Horizon in Random Matrix Theory, Hawking Radiation and Flow of Cold Atoms. Fabio Franchini

Size: px
Start display at page:

Download "Horizon in Random Matrix Theory, Hawking Radiation and Flow of Cold Atoms. Fabio Franchini"

Transcription

1 Horizon in Random Matrix Theory, Hawking Radiation and Flow of Cold Atoms Coauthor: V. E. Kravtsov Thanks: Cargèse Summer School on Disordered Systems by Fabio Franchini Phys. Rev. Lett. R. Balbinot, S. Fagnocchi & I. Carusotto (also for some figures in this talk) 103,

2 The star of the talk: Two-Point (Density-Density) correlation function: (Anomalous: non-translational invariant) (Normal: translational invariant) Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 2 Fabio Franchini

3 Same correlator for different systems Invariant RME with Weak Confinement? Acoustic Black Hole in a BEC Luttinger Liquid in curved metric Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 3 Fabio Franchini

4 Outline Acoustic Black Hole in a BEC Hawking radiation RME with Weak Confinement Luttinger Liquid in curved metric & RME Conclusions Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 4 Fabio Franchini

5 Acoustic Black-Hole Fluid pushed to move faster than it s speed of sound: Sound waves cannot propagate up-stream Phonons feel effective Black-Hole metric Hawking radiation Hard to detect (Low T effect) Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 5 Fabio Franchini

6 Hawking radiation Prediction: a Black Hole radiates particles with an exact thermal (Black-Body) spectrum Solid result due only to horizon (kinematical) Different ways to understand it: Pair production close to horizon Red-shifting of last escaping modes Casimir effect Bogoliuobov overlap of positive frequency modes close to the horizon and at infinity Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 6 Fabio Franchini

7 QFT in Curved Space-Time Field quantization is basis-dependent: vacuum depends on the observer: For a different coordinate system: Plane waves Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 7 Fabio Franchini

8 Hawking Radiation If (uniform acceleration) black body radiation with temperature (pure quantum effect!) Free-falling observer not inertial w.r.t. far observer Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 8 Fabio Franchini

9 Search for Hawking radiation Not yet observed (too small) Solid theoretical prediction: general phenomenon Analogue Gravitational Models BEC:T H T BEC : still small for detection Search for different signature Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 9 Fabio Franchini

10 Acoustic BH in BEC Cool system Bose-Einstein Condensate Keep stream velocity constant & change speed of sound Effective dynamics is 1-D Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 10 Fabio Franchini

11 BEC Phonons Bose field: ρ = ρ 0 + δρ : number density φ = φ 0 + δφ : phase ρ 0 & φ 0 by mean-field Gross-Pitaaevskii δφ : Bogoliubov modes sound waves over background fluid: Effective D Alembert equation in curved metric Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 11 Fabio Franchini

12 Effective Gravity in fluids Bogoliubov modes: phonons near a black hole Hawking radiation Surface gravity 2-point correlator: κ hδρ(x, 0)δρ(x 0, 0)i cosh 2 2 (Balbinot et al. 08) µ x c r v + x0 v c l for xx 0 < 0 Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 12 Fabio Franchini

13 Numerical check Field theory prediction checked against ab-initio numerical simulation (Carusotto et al. 08) Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 13 Fabio Franchini

14 Acoustic BH Conclusions Low-energy modes are sound-waves Luttinger Liquid Effective metric simulates Black Hole effect Hawking radiation due to reference frame change Non-local correlation due to entangled pairs Let s apply what we learned to Random Matrix Theory Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 14 Fabio Franchini

15 Random Matrices Describe quantum chaotic systems Interactions between every degree of freedom Large matrices as Hamiltonian, Scattering Matrix... Take matrix entries randomly from a distribution Universality determined by symmetry: Orthogonal, Unitary and Simplectic Ensemble Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 15 Fabio Franchini

16 Invariant Ensembles Invariant Probability Distribution Function: Describe extended states (no localization) Wigner statistics Gaussian Ensemble: Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 16 Fabio Franchini

17 Weakly Confined Invariant Ensemble Critical Statistics (Spontaneous Breaking of U(N) Invariance?) Non-universal κ κ κ κ Exactly solvable (qdeformed Polynomial) (Muttalib et al. 93) Hermite Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 17 Fabio Franchini

18 Weakly Confined Invariant Ensemble Non-Trivial density eigenvalue distribution Unfolding to make density constant: Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 18 Fabio Franchini

19 Weakly Confined Invariant Ensemble For e -2π2 /κ << 1 semiclassical analysis (Canali et al 95): Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 19 Fabio Franchini

20 Weakly Confined Invariant Ensemble Numerical check (Canali et al 95): 1-Y 2 (x,x') x' Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 20 Fabio Franchini

21 Out-of-time Conclusions Weakly confined RME has critical eigenvalue structure Also non-local signature Exact results from orthogonal polynomial Lack of physical interpretation Effective model as Luttinger Liquid with Hawking radiation Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 21 Fabio Franchini

22 Invariant RME For an invariant ensemble: Plasma Model in 1-D Energy eigenvalues as 1-D interacting particles Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 22 Fabio Franchini

23 Effective Theory for RME Energy eigenvalues coordinates of interacting particles (fermions level repulsion) Parametric evolution of RME time coordinate Eigenvalue distribution ground state configuration of 1D quantum model Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 23 Fabio Franchini

24 Effective Theory for RME Low-Energy effective theory for 1-D system: Luttinger Liquid Low-Energy effective theory for 1-D system: Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 24 Fabio Franchini

25 Luttinger theory for RME Two-Point function (Kravtsov et al. 00): Unfolding: ρ 0 = 1 In flat space: 2-Point Function for Gaussian RME (K=1: Unitary) Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 25 Fabio Franchini

26 Luttinger theory in curved metric BEC system taught us that metric with horizons gives non-local correlation function In 1+1 D any horizon metric can be approximated by Rindler line element Let s choose: Horizon at y=0 Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 26 Fabio Franchini

27 Luttinger theory in Rindler space Periodic in imaginary time finite temperature t =const x =const Far from the origin: Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 27 Fabio Franchini

28 Luttinger Liquid in Rindler Space Remind two-point function: With the new coordinates: Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 28 Fabio Franchini

29 Luttinger Liquid in Rindler Space We recover exactly the RME correlation ( K=1): (Anomalous: non-translational invariant) (Normal: translational invariant) Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 29 Fabio Franchini

30 Summing up (part 1) Luttinger Liquid predicts oscillatory term in correlator Possible to detect them in a BEC in Tonks-Girardeau regime Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 30 Fabio Franchini

31 Summing up (part 2) RME is time-reversal invariant LL in thermal equilibrium with bath due to horizon (Hartle-Hawking effect) BEC is time-reversal broken actual Hawking radiation Kravtsov & Tsvelik (2001) already proposed a finite T LL for critical non-invariant ensemble relationship between the two models? Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 31 Fabio Franchini

32 Conclusions Luttinger Liquid in metric reproduces the 2-point function Horizons Hawking radiation (thermal bath + correlations) Equivalence with BEC system (+ oscillatory term) Same eigenvalue statistics as critical non-invariant RME Outlook Microscopical derivation: nature of thermal bath? U(N) SSB as Anderson Transition? Connection with Topological String theory Thank you! Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 32 Fabio Franchini

33 Topological String Theory Random Matrix Model (0+1 dim theory) U(N) Chern-Simons on S 3 (3 dim theory) Luttinger Liquid of Levels (1+1 dim theory)? Wess-Zumino-Witten (1+1 dim theory) Thank you! Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 33 Fabio Franchini

34 Non-Invariant Ensembles Non-Invariant PDF: Localized states (Poisson statistics) Multi-Fractal states (Critical Statistics) Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 34 Fabio Franchini

35 Invariant vs. non-invariant Ensembles Invariant: basis independent Wigner-Dyson eigenvalue statistics de-haar measure for eigenvector delocalized systems analytical techniques Non-Invariant: basis dependent Poisson/critical eigenvalue statistics eigenvector connected with eigenvalue localized/critical systems mostly numerical approaches Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 35 Fabio Franchini

36 Non-invariant Critical Ensemble Critical Random Banded Matrix (Multifractal spectrum) Thermal effective Luttinger Theory (Kravtsov & Tsvelik-2001) g*: critical conductance Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 36 Fabio Franchini

37 Thermal Field Theory Diagonal part of 2-point function common to weakly confined invariant ensemble Lorentzian banded matrix ensembles Standard thermal field theory How to generate the non-translational invariant part? Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 37 Fabio Franchini

38 2-Point Correlator In flat space: and for the density: Light-Cone coordinates Around the black hole: Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 38 Fabio Franchini

39 Conclusions We reproduced the asymptotic 2-point function of Random Matrix with a Luttinger Liquid in curved space-time description Curved metric with horizons Hawking radiation Equivalence with BEC system (oscillatory term) Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 39 Fabio Franchini

40 Outlook Underlying integrable model as interesting probe for emerging Quantum Gravity (transplanckian problem) Many unresolved questions (microscopical derivation?): nature of thermal bath Connection with Topological String theory Horizon in RME, Hawking Radiation & Flow of Cold Atoms n. 40 Fabio Franchini

Effective actions for fluids from holography

Effective actions for fluids from holography Effective actions for fluids from holography Based on: arxiv:1405.4243 and arxiv:1504.07616 with Michal Heller and Natalia Pinzani Fokeeva Jan de Boer, Amsterdam Benasque, July 21, 2015 (see also arxiv:1504.07611

More information

Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide

Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide Instability, dispersion management, and pattern formation in the superfluid flow of a BEC in a cylindrical waveguide Michele Modugno LENS & Dipartimento di Fisica, Università di Firenze, Italy Workshop

More information

CLASSIFICATION OF TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS, RESPONSES AND QUANTUM ANOMALIES

CLASSIFICATION OF TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS, RESPONSES AND QUANTUM ANOMALIES CLASSIFICATION OF TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS, RESPONSES AND QUANTUM ANOMALIES ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Shinsei Ryu (UC-Berkeley) Andreas Schnyder

More information

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant

A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant A Theory for the Cosmological Constant and its Explanation of the Gravitational Constant H.M.Mok Radiation Health Unit, 3/F., Saiwanho Health Centre, Hong Kong SAR Govt, 8 Tai Hong St., Saiwanho, Hong

More information

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:

Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G: ... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse

More information

Fuzzballs, Firewalls, and all that..

Fuzzballs, Firewalls, and all that.. Fuzzballs, Firewalls, and all that.. Samir D. Mathur The Ohio State University Avery, Balasubramanian, Bena, Carson, Chowdhury, de Boer, Gimon, Giusto, Halmagyi, Keski-Vakkuri, Levi, Lunin, Maldacena,

More information

CURRICULUM VITAE. Contact Information. Scientific Education

CURRICULUM VITAE. Contact Information. Scientific Education CURRICULUM VITAE Fabio Franchini As of November 16, 2009 Personal Information Date of Birth: April 8, 1976 Place of Birth: Bologna, Italy Nationality: Italian Contact Information Address: C/o SISSA; Via

More information

Derivation of Hartree and Bogoliubov theories for generic mean-field Bose gases

Derivation of Hartree and Bogoliubov theories for generic mean-field Bose gases Derivation of Hartree and Bogoliubov theories for generic mean-field Bose gases Mathieu LEWIN Mathieu.Lewin@math.cnrs.fr (CNRS & Université de Cergy-Pontoise) joint works with P.T. Nam (Cergy), N. Rougerie

More information

Massless Black Holes & Black Rings as Effective Geometries of the D1-D5 System

Massless Black Holes & Black Rings as Effective Geometries of the D1-D5 System Massless Black Holes & Black Rings as Effective Geometries of the D1-D5 System September 2005 Masaki Shigemori (Caltech) hep-th/0508110: Vijay Balasubramanian, Per Kraus, M.S. 1. Introduction AdS/CFT Can

More information

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk

Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Localization of scalar fields on Branes with an Asymmetric geometries in the bulk Vladimir A. Andrianov in collaboration with Alexandr A. Andrianov V.A.Fock Department of Theoretical Physics Sankt-Petersburg

More information

Blackbody radiation derivation of Planck s radiation low

Blackbody radiation derivation of Planck s radiation low Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators

More information

Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid

Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid and driven dynamics of a mobile impurity in a quantum fluid Oleg Lychkovskiy Russian Quantum Center Seminaire du LPTMS, 01.12.2015 Seminaire du LPTMS, 01.12.2015 1 / Plan of the talk 1 Perpetual motion

More information

Perfect Fluids: From Nano to Tera

Perfect Fluids: From Nano to Tera Perfect Fluids: From Nano to Tera Thomas Schaefer North Carolina State University 1 2 Perfect Fluids sqgp (T=180 MeV) Neutron Matter (T=1 MeV) Trapped Atoms (T=0.1 nev) 3 Hydrodynamics Long-wavelength,

More information

Euclidean quantum gravity revisited

Euclidean quantum gravity revisited Institute for Gravitation and the Cosmos, Pennsylvania State University 15 June 2009 Eastern Gravity Meeting, Rochester Institute of Technology Based on: First-order action and Euclidean quantum gravity,

More information

EPSRC Network Analysis on Graphs UCL Workshop 17-19 Dec 2014 Programme

EPSRC Network Analysis on Graphs UCL Workshop 17-19 Dec 2014 Programme EPSRC Network Analysis on Graphs UCL Workshop 17-19 Dec 2014 Programme All talks will take place at: Department of Mathematics, Room 706, 7th Floor University College London 25 Gordon Street LONDON WC1H

More information

Emergent Gravity: The Analogue Models Perspective

Emergent Gravity: The Analogue Models Perspective Emergent Gravity: The Analogue Models Perspective Thesis submitted for the degree of Doctor Philosophiæ September 2009 Candidate Lorenzo Sindoni Supervisor Stefano Liberati SISSA International School for

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION) MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced

More information

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer Malcolm S. Longair Galaxy Formation With 141 Figures and 12 Tables Springer Contents Part I Preliminaries 1. Introduction, History and Outline 3 1.1 Prehistory 3 1.2 The Theory of the Expanding Universe

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System

Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System The 5 th Scienceweb GCOE International Symposium 1 Orbital Dynamics coupled with Jahn-Teller phonons in Strongly Correlated Electron System Department of Physics, Tohoku University Joji Nasu In collaboration

More information

arxiv:cond-mat/9811359v1 [cond-mat.dis-nn] 25 Nov 1998

arxiv:cond-mat/9811359v1 [cond-mat.dis-nn] 25 Nov 1998 arxiv:cond-mat/9811359v1 [cond-mat.dis-nn] 25 Nov 1998 Energy Levels of Quasiperiodic Hamiltonians, Spectral Unfolding, and Random Matrix Theory M. Schreiber 1, U. Grimm, 1 R. A. Römer, 1 and J. X. Zhong

More information

How To Understand General Relativity

How To Understand General Relativity Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional

More information

arxiv:1306.0533v2 [hep-th] 11 Jul 2013

arxiv:1306.0533v2 [hep-th] 11 Jul 2013 Cool horizons for entangled black holes arxiv:1306.0533v2 [hep-th] 11 Jul 2013 Juan Maldacena 1 and Leonard Susskind 2 1 Institute for Advanced Study, Princeton, NJ 08540, USA 2 Stanford Institute for

More information

Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code

Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code Kinetic effects in the turbulent solar wind: capturing ion physics with a Vlasov code Francesco Valentini francesco.valentini@fis.unical.it S. Servidio, D. Perrone, O. Pezzi, B. Maruca, F. Califano, W.

More information

Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas

Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas Solitons and phase domains during the cooling of a one-dimensional ultra-cold gas Piotr Deuar Emilia Witkowska, Mariusz Gajda Institute of Physics, Polish Academy of Sciences, Warsaw Kazimierz Rzążewski

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Elliptic Flow Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy Anisotropy

More information

White Dwarf Properties and the Degenerate Electron Gas

White Dwarf Properties and the Degenerate Electron Gas White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 Introduction 2 1.1 Discovery....................................... 2 1.2 Survey Techniques..................................

More information

Journal of Theoretics Journal Home Page

Journal of Theoretics Journal Home Page Journal of Theoretics Journal Home Page MASS BOOM VERSUS BIG BANG: THE ROLE OF PLANCK S CONSTANT by Antonio Alfonso-Faus E.U.I.T. Aeronáutica Plaza Cardenal Cisneros s/n 8040 Madrid, SPAIN e-mail: aalfonso@euita.upm.es

More information

The Quantum Harmonic Oscillator Stephen Webb

The Quantum Harmonic Oscillator Stephen Webb The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems

More information

The Physics Degree. Graduate Skills Base and the Core of Physics

The Physics Degree. Graduate Skills Base and the Core of Physics The Physics Degree Graduate Skills Base and the Core of Physics Version date: September 2011 THE PHYSICS DEGREE This document details the skills and achievements that graduates of accredited degree programmes

More information

Evolution of the Universe from 13 to 4 Billion Years Ago

Evolution of the Universe from 13 to 4 Billion Years Ago Evolution of the Universe from 13 to 4 Billion Years Ago Prof. Dr. Harold Geller hgeller@gmu.edu http://physics.gmu.edu/~hgeller/ Department of Physics and Astronomy George Mason University Unity in the

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables τ

More information

"in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it

in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta. h is the Planck constant he called it 1 2 "in recognition of the services he rendered to the advancement of Physics by his discovery of energy quanta". h is the Planck constant he called it the quantum of action 3 Newton believed in the corpuscular

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Spontaneous symmetry breaking in particle physics: a case of cross fertilization Spontaneous symmetry breaking in particle physics: a case of cross fertilization Yoichiro Nambu lecture presented by Giovanni Jona-Lasinio Nobel Lecture December 8, 2008 1 / 25 History repeats itself 1960

More information

On a Flat Expanding Universe

On a Flat Expanding Universe Adv. Studies Theor. Phys., Vol. 7, 2013, no. 4, 191-197 HIKARI Ltd, www.m-hikari.com On a Flat Expanding Universe Bo Lehnert Alfvén Laboratory Royal Institute of Technology, SE-10044 Stockholm, Sweden

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A. June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a

More information

The Search for Dark Matter, Einstein s Cosmology and MOND. David B. Cline

The Search for Dark Matter, Einstein s Cosmology and MOND. David B. Cline The Search for Dark Matter, Einstein s Cosmology and MOND David B. Cline Astrophysics Division, Department of Physics & Astronomy University of California, Los Angeles, CA 90095 USA dcline@physics.ucla.edu

More information

Spatially separated excitons in 2D and 1D

Spatially separated excitons in 2D and 1D Spatially separated excitons in 2D and 1D David Abergel March 10th, 2015 D.S.L. Abergel 3/10/15 1 / 24 Outline 1 Introduction 2 Spatially separated excitons in 2D The role of disorder 3 Spatially separated

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 2 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables.

More information

Numerical analysis of Bose Einstein condensation in a three-dimensional harmonic oscillator potential

Numerical analysis of Bose Einstein condensation in a three-dimensional harmonic oscillator potential Numerical analysis of Bose Einstein condensation in a three-dimensional harmonic oscillator potential Martin Ligare Department of Physics, Bucknell University, Lewisburg, Pennsylvania 17837 Received 24

More information

Structure formation in modified gravity models

Structure formation in modified gravity models Structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation University of Portsmouth Dark energy v modified gravity Is cosmology probing the breakdown of general

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

No Evidence for a new phase of dense hydrogen above 325 GPa

No Evidence for a new phase of dense hydrogen above 325 GPa 1 No Evidence for a new phase of dense hydrogen above 325 GPa Ranga P. Dias, Ori Noked, and Isaac F. Silvera Lyman Laboratory of Physics, Harvard University, Cambridge MA, 02138 In recent years there has

More information

PHYSICAL PROPERTIES: GLASS. Forensic Science CC 30.07 Spring 2007 Prof. Nehru

PHYSICAL PROPERTIES: GLASS. Forensic Science CC 30.07 Spring 2007 Prof. Nehru PHYSICAL PROPERTIES: GLASS Physical vs. Chemical Properties The forensic scientist must constantly determine those properties that impart distinguishing characteristics to matter, giving it a unique identity.

More information

Quantum Computation with Bose-Einstein Condensation and. Capable of Solving NP-Complete and #P Problems. Abstract

Quantum Computation with Bose-Einstein Condensation and. Capable of Solving NP-Complete and #P Problems. Abstract Quantum Computation with Bose-Einstein Condensation and Capable of Solving NP-Complete and #P Problems Yu Shi Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom Abstract It

More information

Isolated Horizons: Ideas, framework and applications

Isolated Horizons: Ideas, framework and applications Isolated Horizons: Ideas, framework and applications Jonathan Engle Centre de Physique Theorique, Marseille (Abhay Fest, 2009) (Workers in IH/DH: Ashtekar, Baez, Beetle, Booth, Corichi, Dryer, JE, Fairhurst,

More information

arxiv:cond-mat/0308498v1 [cond-mat.soft] 25 Aug 2003

arxiv:cond-mat/0308498v1 [cond-mat.soft] 25 Aug 2003 1 arxiv:cond-mat/38498v1 [cond-mat.soft] 2 Aug 23 Matter-wave interference, Josephson oscillation and its disruption in a Bose-Einstein condensate on an optical lattice Sadhan K. Adhikari Instituto de

More information

World of Particles Big Bang Thomas Gajdosik. Big Bang (model)

World of Particles Big Bang Thomas Gajdosik. Big Bang (model) Big Bang (model) What can be seen / measured? basically only light (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Nonlinear evolution of unstable fluid interface

Nonlinear evolution of unstable fluid interface Nonlinear evolution of unstable fluid interface S.I. Abarzhi Department of Applied Mathematics and Statistics State University of New-York at Stony Brook LIGHT FLUID ACCELERATES HEAVY FLUID misalignment

More information

CONVECTION CURRENTS AND ANOMALOUS BEHAVIOUR OF WATER

CONVECTION CURRENTS AND ANOMALOUS BEHAVIOUR OF WATER CONVECTION CURRENTS AND ANOMALOUS BEHAVIOUR OF WATER Objective: To compare the thermal behaviour of water with that of other liquids, specifically alcohol and edible oil. To point out the anomaly of water

More information

Theory of moist convection in statistical equilibrium

Theory of moist convection in statistical equilibrium Theory of moist convection in statistical equilibrium By analogy with Maxwell-Boltzmann statistics Bob Plant Department of Meteorology, University of Reading, UK With thanks to: George Craig, Brenda Cohen,

More information

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics). Fermi liquids The electric properties of most metals can be well understood from treating the electrons as non-interacting. This free electron model describes the electrons in the outermost shell of the

More information

Quark Confinement and the Hadron Spectrum III

Quark Confinement and the Hadron Spectrum III Quark Confinement and the Hadron Spectrum III Newport News, Virginia, USA 7-12 June 1998 Editor Nathan Isgur Jefferson Laboratory, USA 1lhWorld Scientific.,., Singapore - New Jersey- London -Hong Kong

More information

Rate Equations and Detailed Balance

Rate Equations and Detailed Balance Rate Equations and Detailed Balance Initial question: Last time we mentioned astrophysical masers. Why can they exist spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?

More information

Big Bang Cosmology. Big Bang vs. Steady State

Big Bang Cosmology. Big Bang vs. Steady State Big Bang vs. Steady State Big Bang Cosmology Perfect cosmological principle: universe is unchanging in space and time => Steady-State universe - Bondi, Hoyle, Gold. True? No! Hubble s Law => expansion

More information

2.5 Physically-based Animation

2.5 Physically-based Animation 2.5 Physically-based Animation 320491: Advanced Graphics - Chapter 2 74 Physically-based animation Morphing allowed us to animate between two known states. Typically, only one state of an object is known.

More information

European Benchmark for Physics Bachelor Degree

European Benchmark for Physics Bachelor Degree European Benchmark for Physics Bachelor Degree 1. Summary This is a proposal to produce a common European Benchmark framework for Bachelor degrees in Physics. The purpose is to help implement the common

More information

PHY1020 BASIC CONCEPTS IN PHYSICS I

PHY1020 BASIC CONCEPTS IN PHYSICS I PHY1020 BASIC CONCEPTS IN PHYSICS I Jackson Levi Said 14 lectures/tutorials/past paper session Project on one of the interesting fields in physics (30%) Exam in January/February (70%) 1 The Course RECOMMENDED

More information

Is Quantum Mechanics Exact?

Is Quantum Mechanics Exact? Is Quantum Mechanics Exact? Anton Kapustin Simons Center for Geometry and Physics Stony Brook University This year Quantum Theory will celebrate its 90th birthday. Werner Heisenberg s paper Quantum theoretic

More information

Quantum Mechanics and Representation Theory

Quantum Mechanics and Representation Theory Quantum Mechanics and Representation Theory Peter Woit Columbia University Texas Tech, November 21 2013 Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 1 / 30

More information

Advanced Topics in Physics: Special Relativity Course Syllabus

Advanced Topics in Physics: Special Relativity Course Syllabus Advanced Topics in Physics: Special Relativity Course Syllabus Day Period What How 1. Introduction 2. Course Information 3. Math Pre-Assessment Day 1. Morning 1. Physics Pre-Assessment 2. Coordinate Systems

More information

Plate waves in phononic crystals slabs

Plate waves in phononic crystals slabs Acoustics 8 Paris Plate waves in phononic crystals slabs J.-J. Chen and B. Bonello CNRS and Paris VI University, INSP - 14 rue de Lourmel, 7515 Paris, France chen99nju@gmail.com 41 Acoustics 8 Paris We

More information

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA Published by PHYSICS FOUNDATIONS SOCIETY Espoo, Finland www.physicsfoundations.org Printed by

More information

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

More information

Calculation of Eigenmodes in Superconducting Cavities

Calculation of Eigenmodes in Superconducting Cavities Calculation of Eigenmodes in Superconducting Cavities W. Ackermann, C. Liu, W.F.O. Müller, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt Status Meeting December

More information

WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1. Cloud Chamber. R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown

WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1. Cloud Chamber. R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown WJP, PHY381 (2015) Wabash Journal of Physics v4.3, p.1 Cloud Chamber R.C. Dennis, Tuan Le, M.J. Madsen, and J. Brown Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated: May 7, 2015)

More information

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell

Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell Dispersion diagrams of a water-loaded cylindrical shell obtained from the structural and acoustic responses of the sensor array along the shell B.K. Jung ; J. Ryue ; C.S. Hong 3 ; W.B. Jeong ; K.K. Shin

More information

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique

Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique Université Lille 1 Sciences et Technologies, Lille, France Laboratoire de Physique des Lasers, Atomes et Molécules Équipe Chaos Quantique 16 years of experiments on the atomic kicked rotor! Chaos, disorder

More information

Chapter 23 The Beginning of Time

Chapter 23 The Beginning of Time Chapter 23 The Beginning of Time 23.1 The Big Bang Our goals for learning What were conditions like in the early universe? What is the history of the universe according to the Big Bang theory? What were

More information

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function. 7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated

More information

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time. H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

Limitations of Equilibrium Or: What if τ LS τ adj?

Limitations of Equilibrium Or: What if τ LS τ adj? Limitations of Equilibrium Or: What if τ LS τ adj? Bob Plant, Laura Davies Department of Meteorology, University of Reading, UK With thanks to: Steve Derbyshire, Alan Grant, Steve Woolnough and Jeff Chagnon

More information

STRING THEORY: Past, Present, and Future

STRING THEORY: Past, Present, and Future STRING THEORY: Past, Present, and Future John H. Schwarz Simons Center March 25, 2014 1 OUTLINE I) Early History and Basic Concepts II) String Theory for Unification III) Superstring Revolutions IV) Remaining

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Prerequisite: High School Chemistry.

Prerequisite: High School Chemistry. ACT 101 Financial Accounting The course will provide the student with a fundamental understanding of accounting as a means for decision making by integrating preparation of financial information and written

More information

Three Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009

Three Pictures of Quantum Mechanics. Thomas R. Shafer April 17, 2009 Three Pictures of Quantum Mechanics Thomas R. Shafer April 17, 2009 Outline of the Talk Brief review of (or introduction to) quantum mechanics. 3 different viewpoints on calculation. Schrödinger, Heisenberg,

More information

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations

Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations Wave-particle and wave-wave interactions in the Solar Wind: simulations and observations Lorenzo Matteini University of Florence, Italy In collaboration with Petr Hellinger, Simone Landi, and Marco Velli

More information

From Landau levels to quantum Hall effects

From Landau levels to quantum Hall effects From Landau levels to quantum Hall effects by Bertrand I. Halperin, Harvard University Landau 100 Memorial Meeting Moscow, June 20, 2008 The Quantum Hall Effects Large set of peculiar phenomena in two-dimensional

More information

The Cosmic Microwave Background and the Big Bang Theory of the Universe

The Cosmic Microwave Background and the Big Bang Theory of the Universe The Cosmic Microwave Background and the Big Bang Theory of the Universe 1. Concepts from General Relativity 1.1 Curvature of space As we discussed earlier, Einstein s equivalence principle states that

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

Level spacing 1 ev 0.1 mev Ionization energy Typical magnetic field 10 4 T 1-10 T

Level spacing 1 ev 0.1 mev Ionization energy Typical magnetic field 10 4 T 1-10 T Quantum dots Quantum dot (QD) is a conducting island of a size comparable to the Fermi wavelength in all spatial directions. Often called the artificial atoms, however the size is much bigger (100 nm for

More information

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Abstract When structures in contact with a fluid

More information

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

Self similarity of complex networks & hidden metric spaces

Self similarity of complex networks & hidden metric spaces Self similarity of complex networks & hidden metric spaces M. ÁNGELES SERRANO Departament de Química Física Universitat de Barcelona TERA-NET: Toward Evolutive Routing Algorithms for scale-free/internet-like

More information

BOX. The density operator or density matrix for the ensemble or mixture of states with probabilities is given by

BOX. The density operator or density matrix for the ensemble or mixture of states with probabilities is given by 2.4 Density operator/matrix Ensemble of pure states gives a mixed state BOX The density operator or density matrix for the ensemble or mixture of states with probabilities is given by Note: Once mixed,

More information

Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE

Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE EMR and the Dawn Mission Electromagnetic radiation (EMR) will play a major role in

More information

Why the high lying glueball does not mix with the neighbouring f 0. Abstract

Why the high lying glueball does not mix with the neighbouring f 0. Abstract Why the high lying glueball does not mix with the neighbouring f 0. L. Ya. Glozman Institute for Theoretical Physics, University of Graz, Universitätsplatz 5, A-800 Graz, Austria Abstract Chiral symmetry

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

Renormalization and Effective Field Theory

Renormalization and Effective Field Theory Renormalization and Effective Field Theory Kevin Costello This is a preliminary version of the book Renormalization and Effective Field Theory published by the American Mathematical Society (AMS). This

More information

arxiv:cond-mat/0307455v2 [cond-mat.dis-nn] 5 Feb 2004

arxiv:cond-mat/0307455v2 [cond-mat.dis-nn] 5 Feb 2004 Causality vs. Ward identity in disordered electron systems arxiv:cond-mat/0307455v2 [cond-mat.dis-nn] 5 Feb 2004 V. Janiš and J. Kolorenč Institute of Physics, Academy of Sciences of the Czech Republic,

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

College of Arts and Sciences

College of Arts and Sciences Note: It is assumed that all prerequisites include, in addition to any specific course listed, the phrase or equivalent, or consent of instructor. 105 SICS AND ASTRONOMY TODAY. (1) This course is intended

More information

Accuracy of the coherent potential approximation for a onedimensional array with a Gaussian distribution of fluctuations in the on-site potential

Accuracy of the coherent potential approximation for a onedimensional array with a Gaussian distribution of fluctuations in the on-site potential Accuracy of the coherent potential approximation for a onedimensional array with a Gaussian distribution of fluctuations in the on-site potential I. Avgin Department of Electrical and Electronics Engineering,

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Principle of Thermal Imaging

Principle of Thermal Imaging Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging

More information