you like to cut the

More information

Low power GPUs a view from the industry. Edvard Sørgård

Low power GPUs a view from the industry. Edvard Sørgård Low power GPUs a view from the industry Edvard Sørgård 1 ARM in Trondheim Graphics technology design centre From 2006 acquisition of Falanx Microsystems AS Origin of the ARM Mali GPUs Main activities today

More information

Trends in High-Performance Computing for Power Grid Applications

Trends in High-Performance Computing for Power Grid Applications Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views

More information

Writing Applications for the GPU Using the RapidMind Development Platform

Writing Applications for the GPU Using the RapidMind Development Platform Writing Applications for the GPU Using the RapidMind Development Platform Contents Introduction... 1 Graphics Processing Units... 1 RapidMind Development Platform... 2 Writing RapidMind Enabled Applications...

More information

AMD Opteron Quad-Core

AMD Opteron Quad-Core AMD Opteron Quad-Core a brief overview Daniele Magliozzi Politecnico di Milano Opteron Memory Architecture native quad-core design (four cores on a single die for more efficient data sharing) enhanced

More information

SGRT: A Mobile GPU Architecture for Real-Time Ray Tracing

SGRT: A Mobile GPU Architecture for Real-Time Ray Tracing SGRT: A Mobile GPU Architecture for Real-Time Ray Tracing Won-Jong Lee 1, Youngsam Shin 1, Jaedon Lee 1, Jin-Woo Kim 2, Jae-Ho Nah 3, Seokyoon Jung 1, Shihwa Lee 1, Hyun-Sang Park 4, Tack-Don Han 2 1 SAMSUNG

More information

ANDROID DEVELOPER TOOLS TRAINING GTC 2014. Sébastien Dominé, NVIDIA

ANDROID DEVELOPER TOOLS TRAINING GTC 2014. Sébastien Dominé, NVIDIA ANDROID DEVELOPER TOOLS TRAINING GTC 2014 Sébastien Dominé, NVIDIA AGENDA NVIDIA Developer Tools Introduction Multi-core CPU tools Graphics Developer Tools Compute Developer Tools NVIDIA Developer Tools

More information

GeoImaging Accelerator Pansharp Test Results

GeoImaging Accelerator Pansharp Test Results GeoImaging Accelerator Pansharp Test Results Executive Summary After demonstrating the exceptional performance improvement in the orthorectification module (approximately fourteen-fold see GXL Ortho Performance

More information

Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server

Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server Technology brief Introduction... 2 GPU-based computing... 2 ProLiant SL390s GPU-enabled architecture... 2 Optimizing

More information

GPGPU Computing. Yong Cao

GPGPU Computing. Yong Cao GPGPU Computing Yong Cao Why Graphics Card? It s powerful! A quiet trend Copyright 2009 by Yong Cao Why Graphics Card? It s powerful! Processor Processing Units FLOPs per Unit Clock Speed Processing Power

More information

A general-purpose virtualization service for HPC on cloud computing: an application to GPUs

A general-purpose virtualization service for HPC on cloud computing: an application to GPUs A general-purpose virtualization service for HPC on cloud computing: an application to GPUs R.Montella, G.Coviello, G.Giunta* G. Laccetti #, F. Isaila, J. Garcia Blas *Department of Applied Science University

More information

A Survey on ARM Cortex A Processors. Wei Wang Tanima Dey

A Survey on ARM Cortex A Processors. Wei Wang Tanima Dey A Survey on ARM Cortex A Processors Wei Wang Tanima Dey 1 Overview of ARM Processors Focusing on Cortex A9 & Cortex A15 ARM ships no processors but only IP cores For SoC integration Targeting markets:

More information

Introduction to GPU Architecture

Introduction to GPU Architecture Introduction to GPU Architecture Ofer Rosenberg, PMTS SW, OpenCL Dev. Team AMD Based on From Shader Code to a Teraflop: How GPU Shader Cores Work, By Kayvon Fatahalian, Stanford University Content 1. Three

More information

Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61

Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 F# Applications to Computational Financial and GPU Computing May 16th Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 Today! Why care about F#? Just another fashion?! Three success stories! How Alea.cuBase

More information

Parallel Image Processing with CUDA A case study with the Canny Edge Detection Filter

Parallel Image Processing with CUDA A case study with the Canny Edge Detection Filter Parallel Image Processing with CUDA A case study with the Canny Edge Detection Filter Daniel Weingaertner Informatics Department Federal University of Paraná - Brazil Hochschule Regensburg 02.05.2011 Daniel

More information

SierraVMI Sizing Guide

SierraVMI Sizing Guide SierraVMI Sizing Guide July 2015 SierraVMI Sizing Guide This document provides guidelines for choosing the optimal server hardware to host the SierraVMI gateway and the Android application server. The

More information

Data Centric Systems (DCS)

Data Centric Systems (DCS) Data Centric Systems (DCS) Architecture and Solutions for High Performance Computing, Big Data and High Performance Analytics High Performance Computing with Data Centric Systems 1 Data Centric Systems

More information

MPSoC Designs: Driving Memory and Storage Management IP to Critical Importance

MPSoC Designs: Driving Memory and Storage Management IP to Critical Importance MPSoC Designs: Driving Storage Management IP to Critical Importance Design IP has become an essential part of SoC realization it is a powerful resource multiplier that allows SoC design teams to focus

More information

A Low Latency Library in FPGA Hardware for High Frequency Trading (HFT)

A Low Latency Library in FPGA Hardware for High Frequency Trading (HFT) A Low Latency Library in FPGA Hardware for High Frequency Trading (HFT) John W. Lockwood, Adwait Gupte, Nishit Mehta (Algo-Logic Systems) Michaela Blott, Tom English, Kees Vissers (Xilinx) August 22, 2012,

More information

SOC architecture and design

SOC architecture and design SOC architecture and design system-on-chip (SOC) processors: become components in a system SOC covers many topics processor: pipelined, superscalar, VLIW, array, vector storage: cache, embedded and external

More information

Networking Virtualization Using FPGAs

Networking Virtualization Using FPGAs Networking Virtualization Using FPGAs Russell Tessier, Deepak Unnikrishnan, Dong Yin, and Lixin Gao Reconfigurable Computing Group Department of Electrical and Computer Engineering University of Massachusetts,

More information

A Powerful solution for next generation Pcs

A Powerful solution for next generation Pcs Product Brief 6th Generation Intel Core Desktop Processors i7-6700k and i5-6600k 6th Generation Intel Core Desktop Processors i7-6700k and i5-6600k A Powerful solution for next generation Pcs Looking for

More information

Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data

Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data Amanda O Connor, Bryan Justice, and A. Thomas Harris IN52A. Big Data in the Geosciences:

More information

Quiz for Chapter 1 Computer Abstractions and Technology 3.10

Quiz for Chapter 1 Computer Abstractions and Technology 3.10 Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in Red 1. [15 points] Consider two different implementations,

More information

The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud.

The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud. White Paper 021313-3 Page 1 : A Software Framework for Parallel Programming* The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud. ABSTRACT Programming for Multicore,

More information

Model-based system-on-chip design on Altera and Xilinx platforms

Model-based system-on-chip design on Altera and Xilinx platforms CO-DEVELOPMENT MANUFACTURING INNOVATION & SUPPORT Model-based system-on-chip design on Altera and Xilinx platforms Ronald Grootelaar, System Architect RJA.Grootelaar@3t.nl Agenda 3T Company profile Technology

More information