CHAPTER 1 INTRODUCTION

Size: px
Start display at page:

Download "CHAPTER 1 INTRODUCTION"

Transcription

1 1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses. These multicore processors are also termed as Chip Multi Processors (CMP). Depending on the design complexity of cores and chip, these can be classified as homogenous multicore in which all cores are identical in all respects. The other is Heterogeneous multicore in which cores have different execution capabilities but having same ISA (Instruction Set Architecture). In hybrid multicore, all cores have different ISA and execution capabilities. multicore processors are designed to increase efficiency by increasing multitasking, parallelism and throughput. The nature of challenge in CMPs is different than that in case of multiple processors (SMPs) in many ways. Like cores in CMPs are more closely coupled than that of processors in SMPs. L2 and L3 cache which are shared by the multiple cores with in a chip whereas, in SMPs no cache at any level is being shared by the processors. This leads to more complex cache and memory hierarchy design in CMPs than SMPs. Also, Scalability is another challenge from architectural point of view as number of processors in general SMPs are often limited to four or eight, where in CMPs designers are thinking to place hundreds or even thousands of cores in a single chip. Similarly, from software design aspect CMPs also have different challenges than those in SMPs. These includes, program or thread scheduling and better load distribution on the available

2 2 cores, level of parallelism as CMPs favor thread level parallelism whereas SMPs work better for process or application level parallelism. Some other software challenges may include, design of threads, algorithm decomposition techniques, programming patterns, operating system support etc. Hardware and Software Challenges The shift towards multicore architectures causes several challenges for computer architects. Due to a big change in technology, from micrometer to nanometer, there is a significant increase of the number of cores on a chip. Now it is computer designer s responsibility to determine a computational structure that can transform the increase in cores into a corresponding increase in computational performance efficiency. This challenge must be dealt with on several fronts, like basic architecture of each processor (core) to increase single or multithread performance, the architecture of the memory system and a holistic approach to support to emerging programming models for multicore processors. Software development is also a major challenge for multicore programmers. The software that runs on the multicore processor must have capability of exploiting maximum parallelism and concurrency, efficient scheduling and good load distribution. Although much progress has been made on these problems but still, much remains to be donethe goal of parallel processing is to have the running time of an application reduced by a factor that is inversely proportional to the number of processors or cores used. One way to define the speedup is the ratio of the running time on a single processor to the running time on parallel processors machine. This type of scalability only depends on the architecture not on the application. Sometimes the application is limited and further addition of processors or cores may even degrade the performance. According to this concept, an application is said to be scalable if the number of processors and the problem size are increased by

3 3 a factor then the running time should remain unchanged. An efficient scheduling has to be designed to increase the parallelism on multicore processors. Load balancing is another issue that strongly affects the performance of a system. It means that the processors have nearly the same amount of program code to be executed. In order to balance the computational load on a multicore machine, the programmer must divide the computations and communications on all available cores uniformly. 1.2 OVERVIEW OF THE PROPOSED WORK In the first proposed method, the AMAS theory of multiagent system is combined with the scheduler of operating system to develop a new agent based scheduling algorithm for multicore architecture. This multiagent based scheduling algorithm promises in minimizing the average waiting time of the processes in the centralized queue, reduces the task of the scheduler and also increases CPU performance. In the second proposed research method, hard-soft processor affinity scheduling algorithm is implemented which promises in minimizing the average waiting time of the non critical tasks in the centralized queue and avoids the context switching of critical tasks. This is achieved by assigning the hard affinity for critical tasks and the soft affinity for non critical tasks so that the context switched critical tasks can be assigned to the same original core where it was previously assigned. The entire organization is depicted in Figure 1.1. In the third method, a novel agent based scheduling and thread assignment algorithm is proposed in such a way that none of the heterogeneous processor will be kept in the idle state and the cores are utilized efficiently. The processors are actually classified as fast core, average core and slow core based on their computing power. Then based on the CPU and memory intensive instructions it is assigned that the threads to the respective cores. The ultimate aim is the heterogeneous processors within the multicore are assigned with the appropriate threads.

4 4 Figure 1.1 Proposed Methodologies incorporated in thesis In the second phase of the research simple load balancing algorithm is proposed which is a direct derivation and solution obtained from the defined agent scheduling algorithms. Because of the basic round robin scheduling utilized along with the intelligent agents, the power consumption for each processor can be equalized and thus leading to the automatic load balancing among the processors. Apart from the scheduling and load balancing, a small amount of implementation of agent based storage compaction algorithm also proposed in this research work. The evaluation results show that this agent scheduling and load balancing algorithms outperforms the existing algorithms for HMC (Heterogeneous Multicore) processors as well as symmetric multicore processors with respect to CPU utilization.

5 5 1.3 RESEARCH OBJECTIVES The chief objective of this research is to develop an approach that is capable of scheduling processes based on the simple multiagents, and schedule large number of independent and indivisible jobs on multicore platform. This scheduling automatically balances the load on many cores thus leading to improved throughput. To achieve the said objective, it is proposed to carry out the following: Design of novel agent based Scheduling algorithm using linux kernel. Performance evaluation of agent based scheduling algorithm after the selection of the cores and SPEC defined benchmark processes. A new load balancing mechanism is proposed and the performance is evaluated based on several factors. A new time based agent storage compaction algorithm also proposed which efficiently uses memory. A novel task allocation mechanism is proposed based on the core speed for Heterogeneous Multi Core System (HMC). 1.4 CONTRIBUTION OF THE THESIS The research has argued that multicore processors pose unique scheduling problems that require a multiagent based software approach that utilizes the large number processors very effectively. The work of dispatcher is actually eliminated with the help of processor agents itself. Each processor scheduling will be similar to the self scheduling employed in the traditional multiprocessor system. This is possible only with the help of processor agents assigned for every processor. It is also proved that lot of drastic enhancements

6 6 in the traditional scheduler that optimizes for CPU cycle utilization. It is discovered that the average waiting time decreases slowly with the increase of the number of cores. As a conclusion the new novel approach eliminates the complexity of the hardware and improved the CPU utilization to the maximum level. In the affinity based scheduling, the CPU utilization is actually maximum for the critical tasks and ideal processors are utilized well in the case of non critical tasks. Even though there is a cost of migrating the non critical tasks to some other processor efficient and maximum utilization of the CPU is the primary concern. 1.5 THESIS OUTLINE The thesis is organized as follows; First chapter presents the introduction to multicore architecture, intelligent agents and the limitations of conventional methods of scheduling algorithms and load balancing algorithms. Second chapter describes the literature survey of scheduling and load balancing algorithm. Subsequently, from the inference of literature survey, the objectives of the thesis are presented. Third chapter explains the novel agent based scheduling algorithm. The average waiting time for the proposed algorithm is implemented on the modified Linux kernel process scheduler. Fourth chapter describes novel hard soft affinity processor scheduling and load balancing using agents. Fifth chapter presents core performance based agent scheduling and thread assignment for heterogeneous multicore system. Sixth chapter explains the binary search tree based load balancing algorithm and equalizing power consumption for processors using load balancing and automatic load balancing using time based unused space collection.. Seventh chapter reports valuable conclusions that are drawn from the research work.

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances:

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances: Scheduling Scheduling Scheduling levels Long-term scheduling. Selects which jobs shall be allowed to enter the system. Only used in batch systems. Medium-term scheduling. Performs swapin-swapout operations

More information

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operatin g Systems: Internals and Design Principle s Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles Bear in mind,

More information

Multi-core and Linux* Kernel

Multi-core and Linux* Kernel Multi-core and Linux* Kernel Suresh Siddha Intel Open Source Technology Center Abstract Semiconductor technological advances in the recent years have led to the inclusion of multiple CPU execution cores

More information

Optimizing Shared Resource Contention in HPC Clusters

Optimizing Shared Resource Contention in HPC Clusters Optimizing Shared Resource Contention in HPC Clusters Sergey Blagodurov Simon Fraser University Alexandra Fedorova Simon Fraser University Abstract Contention for shared resources in HPC clusters occurs

More information

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run

More information

Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010.

Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010. Road Map Scheduling Dickinson College Computer Science 354 Spring 2010 Past: What an OS is, why we have them, what they do. Base hardware and support for operating systems Process Management Threads Present:

More information

Job Scheduling Model

Job Scheduling Model Scheduling 1 Job Scheduling Model problem scenario: a set of jobs needs to be executed using a single server, on which only one job at a time may run for theith job, we have an arrival timea i and a run

More information

CPU Scheduling Outline

CPU Scheduling Outline CPU Scheduling Outline What is scheduling in the OS? What are common scheduling criteria? How to evaluate scheduling algorithms? What are common scheduling algorithms? How is thread scheduling different

More information

Multi-core Programming System Overview

Multi-core Programming System Overview Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,

More information

EECS 750: Advanced Operating Systems. 01/28 /2015 Heechul Yun

EECS 750: Advanced Operating Systems. 01/28 /2015 Heechul Yun EECS 750: Advanced Operating Systems 01/28 /2015 Heechul Yun 1 Recap: Completely Fair Scheduler(CFS) Each task maintains its virtual time V i = E i 1 w i, where E is executed time, w is a weight Pick the

More information

Task Scheduling for Multicore Embedded Devices

Task Scheduling for Multicore Embedded Devices Embedded Linux Conference 2013 Task Scheduling for Multicore Embedded Devices 2013. 02. 22. Gap-Joo Na (funkygap@etri.re.kr) Contents 2 What is multicore?? 1. Multicore trends 2. New Architectures 3. Software

More information

Multi-core architectures. Jernej Barbic 15-213, Spring 2007 May 3, 2007

Multi-core architectures. Jernej Barbic 15-213, Spring 2007 May 3, 2007 Multi-core architectures Jernej Barbic 15-213, Spring 2007 May 3, 2007 1 Single-core computer 2 Single-core CPU chip the single core 3 Multi-core architectures This lecture is about a new trend in computer

More information

Control 2004, University of Bath, UK, September 2004

Control 2004, University of Bath, UK, September 2004 Control, University of Bath, UK, September ID- IMPACT OF DEPENDENCY AND LOAD BALANCING IN MULTITHREADING REAL-TIME CONTROL ALGORITHMS M A Hossain and M O Tokhi Department of Computing, The University of

More information

Chapter 5 Process Scheduling

Chapter 5 Process Scheduling Chapter 5 Process Scheduling CPU Scheduling Objective: Basic Scheduling Concepts CPU Scheduling Algorithms Why Multiprogramming? Maximize CPU/Resources Utilization (Based on Some Criteria) CPU Scheduling

More information

SCALABILITY AND AVAILABILITY

SCALABILITY AND AVAILABILITY SCALABILITY AND AVAILABILITY Real Systems must be Scalable fast enough to handle the expected load and grow easily when the load grows Available available enough of the time Scalable Scale-up increase

More information

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput Import Settings: Base Settings: Brownstone Default Highest Answer Letter: D Multiple Keywords in Same Paragraph: No Chapter: Chapter 5 Multiple Choice 1. Which of the following is true of cooperative scheduling?

More information

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Modern GPU

More information

Introduction to Cloud Computing

Introduction to Cloud Computing Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic

More information

Chapter 1: Introduction. What is an Operating System?

Chapter 1: Introduction. What is an Operating System? Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Computing Environments

More information

Binary search tree with SIMD bandwidth optimization using SSE

Binary search tree with SIMD bandwidth optimization using SSE Binary search tree with SIMD bandwidth optimization using SSE Bowen Zhang, Xinwei Li 1.ABSTRACT In-memory tree structured index search is a fundamental database operation. Modern processors provide tremendous

More information

Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum

Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum Scheduling Yücel Saygın These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum 1 Scheduling Introduction to Scheduling (1) Bursts of CPU usage alternate with periods

More information

Load Balancing on a Non-dedicated Heterogeneous Network of Workstations

Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Dr. Maurice Eggen Nathan Franklin Department of Computer Science Trinity University San Antonio, Texas 78212 Dr. Roger Eggen Department

More information

OPERATING SYSTEMS SCHEDULING

OPERATING SYSTEMS SCHEDULING OPERATING SYSTEMS SCHEDULING Jerry Breecher 5: CPU- 1 CPU What Is In This Chapter? This chapter is about how to get a process attached to a processor. It centers around efficient algorithms that perform

More information

Application Performance Analysis of the Cortex-A9 MPCore

Application Performance Analysis of the Cortex-A9 MPCore This project in ARM is in part funded by ICT-eMuCo, a European project supported under the Seventh Framework Programme (7FP) for research and technological development Application Performance Analysis

More information

FPGA-based Multithreading for In-Memory Hash Joins

FPGA-based Multithreading for In-Memory Hash Joins FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded

More information

Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage

Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage White Paper Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage A Benchmark Report August 211 Background Objectivity/DB uses a powerful distributed processing architecture to manage

More information

Driving force. What future software needs. Potential research topics

Driving force. What future software needs. Potential research topics Improving Software Robustness and Efficiency Driving force Processor core clock speed reach practical limit ~4GHz (power issue) Percentage of sustainable # of active transistors decrease; Increase in #

More information

An Adaptive Task-Core Ratio Load Balancing Strategy for Multi-core Processors

An Adaptive Task-Core Ratio Load Balancing Strategy for Multi-core Processors An Adaptive Task-Core Ratio Load Balancing Strategy for Multi-core Processors Ian K. T. Tan, Member, IACSIT, Chai Ian, and Poo Kuan Hoong Abstract With the proliferation of multi-core processors in servers,

More information

CPU Scheduling. Core Definitions

CPU Scheduling. Core Definitions CPU Scheduling General rule keep the CPU busy; an idle CPU is a wasted CPU Major source of CPU idleness: I/O (or waiting for it) Many programs have a characteristic CPU I/O burst cycle alternating phases

More information

Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6

Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Winter Term 2008 / 2009 Jun.-Prof. Dr. André Brinkmann Andre.Brinkmann@uni-paderborn.de Universität Paderborn PC² Agenda Multiprocessor and

More information

Multilevel Load Balancing in NUMA Computers

Multilevel Load Balancing in NUMA Computers FACULDADE DE INFORMÁTICA PUCRS - Brazil http://www.pucrs.br/inf/pos/ Multilevel Load Balancing in NUMA Computers M. Corrêa, R. Chanin, A. Sales, R. Scheer, A. Zorzo Technical Report Series Number 049 July,

More information

Symmetric Multiprocessing

Symmetric Multiprocessing Multicore Computing A multi-core processor is a processing system composed of two or more independent cores. One can describe it as an integrated circuit to which two or more individual processors (called

More information

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip. Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide

More information

Cellular Computing on a Linux Cluster

Cellular Computing on a Linux Cluster Cellular Computing on a Linux Cluster Alexei Agueev, Bernd Däne, Wolfgang Fengler TU Ilmenau, Department of Computer Architecture Topics 1. Cellular Computing 2. The Experiment 3. Experimental Results

More information

CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS

CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS CPU SCHEDULING CPU SCHEDULING (CONT D) Aims to assign processes to be executed by the CPU in a way that meets system objectives such as response time, throughput, and processor efficiency Broken down into

More information

Virtualizing Performance Asymmetric Multi-core Systems

Virtualizing Performance Asymmetric Multi-core Systems Virtualizing Performance Asymmetric Multi- Systems Youngjin Kwon, Changdae Kim, Seungryoul Maeng, and Jaehyuk Huh Computer Science Department, KAIST {yjkwon and cdkim}@calab.kaist.ac.kr, {maeng and jhhuh}@kaist.ac.kr

More information

Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup

Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Chapter 12: Multiprocessor Architectures Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Objective Be familiar with basic multiprocessor architectures and be able to

More information

Parallel Programming Survey

Parallel Programming Survey Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory

More information

A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures

A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures 11 th International LS-DYNA Users Conference Computing Technology A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures Yih-Yih Lin Hewlett-Packard Company Abstract In this paper, the

More information

10.04.2008. Thomas Fahrig Senior Developer Hypervisor Team. Hypervisor Architecture Terminology Goals Basics Details

10.04.2008. Thomas Fahrig Senior Developer Hypervisor Team. Hypervisor Architecture Terminology Goals Basics Details Thomas Fahrig Senior Developer Hypervisor Team Hypervisor Architecture Terminology Goals Basics Details Scheduling Interval External Interrupt Handling Reserves, Weights and Caps Context Switch Waiting

More information

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get

More information

Optimization of Cluster Web Server Scheduling from Site Access Statistics

Optimization of Cluster Web Server Scheduling from Site Access Statistics Optimization of Cluster Web Server Scheduling from Site Access Statistics Nartpong Ampornaramveth, Surasak Sanguanpong Faculty of Computer Engineering, Kasetsart University, Bangkhen Bangkok, Thailand

More information

Garbage Collection in the Java HotSpot Virtual Machine

Garbage Collection in the Java HotSpot Virtual Machine http://www.devx.com Printed from http://www.devx.com/java/article/21977/1954 Garbage Collection in the Java HotSpot Virtual Machine Gain a better understanding of how garbage collection in the Java HotSpot

More information

Scheduling Task Parallelism" on Multi-Socket Multicore Systems"

Scheduling Task Parallelism on Multi-Socket Multicore Systems Scheduling Task Parallelism" on Multi-Socket Multicore Systems" Stephen Olivier, UNC Chapel Hill Allan Porterfield, RENCI Kyle Wheeler, Sandia National Labs Jan Prins, UNC Chapel Hill Outline" Introduction

More information

Reconfigurable Architecture Requirements for Co-Designed Virtual Machines

Reconfigurable Architecture Requirements for Co-Designed Virtual Machines Reconfigurable Architecture Requirements for Co-Designed Virtual Machines Kenneth B. Kent University of New Brunswick Faculty of Computer Science Fredericton, New Brunswick, Canada ken@unb.ca Micaela Serra

More information

Carlos Villavieja, Nacho Navarro {cvillavi,nacho}@ac.upc.edu. Arati Baliga, Liviu Iftode {aratib,liviu}@cs.rutgers.edu

Carlos Villavieja, Nacho Navarro {cvillavi,nacho}@ac.upc.edu. Arati Baliga, Liviu Iftode {aratib,liviu}@cs.rutgers.edu Continuous Monitoring using MultiCores Carlos Villavieja, Nacho Navarro {cvillavi,nacho}@ac.upc.edu Arati Baliga, Liviu Iftode {aratib,liviu}@cs.rutgers.edu Motivation Intrusion detection Intruder gets

More information

Operating Systems. 05. Threads. Paul Krzyzanowski. Rutgers University. Spring 2015

Operating Systems. 05. Threads. Paul Krzyzanowski. Rutgers University. Spring 2015 Operating Systems 05. Threads Paul Krzyzanowski Rutgers University Spring 2015 February 9, 2015 2014-2015 Paul Krzyzanowski 1 Thread of execution Single sequence of instructions Pointed to by the program

More information

Chapter 2: OS Overview

Chapter 2: OS Overview Chapter 2: OS Overview CmSc 335 Operating Systems 1. Operating system objectives and functions Operating systems control and support the usage of computer systems. a. usage users of a computer system:

More information

Group Based Load Balancing Algorithm in Cloud Computing Virtualization

Group Based Load Balancing Algorithm in Cloud Computing Virtualization Group Based Load Balancing Algorithm in Cloud Computing Virtualization Rishi Bhardwaj, 2 Sangeeta Mittal, Student, 2 Assistant Professor, Department of Computer Science, Jaypee Institute of Information

More information

CS550. Distributed Operating Systems (Advanced Operating Systems) Instructor: Xian-He Sun

CS550. Distributed Operating Systems (Advanced Operating Systems) Instructor: Xian-He Sun CS550 Distributed Operating Systems (Advanced Operating Systems) Instructor: Xian-He Sun Email: sun@iit.edu, Phone: (312) 567-5260 Office hours: 2:10pm-3:10pm Tuesday, 3:30pm-4:30pm Thursday at SB229C,

More information

Real-Time Operating Systems for MPSoCs

Real-Time Operating Systems for MPSoCs Real-Time Operating Systems for MPSoCs Hiroyuki Tomiyama Graduate School of Information Science Nagoya University http://member.acm.org/~hiroyuki MPSoC 2009 1 Contributors Hiroaki Takada Director and Professor

More information

Distributed Systems. REK s adaptation of Prof. Claypool s adaptation of Tanenbaum s Distributed Systems Chapter 1

Distributed Systems. REK s adaptation of Prof. Claypool s adaptation of Tanenbaum s Distributed Systems Chapter 1 Distributed Systems REK s adaptation of Prof. Claypool s adaptation of Tanenbaum s Distributed Systems Chapter 1 1 The Rise of Distributed Systems! Computer hardware prices are falling and power increasing.!

More information

Advanced Core Operating System (ACOS): Experience the Performance

Advanced Core Operating System (ACOS): Experience the Performance WHITE PAPER Advanced Core Operating System (ACOS): Experience the Performance Table of Contents Trends Affecting Application Networking...3 The Era of Multicore...3 Multicore System Design Challenges...3

More information

Asymmetric Scheduling and Load Balancing for Real-Time on Linux SMP

Asymmetric Scheduling and Load Balancing for Real-Time on Linux SMP Asymmetric Scheduling and Load Balancing for Real-Time on Linux SMP Éric Piel, Philippe Marquet, Julien Soula, and Jean-Luc Dekeyser {Eric.Piel,Philippe.Marquet,Julien.Soula,Jean-Luc.Dekeyser}@lifl.fr

More information

Cray: Enabling Real-Time Discovery in Big Data

Cray: Enabling Real-Time Discovery in Big Data Cray: Enabling Real-Time Discovery in Big Data Discovery is the process of gaining valuable insights into the world around us by recognizing previously unknown relationships between occurrences, objects

More information

W4118 Operating Systems. Instructor: Junfeng Yang

W4118 Operating Systems. Instructor: Junfeng Yang W4118 Operating Systems Instructor: Junfeng Yang Outline Advanced scheduling issues Multilevel queue scheduling Multiprocessor scheduling issues Real-time scheduling Scheduling in Linux Scheduling algorithm

More information

Resource Utilization of Middleware Components in Embedded Systems

Resource Utilization of Middleware Components in Embedded Systems Resource Utilization of Middleware Components in Embedded Systems 3 Introduction System memory, CPU, and network resources are critical to the operation and performance of any software system. These system

More information

Cloud Computing and Robotics for Disaster Management

Cloud Computing and Robotics for Disaster Management 2016 7th International Conference on Intelligent Systems, Modelling and Simulation Cloud Computing and Robotics for Disaster Management Nitesh Jangid Information Technology Department Green Research IT

More information

Operating Systems 4 th Class

Operating Systems 4 th Class Operating Systems 4 th Class Lecture 1 Operating Systems Operating systems are essential part of any computer system. Therefore, a course in operating systems is an essential part of any computer science

More information

TPCalc : a throughput calculator for computer architecture studies

TPCalc : a throughput calculator for computer architecture studies TPCalc : a throughput calculator for computer architecture studies Pierre Michaud Stijn Eyerman Wouter Rogiest IRISA/INRIA Ghent University Ghent University pierre.michaud@inria.fr Stijn.Eyerman@elis.UGent.be

More information

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?

More information

The Shortcut Guide to Balancing Storage Costs and Performance with Hybrid Storage

The Shortcut Guide to Balancing Storage Costs and Performance with Hybrid Storage The Shortcut Guide to Balancing Storage Costs and Performance with Hybrid Storage sponsored by Dan Sullivan Chapter 1: Advantages of Hybrid Storage... 1 Overview of Flash Deployment in Hybrid Storage Systems...

More information

LinuxWorld Conference & Expo Server Farms and XML Web Services

LinuxWorld Conference & Expo Server Farms and XML Web Services LinuxWorld Conference & Expo Server Farms and XML Web Services Jorgen Thelin, CapeConnect Chief Architect PJ Murray, Product Manager Cape Clear Software Objectives What aspects must a developer be aware

More information

TCP Servers: Offloading TCP Processing in Internet Servers. Design, Implementation, and Performance

TCP Servers: Offloading TCP Processing in Internet Servers. Design, Implementation, and Performance TCP Servers: Offloading TCP Processing in Internet Servers. Design, Implementation, and Performance M. Rangarajan, A. Bohra, K. Banerjee, E.V. Carrera, R. Bianchini, L. Iftode, W. Zwaenepoel. Presented

More information

A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment

A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment Panagiotis D. Michailidis and Konstantinos G. Margaritis Parallel and Distributed

More information

HyperThreading Support in VMware ESX Server 2.1

HyperThreading Support in VMware ESX Server 2.1 HyperThreading Support in VMware ESX Server 2.1 Summary VMware ESX Server 2.1 now fully supports Intel s new Hyper-Threading Technology (HT). This paper explains the changes that an administrator can expect

More information

Benchmarking Hadoop & HBase on Violin

Benchmarking Hadoop & HBase on Violin Technical White Paper Report Technical Report Benchmarking Hadoop & HBase on Violin Harnessing Big Data Analytics at the Speed of Memory Version 1.0 Abstract The purpose of benchmarking is to show advantages

More information

Distributed Systems LEEC (2005/06 2º Sem.)

Distributed Systems LEEC (2005/06 2º Sem.) Distributed Systems LEEC (2005/06 2º Sem.) Introduction João Paulo Carvalho Universidade Técnica de Lisboa / Instituto Superior Técnico Outline Definition of a Distributed System Goals Connecting Users

More information

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM 152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented

More information

Operating System Tutorial

Operating System Tutorial Operating System Tutorial OPERATING SYSTEM TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i ABOUT THE TUTORIAL Operating System Tutorial An operating system (OS) is a collection

More information

Contributions to Gang Scheduling

Contributions to Gang Scheduling CHAPTER 7 Contributions to Gang Scheduling In this Chapter, we present two techniques to improve Gang Scheduling policies by adopting the ideas of this Thesis. The first one, Performance- Driven Gang Scheduling,

More information

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.

More information

Improving the performance of data servers on multicore architectures. Fabien Gaud

Improving the performance of data servers on multicore architectures. Fabien Gaud Improving the performance of data servers on multicore architectures Fabien Gaud Grenoble University Advisors: Jean-Bernard Stefani, Renaud Lachaize and Vivien Quéma Sardes (INRIA/LIG) December 2, 2010

More information

A Distributed Render Farm System for Animation Production

A Distributed Render Farm System for Animation Production A Distributed Render Farm System for Animation Production Jiali Yao, Zhigeng Pan *, Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058, China {yaojiali, zgpan, zhx}@cad.zju.edu.cn

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Background The command over cloud computing infrastructure is increasing with the growing demands of IT infrastructure during the changed business scenario of the 21 st Century.

More information

THREADS WINDOWS XP SCHEDULING

THREADS WINDOWS XP SCHEDULING Threads Windows, ManyCores, and Multiprocessors THREADS WINDOWS XP SCHEDULING (c) Peter Sturm, University of Trier, D-54286 Trier, Germany 1 Classification Two level scheduling 1 st level uses priorities

More information

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France

More information

Next Generation GPU Architecture Code-named Fermi

Next Generation GPU Architecture Code-named Fermi Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time

More information

BSPCloud: A Hybrid Programming Library for Cloud Computing *

BSPCloud: A Hybrid Programming Library for Cloud Computing * BSPCloud: A Hybrid Programming Library for Cloud Computing * Xiaodong Liu, Weiqin Tong and Yan Hou Department of Computer Engineering and Science Shanghai University, Shanghai, China liuxiaodongxht@qq.com,

More information

Introduction. Application Performance in the QLinux Multimedia Operating System. Solution: QLinux. Introduction. Outline. QLinux Design Principles

Introduction. Application Performance in the QLinux Multimedia Operating System. Solution: QLinux. Introduction. Outline. QLinux Design Principles Application Performance in the QLinux Multimedia Operating System Sundaram, A. Chandra, P. Goyal, P. Shenoy, J. Sahni and H. Vin Umass Amherst, U of Texas Austin ACM Multimedia, 2000 Introduction General

More information

Linux Scheduler Analysis and Tuning for Parallel Processing on the Raspberry PI Platform. Ed Spetka Mike Kohler

Linux Scheduler Analysis and Tuning for Parallel Processing on the Raspberry PI Platform. Ed Spetka Mike Kohler Linux Scheduler Analysis and Tuning for Parallel Processing on the Raspberry PI Platform Ed Spetka Mike Kohler Outline Abstract Hardware Overview Completely Fair Scheduler Design Theory Breakdown of the

More information

Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies

Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies Kurt Klemperer, Principal System Performance Engineer kklemperer@blackboard.com Agenda Session Length:

More information

How To Understand And Understand An Operating System In C Programming

How To Understand And Understand An Operating System In C Programming ELEC 377 Operating Systems Thomas R. Dean Instructor Tom Dean Office:! WLH 421 Email:! tom.dean@queensu.ca Hours:! Wed 14:30 16:00 (Tentative)! and by appointment! 6 years industrial experience ECE Rep

More information

CHAPTER 4 PERFORMANCE ANALYSIS OF CDN IN ACADEMICS

CHAPTER 4 PERFORMANCE ANALYSIS OF CDN IN ACADEMICS CHAPTER 4 PERFORMANCE ANALYSIS OF CDN IN ACADEMICS The web content providers sharing the content over the Internet during the past did not bother about the users, especially in terms of response time,

More information

Testing Database Performance with HelperCore on Multi-Core Processors

Testing Database Performance with HelperCore on Multi-Core Processors Project Report on Testing Database Performance with HelperCore on Multi-Core Processors Submitted by Mayuresh P. Kunjir M.E. (CSA) Mahesh R. Bale M.E. (CSA) Under Guidance of Dr. T. Matthew Jacob Problem

More information

Course Development of Programming for General-Purpose Multicore Processors

Course Development of Programming for General-Purpose Multicore Processors Course Development of Programming for General-Purpose Multicore Processors Wei Zhang Department of Electrical and Computer Engineering Virginia Commonwealth University Richmond, VA 23284 wzhang4@vcu.edu

More information

159.735. Final Report. Cluster Scheduling. Submitted by: Priti Lohani 04244354

159.735. Final Report. Cluster Scheduling. Submitted by: Priti Lohani 04244354 159.735 Final Report Cluster Scheduling Submitted by: Priti Lohani 04244354 1 Table of contents: 159.735... 1 Final Report... 1 Cluster Scheduling... 1 Table of contents:... 2 1. Introduction:... 3 1.1

More information

The Design and Implementation of Scalable Parallel Haskell

The Design and Implementation of Scalable Parallel Haskell The Design and Implementation of Scalable Parallel Haskell Malak Aljabri, Phil Trinder,and Hans-Wolfgang Loidl MMnet 13: Language and Runtime Support for Concurrent Systems Heriot Watt University May 8,

More information

Improving Compute Farm Throughput in Electronic Design Automation (EDA) Solutions

Improving Compute Farm Throughput in Electronic Design Automation (EDA) Solutions Improving Compute Farm Throughput in Electronic Design Automation (EDA) Solutions System Throughput in the EDA Design Flow Abstract Functional verification of Silicon on Chip (SoC) designs can contribute

More information

q EF HLD on SMP machine q Subfarm design q Distributor Global Buffer q Tests and results q Future developments

q EF HLD on SMP machine q Subfarm design q Distributor Global Buffer q Tests and results q Future developments q EF HLD on SMP machine q Subfarm design q Distributor Global Buffer q Tests and results q Future developments Andrea Negri Giacomo Polesello Diana Scannicchio Cristian Stanescu Valerio Vercesi 1Diana

More information

A Load Balancing Algorithm based on the Variation Trend of Entropy in Homogeneous Cluster

A Load Balancing Algorithm based on the Variation Trend of Entropy in Homogeneous Cluster , pp.11-20 http://dx.doi.org/10.14257/ ijgdc.2014.7.2.02 A Load Balancing Algorithm based on the Variation Trend of Entropy in Homogeneous Cluster Kehe Wu 1, Long Chen 2, Shichao Ye 2 and Yi Li 2 1 Beijing

More information

Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff

Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff Process Scheduling CS 241 February 24, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements Mid-semester feedback survey (linked off web page) MP4 due Friday (not Tuesday) Midterm Next Tuesday,

More information

A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems

A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems A Study on the Application of Existing Load Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems RUPAM MUKHOPADHYAY, DIBYAJYOTI GHOSH AND NANDINI MUKHERJEE Department of Computer

More information

Four Keys to Successful Multicore Optimization for Machine Vision. White Paper

Four Keys to Successful Multicore Optimization for Machine Vision. White Paper Four Keys to Successful Multicore Optimization for Machine Vision White Paper Optimizing a machine vision application for multicore PCs can be a complex process with unpredictable results. Developers need

More information

Principles and characteristics of distributed systems and environments

Principles and characteristics of distributed systems and environments Principles and characteristics of distributed systems and environments Definition of a distributed system Distributed system is a collection of independent computers that appears to its users as a single

More information

Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga

Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.

More information

Operating System Impact on SMT Architecture

Operating System Impact on SMT Architecture Operating System Impact on SMT Architecture The work published in An Analysis of Operating System Behavior on a Simultaneous Multithreaded Architecture, Josh Redstone et al., in Proceedings of the 9th

More information

HPC performance applications on Virtual Clusters

HPC performance applications on Virtual Clusters Panagiotis Kritikakos EPCC, School of Physics & Astronomy, University of Edinburgh, Scotland - UK pkritika@epcc.ed.ac.uk 4 th IC-SCCE, Athens 7 th July 2010 This work investigates the performance of (Java)

More information

An examination of the dual-core capability of the new HP xw4300 Workstation

An examination of the dual-core capability of the new HP xw4300 Workstation An examination of the dual-core capability of the new HP xw4300 Workstation By employing single- and dual-core Intel Pentium processor technology, users have a choice of processing power options in a compact,

More information

Effective Computing with SMP Linux

Effective Computing with SMP Linux Effective Computing with SMP Linux Multi-processor systems were once a feature of high-end servers and mainframes, but today, even desktops for personal use have multiple processors. Linux is a popular

More information