#2.3 ML Estimation in an Autoregressive Model Solution Guide

Size: px
Start display at page:

Download "#2.3 ML Estimation in an Autoregressive Model Solution Guide"

Transcription

1 Econometrics II Fall 206 Department of Economics, University of Copenhagen By Morten Nyboe Tabor #2.3 ML Estimation in an Autoregressive Model Solution Guide Present the intuition for the maximum likelihood estimation principle, and outline the basic steps in deriving the estimators and the covariance matrix of the estimates. What is the number of parameters in the statistical model? We assume to know the density of y t, given by, y t Density θ, 2. where θ is a K-dimensional vector of parameters for the assumed density. The probability of observing y t is given by the density function, f y t θ. For independent and identically distributed iid observations the joint density is given by, f y,..., y T The likelihood function, defined as, f y t θ. 2.2 L θ f y,..., y T f y t θ L t θ. 2.3 can be written as the product of the individual likelihood contributions, L t θ, which indicate how much the individual observations contribute to the joint likelihood. The maximum likelihood estimator, θ ML, maximizes the joint likelihood. The intuition behind ML is that we select the estimator that maximizes the probability of observing the data given the model. Often, however, it is often more

2 convinient to work with the log of the likelihood function, T log L θ log L t θ log L t θ. 2.4 Since the log function is a monotonic transformation, maximizing the log-likelihood and the likelihood functions yield the same results, but the log-likelihood function is typically easier to work with. To derive the ML estimator we carry out the following steps. Step. Write the likelihood function and the log-likehood function given the assumed distribution, L θ f y,..., y T f y t θ T log L θ log L i θ L t θ 2.5 log L t θ. 2.6 Step 2. Find the score vector, which is the first derivative of the log-likelihood function with respect to the parameter vector θ, log L θ s θ K log L t θ s t θ. 2.7 Note, that sθ is of dimension K and note that the score vector can be written as the sum of the individual scores for each observation. The score vector indicates the slope of the log-likelihood function. Step 3. Find the first order conditions for the ML estimator, θ ML, s θml K s t θml and solve for θ ML to find the ML estimator. Note, that this is a system with K equations, the K so-called likelihood equations, and K parameters. In practice, it can be impossible to find an analytical solution to the likelihood equations. In such cases, numerical optimization algorithms can be used to find the ML estimator. Step 4. Find the Hessian as the second derivative, H t 2 log L t θ K K, 2.9 2

3 which indicates the curvature of the log-likelihood function. The Hessian is a block-diagonal K K matrix. Additionally, find the information matrix for observation t, Step 5. [ 2 ] log L t θ I θ E E [H t ]. 2.0 The asymptotic covariance matrix is given by the inverse of the information. As the Hessian measures the curvature of the log-likelihood function the variance of the ML estimator depends on the Hessian. The greater curvature, the greater the second derivative, and the smaller the variance. The ML estimator is asymptotically normally distributed with, T θml θ 0 N 0, V 2. where θ 0 are the true parameters and V is the asymptotic variance, so that, θ ML N 0, T V. 2.2 The asymptotic variance, V, is given by, [ V I θ 2 log L t θ E θθ0 ]. 2.3 In practice, we can estimate the asymptotic variance by replacing population expectations with sample averages and by replacing the unknown parameters with the ML estimates, V H N 2 log L t θ 2.4 θ θml where the subscript H indicates that the estimate is based on the Hessian alternatively, the asymptotic variance can be estimated based on the outer product of the scores. 3

4 2 Show how the joint density function for the time series, y 0, y,..., y T, denoted fy 0, y,..., y T θ,, can be factorized into a series of conditional and marginal distributions. Discuss how to construct the likelihood function for y, y 2,..., y T conditional on y 0. How does this procedure differ from the IID case? For iid data we can factorize the joint density as the product of the individual densities, f y, y 2,..., y T θ, f y t θ,. 2.5 For most economic data the iid assumption does not hold, so we cannot use this factorization. conditional and a marginal density, However, we use the factorization of a joint density into a f A, B f A B f B 2.6 to factorize the joint unconditional density of y 0, y,..., y T into a series of conditional and marginal densities, f y 0, y,..., y T θ, f y T y 0, y,..., y T ; θ, f y 0, y,..., y T ; θ, f y T y 0, y,..., y T ; θ, f y T y 0, y,..., y T 2 ; θ, f y 0, y,..., y T 2 ; θ,... f y t y 0, y,..., y t ; θ, f y 0 θ,. 2.7 By rewriting the expression, we get the joint density of y, y 2,..., y T conditional on y 0, f y,..., y T y 0 ; θ, f y 0, y,..., y T θ, f y 0 θ, f y t y 0, y,..., y t ; θ,. 2.8 Despite that the time series data do not satisfy the iid assumption, we can still factorize the joint density into a product of the individual densities when we condition on y 0. Thereby, we can still use the usual additive form for ML estimation based on the log-likelihood function. 4

5 3 Find an expression for the likelihood contribution for y t y t, denoted L t θ,, and state the likelihood function for y, y 2,..., y T y 0. Also write the corresponding log-likelihood function. We consider the first order autoregressive, AR, model y t θy t + ɛ t, t, 2,..., T, 2.9 where we assume that ɛ t N0, and we condition on the initial value y 0. We derive the ML estimator based on the assumption that the error term is normally distributed. Note, that we have two parameters to estimate: the autoregressive parameter, θ, and the variance of the error term,. First, we find the likelihood contribution of the error terms, ε t y t θy t, where we assume that Eε t 0, L t θ, σ 2 f y t y t ; θ, { } 2π exp e t µ ε 2 The likelihood function is given by, { } 2π exp y t θy t L θ, f y, y 2,..., y T y 0 ; θ, f y t y t ; θ, L t θ, σ 2 { } 2π exp y t θy t The log-likelihood function is given by, log L θ, 2 log 2π 2 log y t θy t 2 2, 2.22 and the log-likelihood contributions, 2 2 log 2π 2 log y t θy t

6 4 Calculate the individual scores s t θ, σ 2 log L tθ, log L tθ,. We find the individual scores by differentiating the log-likelihood contributions with respect to the parameters θ and remember that we here differentiate with respect to and not σ. Alternatively, you could consider σ and get similar results, s t θ, σ 2 log L tθ, log L tθ, y t y t θy t y t θy t 2 σ State the likelihood equations as the first order conditions for maximizing the log-likelihood function. Solve the first order conditions and find the ML estimators, θ ML and ML. The first order conditions are given by the likelihood equations, s θ, σ 2 s t θ, y t y t θy t σ 2 + y t θy t σ 4 We can rewrite the two equations separately as, y t y t θy t 0 y t y t y t y t θy t 0 y t θyt 0 y t y t θ yt,

7 and, y 2 + t θy 2 t 2 σ T + 2 y t θy 2 t σ 4 0 T y t θy t 2 σ 4 Ṱ Hence, we get the ML estimator of the autoregressive parameter, θ ML T y 2 t T y t y t, 2.28 and, by noting that ε t y t θy t, we get the ML estimator of the error variance, ML T ε 2 t How do the ML estimators compare to the OLS estimators in the model 2.9? The maximum likelihood ML estimator, θ ML, is identical to the OLS estimator, θ OLS, but note that the ML estimator of the error variance is different from the OLS estimator of the error variance, given by, OLS T K ε 2 t We know that the OLS estimator of the error variance, σ OLS 2, is unbiased, so the ML estimator, σ ML 2, must be biased but consistent. We also note, that the ML estimator has the smallest possible asymptotic variance among all consistent and asymptotically normal estimators denoted the Cramer-Rao lower bound. 7

8 7 Find the Hessian matrix of double derivatives, H t and the information matrix 2 log L tθ, 2 log L tθ, 2 log L tθ, 2 log L tθ,, Iθ, E[H t ]. Comment on the role of the information matrix in inference on the parameters and state the asymptotic distribution. The Hessian matrix is the second-derivative of the log-likelihood contributions, given by, which gives the Hessian matrix, H [ 2 log L tθ, 2 log L tθ, yt y t θy t yt y t θy t y t y t θy t y2 t 2.3 y t ε t σ y t θy t 2 σ 4 y t ε t σ y t θy t 2 σ 4 2σ 4 ε2 t σ log L tθ, 2 log L tθ, 2 + y t θy t 2 2 σ 4 y2 t y t ε t σ 4 y t ε t σ 4 2σ 4 ε2 t σ 6 ] y t y t θy t 2 + y t θy t 2 2 σ Note, that the Hessian is always block diagonal. The information matrix is the negative expected Hessian, I θ, E [ H θ, ]

9 As E [ε t ] 0, E [ ε 2 t ], and E [y t ε t ] 0we get the information matrix, I θ, [ E [ y 2 ] t 0 0 2σ 4 The variance of the ML estimator, θ ML, is given by, V θml T ] E [ yt 2 ] As we do not know E [ y 2 t ], we replace the expectation with the sample average to get the estimate of the asymptotic variance, V θml T σ2 ML T y 2 t ML yt

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulation-based method for estimating the parameters of economic models. Its

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

Basics of Statistical Machine Learning

Basics of Statistical Machine Learning CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu Modern machine learning is rooted in statistics. You will find many familiar

More information

STATISTICA Formula Guide: Logistic Regression. Table of Contents

STATISTICA Formula Guide: Logistic Regression. Table of Contents : Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

More information

i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by

i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a p-dimensional parameter

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Identification of univariate time series models, cont.:

More information

A Basic Introduction to Missing Data

A Basic Introduction to Missing Data John Fox Sociology 740 Winter 2014 Outline Why Missing Data Arise Why Missing Data Arise Global or unit non-response. In a survey, certain respondents may be unreachable or may refuse to participate. Item

More information

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

More information

Maximum likelihood estimation of mean reverting processes

Maximum likelihood estimation of mean reverting processes Maximum likelihood estimation of mean reverting processes José Carlos García Franco Onward, Inc. jcpollo@onwardinc.com Abstract Mean reverting processes are frequently used models in real options. For

More information

SYSTEMS OF REGRESSION EQUATIONS

SYSTEMS OF REGRESSION EQUATIONS SYSTEMS OF REGRESSION EQUATIONS 1. MULTIPLE EQUATIONS y nt = x nt n + u nt, n = 1,...,N, t = 1,...,T, x nt is 1 k, and n is k 1. This is a version of the standard regression model where the observations

More information

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York BME I5100: Biomedical Signal Processing Linear Discrimination Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff biology is not

More information

Factor analysis. Angela Montanari

Factor analysis. Angela Montanari Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number

More information

Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes

Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes Yong Bao a, Aman Ullah b, Yun Wang c, and Jun Yu d a Purdue University, IN, USA b University of California, Riverside, CA, USA

More information

Estimating an ARMA Process

Estimating an ARMA Process Statistics 910, #12 1 Overview Estimating an ARMA Process 1. Main ideas 2. Fitting autoregressions 3. Fitting with moving average components 4. Standard errors 5. Examples 6. Appendix: Simple estimators

More information

University of Ljubljana Doctoral Programme in Statistics Methodology of Statistical Research Written examination February 14 th, 2014.

University of Ljubljana Doctoral Programme in Statistics Methodology of Statistical Research Written examination February 14 th, 2014. University of Ljubljana Doctoral Programme in Statistics ethodology of Statistical Research Written examination February 14 th, 2014 Name and surname: ID number: Instructions Read carefully the wording

More information

An extension of the factoring likelihood approach for non-monotone missing data

An extension of the factoring likelihood approach for non-monotone missing data An extension of the factoring likelihood approach for non-monotone missing data Jae Kwang Kim Dong Wan Shin January 14, 2010 ABSTRACT We address the problem of parameter estimation in multivariate distributions

More information

LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as

LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as LOGISTIC REGRESSION Nitin R Patel Logistic regression extends the ideas of multiple linear regression to the situation where the dependent variable, y, is binary (for convenience we often code these values

More information

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION MAXIMUM-LIKELIHOOD ESTIMATION The General Theory of M-L Estimation In orer to erive an M-L estimator, we are boun to make an assumption about the functional form of the istribution which generates the

More information

Overview. Longitudinal Data Variation and Correlation Different Approaches. Linear Mixed Models Generalized Linear Mixed Models

Overview. Longitudinal Data Variation and Correlation Different Approaches. Linear Mixed Models Generalized Linear Mixed Models Overview 1 Introduction Longitudinal Data Variation and Correlation Different Approaches 2 Mixed Models Linear Mixed Models Generalized Linear Mixed Models 3 Marginal Models Linear Models Generalized Linear

More information

Acoustic Node Calibration Using a Moving Source

Acoustic Node Calibration Using a Moving Source Acoustic Node Calibration Using a Moving Source Volkan Cevher, Student Member, IEEE, James H. McClellan, Fellow, IEEE Abstract Acoustic nodes, each containing an array of microphones, can track targets

More information

Christfried Webers. Canberra February June 2015

Christfried Webers. Canberra February June 2015 c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic

More information

2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR)

2DI36 Statistics. 2DI36 Part II (Chapter 7 of MR) 2DI36 Statistics 2DI36 Part II (Chapter 7 of MR) What Have we Done so Far? Last time we introduced the concept of a dataset and seen how we can represent it in various ways But, how did this dataset came

More information

Chapter 1. Vector autoregressions. 1.1 VARs and the identi cation problem

Chapter 1. Vector autoregressions. 1.1 VARs and the identi cation problem Chapter Vector autoregressions We begin by taking a look at the data of macroeconomics. A way to summarize the dynamics of macroeconomic data is to make use of vector autoregressions. VAR models have become

More information

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Univariate Time Series Analysis We consider a single time series, y,y 2,..., y T. We want to construct simple

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

Chapter 4: Vector Autoregressive Models

Chapter 4: Vector Autoregressive Models Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...

More information

Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

More information

Principle of Data Reduction

Principle of Data Reduction Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part X Factor analysis Whenwehavedatax (i) R n thatcomesfromamixtureofseveral Gaussians, the EM algorithm can be applied to fit a mixture model. In this setting, we usually

More information

Centre for Central Banking Studies

Centre for Central Banking Studies Centre for Central Banking Studies Technical Handbook No. 4 Applied Bayesian econometrics for central bankers Andrew Blake and Haroon Mumtaz CCBS Technical Handbook No. 4 Applied Bayesian econometrics

More information

Parametric Statistical Modeling

Parametric Statistical Modeling Parametric Statistical Modeling ECE 275A Statistical Parameter Estimation Ken Kreutz-Delgado ECE Department, UC San Diego Ken Kreutz-Delgado (UC San Diego) ECE 275A SPE Version 1.1 Fall 2012 1 / 12 Why

More information

GLM, insurance pricing & big data: paying attention to convergence issues.

GLM, insurance pricing & big data: paying attention to convergence issues. GLM, insurance pricing & big data: paying attention to convergence issues. Michaël NOACK - michael.noack@addactis.com Senior consultant & Manager of ADDACTIS Pricing Copyright 2014 ADDACTIS Worldwide.

More information

What s New in Econometrics? Lecture 8 Cluster and Stratified Sampling

What s New in Econometrics? Lecture 8 Cluster and Stratified Sampling What s New in Econometrics? Lecture 8 Cluster and Stratified Sampling Jeff Wooldridge NBER Summer Institute, 2007 1. The Linear Model with Cluster Effects 2. Estimation with a Small Number of Groups and

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Regression Analysis. Regression Analysis MIT 18.S096. Dr. Kempthorne. Fall 2013

Regression Analysis. Regression Analysis MIT 18.S096. Dr. Kempthorne. Fall 2013 Lecture 6: Regression Analysis MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Regression Analysis 1 Outline Regression Analysis 1 Regression Analysis MIT 18.S096 Regression Analysis 2 Multiple Linear

More information

Lecture 6: Logistic Regression

Lecture 6: Logistic Regression Lecture 6: CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 13, 2011 Outline Outline Classification task Data : X = [x 1,..., x m]: a n m matrix of data points in R n. y { 1,

More information

11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial Least Squares Regression

11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial Least Squares Regression Frank C Porter and Ilya Narsky: Statistical Analysis Techniques in Particle Physics Chap. c11 2013/9/9 page 221 le-tex 221 11 Linear and Quadratic Discriminant Analysis, Logistic Regression, and Partial

More information

Regression III: Advanced Methods

Regression III: Advanced Methods Lecture 4: Transformations Regression III: Advanced Methods William G. Jacoby Michigan State University Goals of the lecture The Ladder of Roots and Powers Changing the shape of distributions Transforming

More information

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Recall areal data also known as lattice data are data Y (s), s D where D is a discrete index set. This usually corresponds to data

More information

Multiple Linear Regression in Data Mining

Multiple Linear Regression in Data Mining Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple

More information

From the help desk: hurdle models

From the help desk: hurdle models The Stata Journal (2003) 3, Number 2, pp. 178 184 From the help desk: hurdle models Allen McDowell Stata Corporation Abstract. This article demonstrates that, although there is no command in Stata for

More information

UNIVERSITY OF WAIKATO. Hamilton New Zealand

UNIVERSITY OF WAIKATO. Hamilton New Zealand UNIVERSITY OF WAIKATO Hamilton New Zealand Can We Trust Cluster-Corrected Standard Errors? An Application of Spatial Autocorrelation with Exact Locations Known John Gibson University of Waikato Bonggeun

More information

A Detailed Price Discrimination Example

A Detailed Price Discrimination Example A Detailed Price Discrimination Example Suppose that there are two different types of customers for a monopolist s product. Customers of type 1 have demand curves as follows. These demand curves include

More information

MATHEMATICS FOR ENGINEERS BASIC MATRIX THEORY TUTORIAL 2

MATHEMATICS FOR ENGINEERS BASIC MATRIX THEORY TUTORIAL 2 MATHEMATICS FO ENGINEES BASIC MATIX THEOY TUTOIAL This is the second of two tutorials on matrix theory. On completion you should be able to do the following. Explain the general method for solving simultaneous

More information

Probabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur

Probabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur Probabilistic Linear Classification: Logistic Regression Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 18, 2016 Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification:

More information

Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13

Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13 Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13 Overview Missingness and impact on statistical analysis Missing data assumptions/mechanisms Conventional

More information

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy. Blue vs. Orange. Review Jeopardy Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

More information

Constrained Bayes and Empirical Bayes Estimator Applications in Insurance Pricing

Constrained Bayes and Empirical Bayes Estimator Applications in Insurance Pricing Communications for Statistical Applications and Methods 2013, Vol 20, No 4, 321 327 DOI: http://dxdoiorg/105351/csam2013204321 Constrained Bayes and Empirical Bayes Estimator Applications in Insurance

More information

Logistic Regression (1/24/13)

Logistic Regression (1/24/13) STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used

More information

How To Model The Fate Of An Animal

How To Model The Fate Of An Animal Models Where the Fate of Every Individual is Known This class of models is important because they provide a theory for estimation of survival probability and other parameters from radio-tagged animals.

More information

Chapter 4: Statistical Hypothesis Testing

Chapter 4: Statistical Hypothesis Testing Chapter 4: Statistical Hypothesis Testing Christophe Hurlin November 20, 2015 Christophe Hurlin () Advanced Econometrics - Master ESA November 20, 2015 1 / 225 Section 1 Introduction Christophe Hurlin

More information

Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. Philip Kostov and Seamus McErlean

Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. Philip Kostov and Seamus McErlean Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. by Philip Kostov and Seamus McErlean Working Paper, Agricultural and Food Economics, Queen

More information

Detekce změn v autoregresních posloupnostech

Detekce změn v autoregresních posloupnostech Nové Hrady 2012 Outline 1 Introduction 2 3 4 Change point problem (retrospective) The data Y 1,..., Y n follow a statistical model, which may change once or several times during the observation period

More information

MATHEMATICAL METHODS OF STATISTICS

MATHEMATICAL METHODS OF STATISTICS MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS

More information

Circuit Analysis using the Node and Mesh Methods

Circuit Analysis using the Node and Mesh Methods Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Spring 25 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

Chapter 3: The Multiple Linear Regression Model

Chapter 3: The Multiple Linear Regression Model Chapter 3: The Multiple Linear Regression Model Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans November 23, 2013 Christophe Hurlin (University of Orléans) Advanced Econometrics

More information

HURDLE AND SELECTION MODELS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009

HURDLE AND SELECTION MODELS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 HURDLE AND SELECTION MODELS Jeff Wooldridge Michigan State University BGSE/IZA Course in Microeconometrics July 2009 1. Introduction 2. A General Formulation 3. Truncated Normal Hurdle Model 4. Lognormal

More information

5.04 Principles of Inorganic Chemistry II

5.04 Principles of Inorganic Chemistry II MIT OpenourseWare http://ocw.mit.edu 5.4 Principles of Inorganic hemistry II Fall 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.4, Principles of

More information

Econometric Methods for Panel Data

Econometric Methods for Panel Data Based on the books by Baltagi: Econometric Analysis of Panel Data and by Hsiao: Analysis of Panel Data Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies

More information

Chapter 2. Dynamic panel data models

Chapter 2. Dynamic panel data models Chapter 2. Dynamic panel data models Master of Science in Economics - University of Geneva Christophe Hurlin, Université d Orléans Université d Orléans April 2010 Introduction De nition We now consider

More information

Chapter 7. Univariate Volatility Modeling. 7.1 Why does volatility change?

Chapter 7. Univariate Volatility Modeling. 7.1 Why does volatility change? Chapter 7 Univariate Volatility Modeling Note: The primary references for these notes are chapters 1 and 11 in Taylor (5). Alternative, but less comprehensive, treatments can be found in chapter 1 of Hamilton

More information

Linear Models for Continuous Data

Linear Models for Continuous Data Chapter 2 Linear Models for Continuous Data The starting point in our exploration of statistical models in social research will be the classical linear model. Stops along the way include multiple linear

More information

ANALYSIS OF FACTOR BASED DATA MINING TECHNIQUES

ANALYSIS OF FACTOR BASED DATA MINING TECHNIQUES Advances in Information Mining ISSN: 0975 3265 & E-ISSN: 0975 9093, Vol. 3, Issue 1, 2011, pp-26-32 Available online at http://www.bioinfo.in/contents.php?id=32 ANALYSIS OF FACTOR BASED DATA MINING TECHNIQUES

More information

The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.

The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium

More information

Monitoring Software Reliability using Statistical Process Control: An MMLE Approach

Monitoring Software Reliability using Statistical Process Control: An MMLE Approach Monitoring Software Reliability using Statistical Process Control: An MMLE Approach Dr. R Satya Prasad 1, Bandla Sreenivasa Rao 2 and Dr. R.R. L Kantham 3 1 Department of Computer Science &Engineering,

More information

R 2 -type Curves for Dynamic Predictions from Joint Longitudinal-Survival Models

R 2 -type Curves for Dynamic Predictions from Joint Longitudinal-Survival Models Faculty of Health Sciences R 2 -type Curves for Dynamic Predictions from Joint Longitudinal-Survival Models Inference & application to prediction of kidney graft failure Paul Blanche joint work with M-C.

More information

The equivalence of logistic regression and maximum entropy models

The equivalence of logistic regression and maximum entropy models The equivalence of logistic regression and maximum entropy models John Mount September 23, 20 Abstract As our colleague so aptly demonstrated ( http://www.win-vector.com/blog/20/09/the-simplerderivation-of-logistic-regression/

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

A THEORETICAL COMPARISON OF DATA MASKING TECHNIQUES FOR NUMERICAL MICRODATA

A THEORETICAL COMPARISON OF DATA MASKING TECHNIQUES FOR NUMERICAL MICRODATA A THEORETICAL COMPARISON OF DATA MASKING TECHNIQUES FOR NUMERICAL MICRODATA Krish Muralidhar University of Kentucky Rathindra Sarathy Oklahoma State University Agency Internal User Unmasked Result Subjects

More information

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators... MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September

More information

Linear Classification. Volker Tresp Summer 2015

Linear Classification. Volker Tresp Summer 2015 Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher

More information

Poor identification and estimation problems in panel data models with random effects and autocorrelated errors

Poor identification and estimation problems in panel data models with random effects and autocorrelated errors Poor identification and estimation problems in panel data models with random effects and autocorrelated errors Giorgio Calzolari Laura Magazzini January 7, 009 Submitted for presentation at the 15th Conference

More information

From the help desk: Bootstrapped standard errors

From the help desk: Bootstrapped standard errors The Stata Journal (2003) 3, Number 1, pp. 71 80 From the help desk: Bootstrapped standard errors Weihua Guan Stata Corporation Abstract. Bootstrapping is a nonparametric approach for evaluating the distribution

More information

Monotonicity Hints. Abstract

Monotonicity Hints. Abstract Monotonicity Hints Joseph Sill Computation and Neural Systems program California Institute of Technology email: joe@cs.caltech.edu Yaser S. Abu-Mostafa EE and CS Deptartments California Institute of Technology

More information

2. Linear regression with multiple regressors

2. Linear regression with multiple regressors 2. Linear regression with multiple regressors Aim of this section: Introduction of the multiple regression model OLS estimation in multiple regression Measures-of-fit in multiple regression Assumptions

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University Pattern Analysis Logistic Regression 12. Mai 2009 Joachim Hornegger Chair of Pattern Recognition Erlangen University Pattern Analysis 2 / 43 1 Logistic Regression Posteriors and the Logistic Function Decision

More information

Wooldridge, Introductory Econometrics, 3d ed. Chapter 12: Serial correlation and heteroskedasticity in time series regressions

Wooldridge, Introductory Econometrics, 3d ed. Chapter 12: Serial correlation and heteroskedasticity in time series regressions Wooldridge, Introductory Econometrics, 3d ed. Chapter 12: Serial correlation and heteroskedasticity in time series regressions What will happen if we violate the assumption that the errors are not serially

More information

Robust Inferences from Random Clustered Samples: Applications Using Data from the Panel Survey of Income Dynamics

Robust Inferences from Random Clustered Samples: Applications Using Data from the Panel Survey of Income Dynamics Robust Inferences from Random Clustered Samples: Applications Using Data from the Panel Survey of Income Dynamics John Pepper Assistant Professor Department of Economics University of Virginia 114 Rouss

More information

Testing Cost Inefficiency under Free Entry in the Real Estate Brokerage Industry

Testing Cost Inefficiency under Free Entry in the Real Estate Brokerage Industry Web Appendix to Testing Cost Inefficiency under Free Entry in the Real Estate Brokerage Industry Lu Han University of Toronto lu.han@rotman.utoronto.ca Seung-Hyun Hong University of Illinois hyunhong@ad.uiuc.edu

More information

Multivariate Analysis of Variance (MANOVA): I. Theory

Multivariate Analysis of Variance (MANOVA): I. Theory Gregory Carey, 1998 MANOVA: I - 1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Poisson Models for Count Data

Poisson Models for Count Data Chapter 4 Poisson Models for Count Data In this chapter we study log-linear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the

More information

On UMVU Estimator of the Generalized Variance for Natural Exponential Families

On UMVU Estimator of the Generalized Variance for Natural Exponential Families Monografías del Seminario Matemático García de Galdeano. 27: 353 360, (2003). On UMVU Estimator of the Generalized Variance for Natural Exponential Families Célestin C. Kokonendji Université de Pau et

More information

Monte Carlo-based statistical methods (MASM11/FMS091)

Monte Carlo-based statistical methods (MASM11/FMS091) Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I February 5, 2013 J. Olsson Monte Carlo-based

More information

Quantile Regression under misspecification, with an application to the U.S. wage structure

Quantile Regression under misspecification, with an application to the U.S. wage structure Quantile Regression under misspecification, with an application to the U.S. wage structure Angrist, Chernozhukov and Fernandez-Val Reading Group Econometrics November 2, 2010 Intro: initial problem The

More information

Clustering in the Linear Model

Clustering in the Linear Model Short Guides to Microeconometrics Fall 2014 Kurt Schmidheiny Universität Basel Clustering in the Linear Model 2 1 Introduction Clustering in the Linear Model This handout extends the handout on The Multiple

More information

1 Another method of estimation: least squares

1 Another method of estimation: least squares 1 Another method of estimation: least squares erm: -estim.tex, Dec8, 009: 6 p.m. (draft - typos/writos likely exist) Corrections, comments, suggestions welcome. 1.1 Least squares in general Assume Y i

More information