CHAPTER 1 INTRODUCTION

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CHAPTER 1 INTRODUCTION"

Transcription

1 1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses. These multicore processors are also termed as Chip Multi Processors (CMP). Depending on the design complexity of cores and chip, these can be classified as homogenous multicore in which all cores are identical in all respects. The other is Heterogeneous multicore in which cores have different execution capabilities but having same ISA (Instruction Set Architecture). In hybrid multicore, all cores have different ISA and execution capabilities. multicore processors are designed to increase efficiency by increasing multitasking, parallelism and throughput. The nature of challenge in CMPs is different than that in case of multiple processors (SMPs) in many ways. Like cores in CMPs are more closely coupled than that of processors in SMPs. L2 and L3 cache which are shared by the multiple cores with in a chip whereas, in SMPs no cache at any level is being shared by the processors. This leads to more complex cache and memory hierarchy design in CMPs than SMPs. Also, Scalability is another challenge from architectural point of view as number of processors in general SMPs are often limited to four or eight, where in CMPs designers are thinking to place hundreds or even thousands of cores in a single chip. Similarly, from software design aspect CMPs also have different challenges than those in SMPs. These includes, program or thread scheduling and better load distribution on the available

2 2 cores, level of parallelism as CMPs favor thread level parallelism whereas SMPs work better for process or application level parallelism. Some other software challenges may include, design of threads, algorithm decomposition techniques, programming patterns, operating system support etc. Hardware and Software Challenges The shift towards multicore architectures causes several challenges for computer architects. Due to a big change in technology, from micrometer to nanometer, there is a significant increase of the number of cores on a chip. Now it is computer designer s responsibility to determine a computational structure that can transform the increase in cores into a corresponding increase in computational performance efficiency. This challenge must be dealt with on several fronts, like basic architecture of each processor (core) to increase single or multithread performance, the architecture of the memory system and a holistic approach to support to emerging programming models for multicore processors. Software development is also a major challenge for multicore programmers. The software that runs on the multicore processor must have capability of exploiting maximum parallelism and concurrency, efficient scheduling and good load distribution. Although much progress has been made on these problems but still, much remains to be donethe goal of parallel processing is to have the running time of an application reduced by a factor that is inversely proportional to the number of processors or cores used. One way to define the speedup is the ratio of the running time on a single processor to the running time on parallel processors machine. This type of scalability only depends on the architecture not on the application. Sometimes the application is limited and further addition of processors or cores may even degrade the performance. According to this concept, an application is said to be scalable if the number of processors and the problem size are increased by

3 3 a factor then the running time should remain unchanged. An efficient scheduling has to be designed to increase the parallelism on multicore processors. Load balancing is another issue that strongly affects the performance of a system. It means that the processors have nearly the same amount of program code to be executed. In order to balance the computational load on a multicore machine, the programmer must divide the computations and communications on all available cores uniformly. 1.2 OVERVIEW OF THE PROPOSED WORK In the first proposed method, the AMAS theory of multiagent system is combined with the scheduler of operating system to develop a new agent based scheduling algorithm for multicore architecture. This multiagent based scheduling algorithm promises in minimizing the average waiting time of the processes in the centralized queue, reduces the task of the scheduler and also increases CPU performance. In the second proposed research method, hard-soft processor affinity scheduling algorithm is implemented which promises in minimizing the average waiting time of the non critical tasks in the centralized queue and avoids the context switching of critical tasks. This is achieved by assigning the hard affinity for critical tasks and the soft affinity for non critical tasks so that the context switched critical tasks can be assigned to the same original core where it was previously assigned. The entire organization is depicted in Figure 1.1. In the third method, a novel agent based scheduling and thread assignment algorithm is proposed in such a way that none of the heterogeneous processor will be kept in the idle state and the cores are utilized efficiently. The processors are actually classified as fast core, average core and slow core based on their computing power. Then based on the CPU and memory intensive instructions it is assigned that the threads to the respective cores. The ultimate aim is the heterogeneous processors within the multicore are assigned with the appropriate threads.

4 4 Figure 1.1 Proposed Methodologies incorporated in thesis In the second phase of the research simple load balancing algorithm is proposed which is a direct derivation and solution obtained from the defined agent scheduling algorithms. Because of the basic round robin scheduling utilized along with the intelligent agents, the power consumption for each processor can be equalized and thus leading to the automatic load balancing among the processors. Apart from the scheduling and load balancing, a small amount of implementation of agent based storage compaction algorithm also proposed in this research work. The evaluation results show that this agent scheduling and load balancing algorithms outperforms the existing algorithms for HMC (Heterogeneous Multicore) processors as well as symmetric multicore processors with respect to CPU utilization.

5 5 1.3 RESEARCH OBJECTIVES The chief objective of this research is to develop an approach that is capable of scheduling processes based on the simple multiagents, and schedule large number of independent and indivisible jobs on multicore platform. This scheduling automatically balances the load on many cores thus leading to improved throughput. To achieve the said objective, it is proposed to carry out the following: Design of novel agent based Scheduling algorithm using linux kernel. Performance evaluation of agent based scheduling algorithm after the selection of the cores and SPEC defined benchmark processes. A new load balancing mechanism is proposed and the performance is evaluated based on several factors. A new time based agent storage compaction algorithm also proposed which efficiently uses memory. A novel task allocation mechanism is proposed based on the core speed for Heterogeneous Multi Core System (HMC). 1.4 CONTRIBUTION OF THE THESIS The research has argued that multicore processors pose unique scheduling problems that require a multiagent based software approach that utilizes the large number processors very effectively. The work of dispatcher is actually eliminated with the help of processor agents itself. Each processor scheduling will be similar to the self scheduling employed in the traditional multiprocessor system. This is possible only with the help of processor agents assigned for every processor. It is also proved that lot of drastic enhancements

6 6 in the traditional scheduler that optimizes for CPU cycle utilization. It is discovered that the average waiting time decreases slowly with the increase of the number of cores. As a conclusion the new novel approach eliminates the complexity of the hardware and improved the CPU utilization to the maximum level. In the affinity based scheduling, the CPU utilization is actually maximum for the critical tasks and ideal processors are utilized well in the case of non critical tasks. Even though there is a cost of migrating the non critical tasks to some other processor efficient and maximum utilization of the CPU is the primary concern. 1.5 THESIS OUTLINE The thesis is organized as follows; First chapter presents the introduction to multicore architecture, intelligent agents and the limitations of conventional methods of scheduling algorithms and load balancing algorithms. Second chapter describes the literature survey of scheduling and load balancing algorithm. Subsequently, from the inference of literature survey, the objectives of the thesis are presented. Third chapter explains the novel agent based scheduling algorithm. The average waiting time for the proposed algorithm is implemented on the modified Linux kernel process scheduler. Fourth chapter describes novel hard soft affinity processor scheduling and load balancing using agents. Fifth chapter presents core performance based agent scheduling and thread assignment for heterogeneous multicore system. Sixth chapter explains the binary search tree based load balancing algorithm and equalizing power consumption for processors using load balancing and automatic load balancing using time based unused space collection.. Seventh chapter reports valuable conclusions that are drawn from the research work.

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances:

Scheduling. Scheduling. Scheduling levels. Decision to switch the running process can take place under the following circumstances: Scheduling Scheduling Scheduling levels Long-term scheduling. Selects which jobs shall be allowed to enter the system. Only used in batch systems. Medium-term scheduling. Performs swapin-swapout operations

More information

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings

Operatin g Systems: Internals and Design Principle s. Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operatin g Systems: Internals and Design Principle s Chapter 10 Multiprocessor and Real-Time Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles Bear in mind,

More information

Multi-core and Linux* Kernel

Multi-core and Linux* Kernel Multi-core and Linux* Kernel Suresh Siddha Intel Open Source Technology Center Abstract Semiconductor technological advances in the recent years have led to the inclusion of multiple CPU execution cores

More information

CPU Scheduling Yi Shi Fall 2015 Xi an Jiaotong University

CPU Scheduling Yi Shi Fall 2015 Xi an Jiaotong University CPU Scheduling Yi Shi Fall 2015 Xi an Jiaotong University Goals for Today CPU Schedulers Scheduling Algorithms Algorithm Evaluation Metrics Algorithm details Thread Scheduling Multiple-Processor Scheduling

More information

Classification of Scheduling Activity Queuing Diagram for Scheduling

Classification of Scheduling Activity Queuing Diagram for Scheduling CPU Scheduling CPU Scheduling Chapter 6 We concentrate on the problem of scheduling the usage of a single processor among all the existing processes in the system The goal is to achieve High processor

More information

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run

Deciding which process to run. (Deciding which thread to run) Deciding how long the chosen process can run SFWR ENG 3BB4 Software Design 3 Concurrent System Design 2 SFWR ENG 3BB4 Software Design 3 Concurrent System Design 11.8 10 CPU Scheduling Chapter 11 CPU Scheduling Policies Deciding which process to run

More information

Chapter 6: CPU Scheduling

Chapter 6: CPU Scheduling Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling 1.1 Maximum CPU utilization obtained with multiprogramming CPU I/O Burst

More information

Job Scheduling Model. problem scenario: a set of jobs needs to be executed using a single server, on which only one job at a time may run

Job Scheduling Model. problem scenario: a set of jobs needs to be executed using a single server, on which only one job at a time may run Scheduling 1 Job Scheduling Model problem scenario: a set of jobs needs to be executed using a single server, on which only one job at a time may run for theith job, we have an arrival timea i and a run

More information

Scheduling in Operating systems

Scheduling in Operating systems Scheduling in Operating systems Giuseppe Lipari http://retis.sssup.it/~lipari LSV Ecole Normale Supérieure de Cachan January 6, 2014 G. Lipari (LSV) Scheduling in Operating systems January 6, 2014 1 /

More information

Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010.

Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010. Road Map Scheduling Dickinson College Computer Science 354 Spring 2010 Past: What an OS is, why we have them, what they do. Base hardware and support for operating systems Process Management Threads Present:

More information

Optimizing Shared Resource Contention in HPC Clusters

Optimizing Shared Resource Contention in HPC Clusters Optimizing Shared Resource Contention in HPC Clusters Sergey Blagodurov Simon Fraser University Alexandra Fedorova Simon Fraser University Abstract Contention for shared resources in HPC clusters occurs

More information

Chapter 1: Introduction. What is an Operating System?

Chapter 1: Introduction. What is an Operating System? Chapter 1: Introduction What is an operating system? Simple Batch Systems Multiprogramming Batched Systems Time-Sharing Systems Personal-Computer Systems Parallel Systems Distributed Systems Real -Time

More information

Multi-core Programming System Overview

Multi-core Programming System Overview Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,

More information

Scheduling. Reading: Silberschatz chapter 6 Additional Reading: Stallings chapter 9 EEL 358 1

Scheduling. Reading: Silberschatz chapter 6 Additional Reading: Stallings chapter 9 EEL 358 1 Scheduling Reading: Silberschatz chapter 6 Additional Reading: Stallings chapter 9 EEL 358 1 Outline Introduction Types of Scheduling Scheduling Criteria FCFS Scheduling Shortest-Job-First Scheduling Priority

More information

Task Scheduling for Multicore Embedded Devices

Task Scheduling for Multicore Embedded Devices Embedded Linux Conference 2013 Task Scheduling for Multicore Embedded Devices 2013. 02. 22. Gap-Joo Na (funkygap@etri.re.kr) Contents 2 What is multicore?? 1. Multicore trends 2. New Architectures 3. Software

More information

Outline. Chapter 5: Process Scheduling Yean Fu Wen Nov. 24, Basic Concepts Scheduling Criteria Scheduling Algorithms

Outline. Chapter 5: Process Scheduling Yean Fu Wen Nov. 24, Basic Concepts Scheduling Criteria Scheduling Algorithms Chapter 5: Process Scheduling Yean Fu Wen yeanfu@mail.ncyu.edu.tw Nov. 24, 2009 Outline Basic Concepts Scheduling Criteria Scheduling Algorithms FCFS, SJF, Priority, RR, MQ, MFQ Thread Scheduling Multiple

More information

CPU Scheduling Outline

CPU Scheduling Outline CPU Scheduling Outline What is scheduling in the OS? What are common scheduling criteria? How to evaluate scheduling algorithms? What are common scheduling algorithms? How is thread scheduling different

More information

Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Scheduling & Resource Utilization

Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Scheduling & Resource Utilization Road Map Scheduling Dickinson College Computer Science 354 Spring 2012 Past: What an OS is, why we have them, what they do. Base hardware and support for operating systems Process Management Threads Present:

More information

SCALABILITY AND AVAILABILITY

SCALABILITY AND AVAILABILITY SCALABILITY AND AVAILABILITY Real Systems must be Scalable fast enough to handle the expected load and grow easily when the load grows Available available enough of the time Scalable Scale-up increase

More information

Job Scheduling Model

Job Scheduling Model Scheduling 1 Job Scheduling Model problem scenario: a set of jobs needs to be executed using a single server, on which only one job at a time may run for theith job, we have an arrival timea i and a run

More information

Multi-core architectures. Jernej Barbic 15-213, Spring 2007 May 3, 2007

Multi-core architectures. Jernej Barbic 15-213, Spring 2007 May 3, 2007 Multi-core architectures Jernej Barbic 15-213, Spring 2007 May 3, 2007 1 Single-core computer 2 Single-core CPU chip the single core 3 Multi-core architectures This lecture is about a new trend in computer

More information

Chapter 5: CPU Scheduling

Chapter 5: CPU Scheduling COP 4610: Introduction to Operating Systems (Spring 2016) Chapter 5: CPU Scheduling Zhi Wang Florida State University Contents Basic concepts Scheduling criteria Scheduling algorithms Thread scheduling

More information

EECS 750: Advanced Operating Systems. 01/28 /2015 Heechul Yun

EECS 750: Advanced Operating Systems. 01/28 /2015 Heechul Yun EECS 750: Advanced Operating Systems 01/28 /2015 Heechul Yun 1 Recap: Completely Fair Scheduler(CFS) Each task maintains its virtual time V i = E i 1 w i, where E is executed time, w is a weight Pick the

More information

Chapter 5 Process Scheduling

Chapter 5 Process Scheduling Chapter 5 Process Scheduling CPU Scheduling Objective: Basic Scheduling Concepts CPU Scheduling Algorithms Why Multiprogramming? Maximize CPU/Resources Utilization (Based on Some Criteria) CPU Scheduling

More information

OPERATING SYSTEMS SCHEDULING

OPERATING SYSTEMS SCHEDULING OPERATING SYSTEMS SCHEDULING Jerry Breecher 5: CPU- 1 CPU What Is In This Chapter? This chapter is about how to get a process attached to a processor. It centers around efficient algorithms that perform

More information

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Modern GPU

More information

Group Based Load Balancing Algorithm in Cloud Computing Virtualization

Group Based Load Balancing Algorithm in Cloud Computing Virtualization Group Based Load Balancing Algorithm in Cloud Computing Virtualization Rishi Bhardwaj, 2 Sangeeta Mittal, Student, 2 Assistant Professor, Department of Computer Science, Jaypee Institute of Information

More information

Load Balancing on a Non-dedicated Heterogeneous Network of Workstations

Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Dr. Maurice Eggen Nathan Franklin Department of Computer Science Trinity University San Antonio, Texas 78212 Dr. Roger Eggen Department

More information

Operating System. Lecture Slides By Silberschatz, Galvin & Gagne (8 th Edition) Modified By: Prof. Mitul K. Patel

Operating System. Lecture Slides By Silberschatz, Galvin & Gagne (8 th Edition) Modified By: Prof. Mitul K. Patel Operating System Lecture Slides By Silberschatz, Galvin & Gagne (8 th Edition) Modified By: Prof. Mitul K. Patel Shree Swami Atmanand Saraswati Institute of Technology, Surat January 2012 Outline 1 Chapter

More information

Multilevel Load Balancing in NUMA Computers

Multilevel Load Balancing in NUMA Computers FACULDADE DE INFORMÁTICA PUCRS - Brazil http://www.pucrs.br/inf/pos/ Multilevel Load Balancing in NUMA Computers M. Corrêa, R. Chanin, A. Sales, R. Scheer, A. Zorzo Technical Report Series Number 049 July,

More information

Control 2004, University of Bath, UK, September 2004

Control 2004, University of Bath, UK, September 2004 Control, University of Bath, UK, September ID- IMPACT OF DEPENDENCY AND LOAD BALANCING IN MULTITHREADING REAL-TIME CONTROL ALGORITHMS M A Hossain and M O Tokhi Department of Computing, The University of

More information

Chapter 5: CPU Scheduling

Chapter 5: CPU Scheduling Chapter 5: CPU Scheduling Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Thread Scheduling Operating Systems Examples

More information

Binary search tree with SIMD bandwidth optimization using SSE

Binary search tree with SIMD bandwidth optimization using SSE Binary search tree with SIMD bandwidth optimization using SSE Bowen Zhang, Xinwei Li 1.ABSTRACT In-memory tree structured index search is a fundamental database operation. Modern processors provide tremendous

More information

spends most its time performing I/O How is thread scheduling different from process scheduling? What are the issues in multiple-processor scheduling?

spends most its time performing I/O How is thread scheduling different from process scheduling? What are the issues in multiple-processor scheduling? CPU Scheduling Outline What is scheduling in the OS? What are common scheduling criteria? How to evaluate scheduling algorithms? What are common scheduling algorithms? How is thread scheduling different

More information

FPGA-based Multithreading for In-Memory Hash Joins

FPGA-based Multithreading for In-Memory Hash Joins FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded

More information

Submitted in partial fulfillment of the requirements For the Degree of Master of Science, With a Major in Computer Science

Submitted in partial fulfillment of the requirements For the Degree of Master of Science, With a Major in Computer Science By RAJITHA SIRIPURAPU (M Tech JNTU, 2014) PRADEEP KORLAMANDA (B Tech JNTU, 2013) SATYA DEEPTHI VEMULA (B Tech JNTU, 2014) GRADUATE CAPSTONE SEMINAR PROJECT Submitted in partial fulfillment of the requirements

More information

Application Performance Analysis of the Cortex-A9 MPCore

Application Performance Analysis of the Cortex-A9 MPCore This project in ARM is in part funded by ICT-eMuCo, a European project supported under the Seventh Framework Programme (7FP) for research and technological development Application Performance Analysis

More information

Chapter 1: Introduction. What is an Operating System?

Chapter 1: Introduction. What is an Operating System? Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Computing Environments

More information

Threads (Ch.4) ! Many software packages are multi-threaded. ! A thread is sometimes called a lightweight process

Threads (Ch.4) ! Many software packages are multi-threaded. ! A thread is sometimes called a lightweight process Threads (Ch.4)! Many software packages are multi-threaded l Web browser: one thread display images, another thread retrieves data from the network l Word processor: threads for displaying graphics, reading

More information

CPU Scheduling. Date. 2/2/2004 Operating Systems 1

CPU Scheduling. Date. 2/2/2004 Operating Systems 1 CPU Scheduling Date 2/2/2004 Operating Systems 1 Basic concepts Maximize CPU utilization with multi programming. CPU I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait.

More information

Chapter 2 Operating System Overview

Chapter 2 Operating System Overview Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 2 Operating System Overview Dave Bremer Otago Polytechnic, N.Z. 2008, Prentice Hall Roadmap Operating System Objectives/Functions

More information

Parallel Computing and Performance Evaluation -- Amdahl s Law

Parallel Computing and Performance Evaluation -- Amdahl s Law Parallel Computing and Performance Evaluation -- Amdahl s Law 9/29/205 Yinong Chen Chapter 7 Roadmap: Evaluation in Design Process Amdahl s Law 2 Multi-Core and HyperThreading 3 4 Application of Amdahl

More information

Parallel Programming Survey

Parallel Programming Survey Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory

More information

Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6

Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Multiprocessor Scheduling and Scheduling in Linux Kernel 2.6 Winter Term 2008 / 2009 Jun.-Prof. Dr. André Brinkmann Andre.Brinkmann@uni-paderborn.de Universität Paderborn PC² Agenda Multiprocessor and

More information

A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment

A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment A Performance Study of Load Balancing Strategies for Approximate String Matching on an MPI Heterogeneous System Environment Panagiotis D. Michailidis and Konstantinos G. Margaritis Parallel and Distributed

More information

An Adaptive Task-Core Ratio Load Balancing Strategy for Multi-core Processors

An Adaptive Task-Core Ratio Load Balancing Strategy for Multi-core Processors An Adaptive Task-Core Ratio Load Balancing Strategy for Multi-core Processors Ian K. T. Tan, Member, IACSIT, Chai Ian, and Poo Kuan Hoong Abstract With the proliferation of multi-core processors in servers,

More information

Introduction to Cloud Computing

Introduction to Cloud Computing Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic

More information

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip. Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide

More information

Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition,

Chapter 5: CPU Scheduling. Operating System Concepts 8 th Edition, Chapter 5: CPU Scheduling, Silberschatz, Galvin and Gagne 2009 Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating

More information

CPU scheduling. Alternating Sequence of CPU And I/O Bursts. Histogram of CPU-burst Times. CPU Scheduler

CPU scheduling. Alternating Sequence of CPU And I/O Bursts. Histogram of CPU-burst Times. CPU Scheduler CPU scheduling Alternating Sequence of CPU And I/O Bursts Maximum CPU utilization is obtained by multiprogramming. CPU I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait.

More information

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get

More information

Garbage Collection in the Java HotSpot Virtual Machine

Garbage Collection in the Java HotSpot Virtual Machine http://www.devx.com Printed from http://www.devx.com/java/article/21977/1954 Garbage Collection in the Java HotSpot Virtual Machine Gain a better understanding of how garbage collection in the Java HotSpot

More information

CPU Scheduling. Core Definitions

CPU Scheduling. Core Definitions CPU Scheduling General rule keep the CPU busy; an idle CPU is a wasted CPU Major source of CPU idleness: I/O (or waiting for it) Many programs have a characteristic CPU I/O burst cycle alternating phases

More information

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput

2. is the number of processes that are completed per time unit. A) CPU utilization B) Response time C) Turnaround time D) Throughput Import Settings: Base Settings: Brownstone Default Highest Answer Letter: D Multiple Keywords in Same Paragraph: No Chapter: Chapter 5 Multiple Choice 1. Which of the following is true of cooperative scheduling?

More information

Virtualizing Performance Asymmetric Multi-core Systems

Virtualizing Performance Asymmetric Multi-core Systems Virtualizing Performance Asymmetric Multi- Systems Youngjin Kwon, Changdae Kim, Seungryoul Maeng, and Jaehyuk Huh Computer Science Department, KAIST {yjkwon and cdkim}@calab.kaist.ac.kr, {maeng and jhhuh}@kaist.ac.kr

More information

Use the computer hardware in an efficient manner

Use the computer hardware in an efficient manner Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Feature Migration

More information

Chapter 5: Process Scheduling

Chapter 5: Process Scheduling Chapter 5: Process Scheduling Chapter 5: Process Scheduling 5.1 Basic Concepts 5.2 Scheduling Criteria 5.3 Scheduling Algorithms 5.3.1 First-Come, First-Served Scheduling 5.3.2 Shortest-Job-First Scheduling

More information

Intel Hyper-Threading. Matthew Joyner & Mike Diep Computer Architecture

Intel Hyper-Threading. Matthew Joyner & Mike Diep Computer Architecture Intel Hyper-Threading Matthew Joyner & Mike Diep Computer Architecture Outline What is Multithreading Temporal Multithreading Simultaneous Multithreading Intel's Hyper-Threading Architecture Performance

More information

Agenda. CPU Scheduling. Basic Concepts. CPU Scheduler. Histogram of CPU-burst Times. Alternating Sequence of CPU And I/O Bursts

Agenda. CPU Scheduling. Basic Concepts. CPU Scheduler. Histogram of CPU-burst Times. Alternating Sequence of CPU And I/O Bursts TDDB3: Concurrent programming and operating systems [SGG7] Chapter 5 Agenda CPU Scheduling Introduce CPU scheduling Describe various CPU scheduling algorithms Discuss evaluation criteria of CPU scheduling

More information

Course Development of Programming for General-Purpose Multicore Processors

Course Development of Programming for General-Purpose Multicore Processors Course Development of Programming for General-Purpose Multicore Processors Wei Zhang Department of Electrical and Computer Engineering Virginia Commonwealth University Richmond, VA 23284 wzhang4@vcu.edu

More information

Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum

Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum Scheduling Yücel Saygın These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum 1 Scheduling Introduction to Scheduling (1) Bursts of CPU usage alternate with periods

More information

Driving force. What future software needs. Potential research topics

Driving force. What future software needs. Potential research topics Improving Software Robustness and Efficiency Driving force Processor core clock speed reach practical limit ~4GHz (power issue) Percentage of sustainable # of active transistors decrease; Increase in #

More information

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 5: PROCESS SCHEDULING Chapter 5: Process Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor

More information

CPU Scheduling. CS439: Principles of Computer Systems September 7, 2016

CPU Scheduling. CS439: Principles of Computer Systems September 7, 2016 CPU Scheduling CS439: Principles of Computer Systems September 7, 2016 Last Time A process is a unit of execution Defines an address space An abstraction for protection Processes are represented as Process

More information

PES Institute Of Technology Bangalore South Campus

PES Institute Of Technology Bangalore South Campus PES Institute Of Technology Bangalore South Campus (Hosur Road, 1KM before Electronic City, Bangalore-560 102) Sem: V A and B Date: 27/8/1 Subject & Code: Operating Systems Marks: 50 Name of faculty: Y.

More information

Operating Systems 4 th Class

Operating Systems 4 th Class Operating Systems 4 th Class Lecture 1 Operating Systems Operating systems are essential part of any computer system. Therefore, a course in operating systems is an essential part of any computer science

More information

Performance Analysis of Cluster Networks

Performance Analysis of Cluster Networks Performance Analysis of Cluster Networks Performer: Ádám Tóth University of Debrecen Faculty of Informatics June 24, 2015 Content 1 Introduction Cluster networks Emerging problems and questions 2 Investigated

More information

Contributions to Gang Scheduling

Contributions to Gang Scheduling CHAPTER 7 Contributions to Gang Scheduling In this Chapter, we present two techniques to improve Gang Scheduling policies by adopting the ideas of this Thesis. The first one, Performance- Driven Gang Scheduling,

More information

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.

More information

LinuxWorld Conference & Expo Server Farms and XML Web Services

LinuxWorld Conference & Expo Server Farms and XML Web Services LinuxWorld Conference & Expo Server Farms and XML Web Services Jorgen Thelin, CapeConnect Chief Architect PJ Murray, Product Manager Cape Clear Software Objectives What aspects must a developer be aware

More information

Multicore Architectures

Multicore Architectures Multicore Architectures Week 1, Lecture 2 Multicore Landscape Intel Dual and quad-core Pentium family. 80-core demonstration last year. AMD Dual, triple (?!), and quad-core Opteron family. IBM Dual and

More information

Chapter 5: CPU Scheduling. Operating System Concepts 7 th Edition, Jan 14, 2005

Chapter 5: CPU Scheduling. Operating System Concepts 7 th Edition, Jan 14, 2005 Chapter 5: CPU Scheduling Operating System Concepts 7 th Edition, Jan 14, 2005 Silberschatz, Galvin and Gagne 2005 Outline Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling

More information

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM

APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM 152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented

More information

Cellular Computing on a Linux Cluster

Cellular Computing on a Linux Cluster Cellular Computing on a Linux Cluster Alexei Agueev, Bernd Däne, Wolfgang Fengler TU Ilmenau, Department of Computer Architecture Topics 1. Cellular Computing 2. The Experiment 3. Experimental Results

More information

Unit 2 Distributed Systems R.Yamini Dept. Of CA, SRM University Kattankulathur

Unit 2 Distributed Systems R.Yamini Dept. Of CA, SRM University Kattankulathur Unit 2 Distributed Systems R.Yamini Dept. Of CA, SRM University Kattankulathur 1 Introduction to Distributed Systems Why do we develop distributed systems? availability of powerful yet cheap microprocessors

More information

Cloud Computing and Robotics for Disaster Management

Cloud Computing and Robotics for Disaster Management 2016 7th International Conference on Intelligent Systems, Modelling and Simulation Cloud Computing and Robotics for Disaster Management Nitesh Jangid Information Technology Department Green Research IT

More information

CPU SCHEDULING. Scheduling Objectives. Outline. Basic Concepts. Enforcement of fairness in allocating resources to processes

CPU SCHEDULING. Scheduling Objectives. Outline. Basic Concepts. Enforcement of fairness in allocating resources to processes Scheduling Objectives CPU SCHEDULING Enforcement of fairness in allocating resources to processes Enforcement of priorities Make best use of available system resources Give preference to processes holding

More information

Objectives. 5.1 Basic Concepts. Scheduling Criteria. Multiple-Processor Scheduling. Algorithm Evaluation. Maximum CPU.

Objectives. 5.1 Basic Concepts. Scheduling Criteria. Multiple-Processor Scheduling. Algorithm Evaluation. Maximum CPU. Chapter 5: Process Scheduling Objectives To introduce CPU scheduling To describe various CPU-scheduling algorithms To discuss evaluation criteria for selecting the CPU-scheduling algorithm for a particular

More information

Chapter 2: OS Overview

Chapter 2: OS Overview Chapter 2: OS Overview CmSc 335 Operating Systems 1. Operating system objectives and functions Operating systems control and support the usage of computer systems. a. usage users of a computer system:

More information

COS 318: Operating Systems. CPU Scheduling. (http://www.cs.princeton.edu/courses/cos318/)

COS 318: Operating Systems. CPU Scheduling. (http://www.cs.princeton.edu/courses/cos318/) COS 318: Operating Systems CPU Scheduling (http://www.cs.princeton.edu/courses/cos318/) Today s Topics! CPU scheduling! CPU Scheduling algorithms 2 When to Schedule?! Process/thread creation! Process/thread

More information

Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup

Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Chapter 12: Multiprocessor Architectures Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Objective Be familiar with basic multiprocessor architectures and be able to

More information

Symmetric Multiprocessing

Symmetric Multiprocessing Multicore Computing A multi-core processor is a processing system composed of two or more independent cores. One can describe it as an integrated circuit to which two or more individual processors (called

More information

Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies

Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies Virtualization Technologies and Blackboard: The Future of Blackboard Software on Multi-Core Technologies Kurt Klemperer, Principal System Performance Engineer kklemperer@blackboard.com Agenda Session Length:

More information

A Brief Review of Processor Architecture. Why are Modern Processors so Complicated? Basic Structure

A Brief Review of Processor Architecture. Why are Modern Processors so Complicated? Basic Structure A Brief Review of Processor Architecture Why are Modern Processors so Complicated? Basic Structure CPU PC IR Regs ALU Memory Fetch PC -> Mem addr [addr] > IR PC ++ Decode Select regs Execute Perform op

More information

Process and Thread Scheduling. Raju Pandey Department of Computer Sciences University of California, Davis Winter 2005

Process and Thread Scheduling. Raju Pandey Department of Computer Sciences University of California, Davis Winter 2005 Process and Thread Scheduling Raju Pandey Department of Computer Sciences University of California, Davis Winter 2005 Scheduling Context switching an interrupt occurs (device completion, timer interrupt)

More information

CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS

CPU SCHEDULING (CONT D) NESTED SCHEDULING FUNCTIONS CPU SCHEDULING CPU SCHEDULING (CONT D) Aims to assign processes to be executed by the CPU in a way that meets system objectives such as response time, throughput, and processor efficiency Broken down into

More information

Chapter 5: CPU Scheduling

Chapter 5: CPU Scheduling Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating Systems Examples Algorithm Evaluation Objectives To introduce

More information

CPU Scheduling. Mehdi Kargahi School of ECE University of Tehran Spring 2008

CPU Scheduling. Mehdi Kargahi School of ECE University of Tehran Spring 2008 CPU Scheduling Mehdi Kargahi School of ECE University of Tehran Spring 2008 CPU and I/O Bursts Histogram of CPU-Burst Durations When CPU Scheduling Occurs 1. Running process switches to wait state I/O

More information

Resource Utilization of Middleware Components in Embedded Systems

Resource Utilization of Middleware Components in Embedded Systems Resource Utilization of Middleware Components in Embedded Systems 3 Introduction System memory, CPU, and network resources are critical to the operation and performance of any software system. These system

More information

HyperThreading Support in VMware ESX Server 2.1

HyperThreading Support in VMware ESX Server 2.1 HyperThreading Support in VMware ESX Server 2.1 Summary VMware ESX Server 2.1 now fully supports Intel s new Hyper-Threading Technology (HT). This paper explains the changes that an administrator can expect

More information

CPU Scheduling. User/Kernel Threads. Mixed User/Kernel Threads. Solaris/Linux Threads. CS 256/456 Dept. of Computer Science, University of Rochester

CPU Scheduling. User/Kernel Threads. Mixed User/Kernel Threads. Solaris/Linux Threads. CS 256/456 Dept. of Computer Science, University of Rochester CPU Scheduling CS 256/456 Dept. of Computer Science, University of Rochester User/Kernel Threads User threads Thread data structure is in user-mode memory scheduling/switching done at user mode Kernel

More information

Real-Time Operating Systems for MPSoCs

Real-Time Operating Systems for MPSoCs Real-Time Operating Systems for MPSoCs Hiroyuki Tomiyama Graduate School of Information Science Nagoya University http://member.acm.org/~hiroyuki MPSoC 2009 1 Contributors Hiroaki Takada Director and Professor

More information

Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage

Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage White Paper Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage A Benchmark Report August 211 Background Objectivity/DB uses a powerful distributed processing architecture to manage

More information

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?

More information

Lecture 5 Process Scheduling (chapter 5)

Lecture 5 Process Scheduling (chapter 5) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 5 Process Scheduling (chapter 5) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The slides

More information

Optimizing CPU Scheduling Problem using Genetic Algorithms

Optimizing CPU Scheduling Problem using Genetic Algorithms Optimizing CPU Scheduling Problem using Genetic Algorithms Anu Taneja Amit Kumar Computer Science Department Hindu College of Engineering, Sonepat (MDU) anutaneja16@gmail.com amitkumar.cs08@pec.edu.in

More information

A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures

A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures 11 th International LS-DYNA Users Conference Computing Technology A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures Yih-Yih Lin Hewlett-Packard Company Abstract In this paper, the

More information

Advanced Core Operating System (ACOS): Experience the Performance

Advanced Core Operating System (ACOS): Experience the Performance WHITE PAPER Advanced Core Operating System (ACOS): Experience the Performance Table of Contents Trends Affecting Application Networking...3 The Era of Multicore...3 Multicore System Design Challenges...3

More information

CPU scheduling. CPU Scheduling. No.4. CPU burst vs. I/O burst. Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University

CPU scheduling. CPU Scheduling. No.4. CPU burst vs. I/O burst. Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University EECS 3221 Operating System Fundamentals No.4 CPU scheduling Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University CPU Scheduling CPU scheduling is the basis of multiprogramming

More information

END TERM Examination(Model Test Paper) Fourth Semester[B.Tech]

END TERM Examination(Model Test Paper) Fourth Semester[B.Tech] END TERM Examination(Model Test Paper) Fourth Semester[B.Tech] Paper Code: ETCS - 212 Subject: Operating System Time: 3 hrs Maximum Marks: 75 Note: Q.No.1 is compulsory. Attempt any four questions of remaining

More information