Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula derived from the Poisson Distribution

Size: px
Start display at page:

Download "Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula derived from the Poisson Distribution"

Transcription

1 Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebrasa-Lincoln Lincoln, NE Voice: Fax: Topics in Probability Theory and Stochastic Processes Steven R. Dunbar Stirling s Formula derived from the Poisson Distribution Rating Mathematicians Only: prolonged scenes of intense rigor. 1

2 Section Starter Question What is the Poisson distribution? What ind of circumstances does a Poisson distribution describe? Key Concepts 1. Stirling s Formula, also called Stirling s Approximation, is the asymptotic relation n! n n+1/2 e n. 2. The formula is useful in estimating large factorial values, but its main mathematical value is in limits involving factorials. 3. The Poisson distribution with parameter λ is the discrete probability distribution defined on the non-negative integers 0, 1, 2,... with probability mass P [X = ] = p(; λ) = λ! e λ. parameter λ is Vocabulary 1. Stirling s Formula, also called Stirling s Approximation, is the asymptotic relation n! n n+1/2 e n. 2. The Poisson distribution with parameter λ is the discrete probability distribution defined on the non-negative integers 0, 1, 2,... with probability mass P [X = ] = p(; λ) = λ! e λ. 2

3 Mathematical Ideas Stirling s Formula Stirling s Formula, also called Stirling s Approximation, is the asymptotic relation n! n n+1/2 e n. The formula is useful in estimating large factorial values, but its main mathematical value is in limits involving factorials. Another attractive form of Stirling s Formula is n! ( n ) n n. e An improved inequality version of Stirling s Formula is n n+1/2 e n+1/(12n+1) < n! < n n+1/2 e n+1/(12n). See Stirling s Formula in MathWorld.com. Intuitive Probabilistic Proof This intuitive argument is adapted from [6, page ] and also from the short article by Hu, [4]. Let X 1, X 2,... be independent Poisson random variables each having mean 1. Let S n = n j=1 X j and then note that the mean and the variance of S n are equal to n. P [S n = n] = P [n 1 < S n n] = P [ 1/ n < (S n n)/ n 0 ] 0 1/ n 1 1 n 1 e x2 /2 dx 3

4 On the other hand S n is Poisson with mean n, and so P [S n = n] = e n n n n! Equating the two expressions for P [S n = n], and rearranging obtain n! n n+1/2 e n. This proof relies on having a version of the Central Limit Theorem that has not been proved using Stirling s Formula! Such a version of the Central Limit Theorem itself is pretty advanced. It also relies on several other advanced facts, such as the distribution of Poisson random variables, the fact that the sum of independent Poisson random variables is again Poisson and the fact that the variance of the sum of independent random variables is the sum of the variances. On the other hand, it is short and simple! Rigorous Derivation of Stirling s Formula The characteristic function with variable θ R of the Poisson distribution p(; λ) = λ! e λ with parameter λ is ˆp(θ; λ) = p(; λ)e iθ = e λ(eiθ 1). =0 For further properties see Breiman, [1, page 170 ff.], especially Definition 8.26 and Proposition 8.27, or Chung, [2, page 142 ff.], especially item 6 on page 147. The characteristic function is a -periodic function with a series definition which converges uniformly on R, meaning we can integrate the series term-by-term on [ π, π] to obtain p(; λ) = 1 π π ˆp(θ, λ)e iθ dθ (1) which is valid for λ > 0 and = 0, 1, 2, 3,.... This is the Fourier inversion formula for the characteristic function. See also Breiman, [1], Theorem 8.39, page 178; Chung, [2], Theorem 6.2.3; or Feller, [3], page 509. In equation (1) set λ =, and define I by I =! e = 1 π π e (eiθ 1 iθ) dθ = 0, 1, 2, 3,... 4

5 Compare this representation to the Gaussian integral with variance defined as J = 1 = 1 e θ2 /2 dθ. The general plan is to show that I J, so that then we can assert that! e 1 which can be rearranged to Stirling s Formula. The detailed plan is to show that this approximation can be expressed as an asymptotic limit. Brea I into pieces to mae the following definitions and I = 1 θ 1 e (eiθ 1 iθ) dθ + 1 1< θ π e (eiθ 1 iθ) dθ = I (1) + I (2) J = 1 e θ2 /2 dθ + 1 e θ2 /2 dθ = J (1) + J (2) θ 1 1< θ Lemma 1. The complex exponential has the following properties and estimates: 1. For A C 2. For θ R 3. For θ R 4. For A, B C e A = e RA, (2) e iθ 1 iθ θ 2 /2, (3) e iθ 1 iθ + θ 2 /2 θ 3 /3!, (4) e A e B A B e max[ra,rb]. (5) Proof. Left as exercises. 5

6 Use the triangle inequality for integrals and equation (2) to bound I (2) as and J (2) J (2) I (2) 1 1 1< θ π 1< θ π e (cos(1) 1) 1 e (cos(1) 1) e (eiθ 1 iθ) dθ e cos(θ) 1 dθ dθ 1< θ π Use a technique similar to the proof of Marov s inequality to estimate as J (2) = 1 e θ2 /2 dθ 1 θ e θ2 /2 dθ = 1 2 θ >1 θ >1 e /2. Both I (2) and J (2) tend to zero at an exponential rate. Now the effort is to estimate the closeness of I (1) 1 and J (1) I (1) J (1) = For θ 1, use inequality (4) to derive ( ) e (eiθ 1 iθ) e θ2 /2 dθ. 1. Write cos(θ) 1 + θ 2 /2 cos(θ) + i sin(θ) 1 iθ + θ 2 /2 e iθ 1 iθ + θ 2 /2 θ3 6 θ2 6. (6) Therefore, cos(θ) 1 θ 2 /3. Now put these together using inequalities (6) and (4) I (1) J (1) e (eiθ 1 iθ) e θ2 /2 θ 3 dθ 3! e θ2 dθ 1 Change variables with φ = θ to obtain (the derivation is left as an exercise) 1 1 θ 3 3! e θ2 /3 dθ = φ 3 e φ2 /3 dφ = 3 2 e /3 3e /

7 Then putting all these together I J 0. Recalling the definitions of I and J, this is the same as!e 1 0! as. This is equivalent to Stirling s Formula lim e! = 1. An alternate proof using the Lebesgue Dominated Convergence Theorem Start with the definition of I I =! e = 1 π π e (eiθ 1 iθ) dθ. Mae the change of variables y = θ with dy = dθ to obtain I = e = 1 π e (eiy/ 1 iy ) dy.! π Consider the integrand e (eiy/ 1 iy ). The exponent converges pointwise (e iy/ 1 iy/ ) y 2 /2 as by using equation (4), so the integrand converges pointwise to e (eiy/ 1 iy ) e y2 /2. The integrand is bounded pointwise by e (eiy/ 1 iy ) = e (cos(y/ ) 1) using equation (2). Using the half-angle identity, this can be written as e (cos(y/ ) 1) = e 2 sin2 (y/(2 )). Finally, e 2 sin2 (y/(2 )) e 2y2 /π 2 7

8 if and only if 2 sin 2 (y/(2 )) 2y 2 /π 2 or sin 2 (y/(2 )) (y/ ) 2 1 π 2 on the domain of integration [ π, π ]. But the function sin2 (y/(2 )) (y/ has ) 2 a limit of 1/4 as y 0, is symmetric around y = 0, and is decreasing on (0, π ). The minimum value of the function occurs at π and is 1/π 2. Then using the Lebesgue Dominated Convergence Theorem, [2, page 42] or [1, page 33, Theorem 2.44] π π e (eiθ 1 iθ) dθ e y2 /2 dy =. Putting this together! e! as. This is equivalent to Stirling s Formula lim e! = 1. Discussion These proofs establishes the Stirling s Formula asymptotic limit fairly easily, but are not enough to show the inequality n n+1/2 e n+1/(12n+1) < n! < n n+1/2 e n+1/(12n). In order to establish the inequality requires bounds on the rate of approach of I = 1 π e (eiθ 1 iθ) dθ π to J = 1 = 1 e θ2 /2 dθ. Such an estimate requires bounds on the rate of approach of e (eiy/ 1 iy ) e y2 /2 which is possible with careful estimation. 8

9 Sources The heuristic proof using the Central Limit Theorem is adapted from Ross [6, pages ], which in turn is based on Hu [4]. The rigorous proof is adapted from the short article by Pinsy [5]. Problems to Wor for Understanding 1. Show that for A C, e A = e RA 2. Show that for θ R, e iθ 1 iθ θ 2 /2 3. Show that for θ R, e iθ 1 iθ + θ 2 /2 θ 3 /3! 4. Use standard theorems from calculus (either the Fundamental Theorem of Calculus or the Mean Value Theorem) applied to the function f(t) = e ta+(1 t)b to show that for A, B C, e A e B A B e max[ra,rb] 5. Show that 1 φ 3 e φ2 /3 dφ = e /3 3e / Derive inequalities to estimate the size of the difference I J = 1 π π e (eiθ 1 iθ) dθ 1 = 1 e θ2 /2 dθ. Use these inequalities to derive inequalities for! refining Stirling s asymptotic limit formula to an inequality. 9

10 Reading Suggestion: References [1] Leo Breiman. Probability. Addison Wesley, [2] Kai Lai Chung. A Course in Probability Theory. Academic Press, [3] William Feller. A Introduction to Probability Theory and It Applications, Volume II, Second Edition, volume II. John Wiley and Sons, second edition edition, [4] T.-C. Hu. A statistical method of approach to Stirling s formula. American Statistician, 42: , [5] Mar A. Pinsy. Stirling s formula via the Poisson distribution. American Mathematical Monthly, 114(3): , March [6] Sheldon M. Ross. Introduction to Probability Models. Elsevier, 6th edition edition, Outside Readings and Lins: I chec all the information on each page for correctness and typographical errors. Nevertheless, some errors may occur and I would be grateful if you would alert me to such errors. I mae every reasonable effort to present current and accurate information for public use, however I do not guarantee the accuracy or timeliness of information on this website. Your use of the information from this website is strictly voluntary and at your ris. I have checed the lins to external sites for usefulness. Lins to external websites are provided as a convenience. I do not endorse, control, monitor, or guarantee the information contained in any external website. I don t guarantee that the lins are active at all times. Use the lins here with the same caution as 10

11 you would all information on the Internet. This website reflects the thoughts, interests and opinions of its author. They do not explicitly represent official positions or policies of my employer. Information on this website is subject to change without notice. Steve Dunbar s Home Page, to Steve Dunbar, sdunbar1 at unl dot edu Last modified: Processed from L A TEX source on April 21,

Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics

Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics Course Notes for Math 16: Mathematical Statistics Approximation Methods in Statistics Adam Merberg and Steven J. Miller August 18, 6 Abstract We introduce some of the approximation methods commonly used

More information

Stochastic Processes and Advanced Mathematical Finance. The Definition of Brownian Motion and the Wiener Process

Stochastic Processes and Advanced Mathematical Finance. The Definition of Brownian Motion and the Wiener Process Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

Stochastic Processes and Advanced Mathematical Finance. Multiperiod Binomial Tree Models

Stochastic Processes and Advanced Mathematical Finance. Multiperiod Binomial Tree Models Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

Note on some explicit formulae for twin prime counting function

Note on some explicit formulae for twin prime counting function Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:

More information

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM TORONTO THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

More information

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable 4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complex-valued function of a real variable Consider a complex valued function f(t) of a real variable

More information

THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION

THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION ERICA CHAN DECEMBER 2, 2006 Abstract. The function sin is very important in mathematics and has many applications. In addition to its series epansion, it

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

About the Gamma Function

About the Gamma Function About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is

More information

CONTINUOUS COUNTERPARTS OF POISSON AND BINOMIAL DISTRIBUTIONS AND THEIR PROPERTIES

CONTINUOUS COUNTERPARTS OF POISSON AND BINOMIAL DISTRIBUTIONS AND THEIR PROPERTIES Annales Univ. Sci. Budapest., Sect. Comp. 39 213 137 147 CONTINUOUS COUNTERPARTS OF POISSON AND BINOMIAL DISTRIBUTIONS AND THEIR PROPERTIES Andrii Ilienko Kiev, Ukraine Dedicated to the 7 th anniversary

More information

Estimating the Average Value of a Function

Estimating the Average Value of a Function Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Gambling Systems and Multiplication-Invariant Measures

Gambling Systems and Multiplication-Invariant Measures Gambling Systems and Multiplication-Invariant Measures by Jeffrey S. Rosenthal* and Peter O. Schwartz** (May 28, 997.. Introduction. This short paper describes a surprising connection between two previously

More information

WHEN DOES A RANDOMLY WEIGHTED SELF NORMALIZED SUM CONVERGE IN DISTRIBUTION?

WHEN DOES A RANDOMLY WEIGHTED SELF NORMALIZED SUM CONVERGE IN DISTRIBUTION? WHEN DOES A RANDOMLY WEIGHTED SELF NORMALIZED SUM CONVERGE IN DISTRIBUTION? DAVID M MASON 1 Statistics Program, University of Delaware Newark, DE 19717 email: davidm@udeledu JOEL ZINN 2 Department of Mathematics,

More information

MATHEMATICAL METHODS OF STATISTICS

MATHEMATICAL METHODS OF STATISTICS MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS

More information

Stochastic Processes and Advanced Mathematical Finance. Duration of the Gambler s Ruin

Stochastic Processes and Advanced Mathematical Finance. Duration of the Gambler s Ruin Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

1 Sufficient statistics

1 Sufficient statistics 1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

More information

HEAVISIDE CABLE, THOMSON CABLE AND THE BEST CONSTANT OF A SOBOLEV-TYPE INEQUALITY. Received June 1, 2007; revised September 30, 2007

HEAVISIDE CABLE, THOMSON CABLE AND THE BEST CONSTANT OF A SOBOLEV-TYPE INEQUALITY. Received June 1, 2007; revised September 30, 2007 Scientiae Mathematicae Japonicae Online, e-007, 739 755 739 HEAVISIDE CABLE, THOMSON CABLE AND THE BEST CONSTANT OF A SOBOLEV-TYPE INEQUALITY Yoshinori Kametaka, Kazuo Takemura, Hiroyuki Yamagishi, Atsushi

More information

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

MATH 132: CALCULUS II SYLLABUS

MATH 132: CALCULUS II SYLLABUS MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

More information

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w. hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

Differentiating under an integral sign

Differentiating under an integral sign CALIFORNIA INSTITUTE OF TECHNOLOGY Ma 2b KC Border Introduction to Probability and Statistics February 213 Differentiating under an integral sign In the derivation of Maximum Likelihood Estimators, or

More information

Stirling s formula, n-spheres and the Gamma Function

Stirling s formula, n-spheres and the Gamma Function Stirling s formula, n-spheres and the Gamma Function We start by noticing that and hence x n e x dx lim a 1 ( 1 n n a n n! e ax dx lim a 1 ( 1 n n a n a 1 x n e x dx (1 Let us make a remark in passing.

More information

ON THE EXPONENTIAL FUNCTION

ON THE EXPONENTIAL FUNCTION ON THE EXPONENTIAL FUNCTION ROBERT GOVE AND JAN RYCHTÁŘ Abstract. The natural exponential function is one of the most important functions students should learn in calculus classes. The applications range

More information

Statistics of the Zeta zeros: Mesoscopic and macroscopic phenomena

Statistics of the Zeta zeros: Mesoscopic and macroscopic phenomena Statistics of the Zeta zeros: Mesoscopic and macroscopic phenomena Department of Mathematics UCLA Fall 2012 he Riemann Zeta function Non-trivial zeros: those with real part in (0, 1). First few: 1 2 +

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses. Michael R. Powers[ 1 ] Temple University and Tsinghua University

A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses. Michael R. Powers[ 1 ] Temple University and Tsinghua University A Coefficient of Variation for Skewed and Heavy-Tailed Insurance Losses Michael R. Powers[ ] Temple University and Tsinghua University Thomas Y. Powers Yale University [June 2009] Abstract We propose a

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

Exact Nonparametric Tests for Comparing Means - A Personal Summary

Exact Nonparametric Tests for Comparing Means - A Personal Summary Exact Nonparametric Tests for Comparing Means - A Personal Summary Karl H. Schlag European University Institute 1 December 14, 2006 1 Economics Department, European University Institute. Via della Piazzuola

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

MTH6120 Further Topics in Mathematical Finance Lesson 2

MTH6120 Further Topics in Mathematical Finance Lesson 2 MTH6120 Further Topics in Mathematical Finance Lesson 2 Contents 1.2.3 Non-constant interest rates....................... 15 1.3 Arbitrage and Black-Scholes Theory....................... 16 1.3.1 Informal

More information

Goal Problems in Gambling and Game Theory. Bill Sudderth. School of Statistics University of Minnesota

Goal Problems in Gambling and Game Theory. Bill Sudderth. School of Statistics University of Minnesota Goal Problems in Gambling and Game Theory Bill Sudderth School of Statistics University of Minnesota 1 Three problems Maximizing the probability of reaching a goal. Maximizing the probability of reaching

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association

CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association CISC - Curriculum & Instruction Steering Committee California County Superintendents Educational Services Association Primary Content Module IV The Winning EQUATION NUMBER SENSE: Factors of Whole Numbers

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

Dirichlet forms methods for error calculus and sensitivity analysis

Dirichlet forms methods for error calculus and sensitivity analysis Dirichlet forms methods for error calculus and sensitivity analysis Nicolas BOULEAU, Osaka university, november 2004 These lectures propose tools for studying sensitivity of models to scalar or functional

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

How Euler Did It. 1 + + + +... If the first partial sum of this series is 1 and the second is 3

How Euler Did It. 1 + + + +... If the first partial sum of this series is 1 and the second is 3 How Euler Did It Estimating the Basel Problem December, 2003 by Ed Sandifer In the lives of famous people, we can often identify the first thing they did that made them famous. For Thomas Edison, it was

More information

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of series-parallel labelled

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous? 36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

More information

Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity.

Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity. 7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni- Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents

Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider

More information

From Binomial Trees to the Black-Scholes Option Pricing Formulas

From Binomial Trees to the Black-Scholes Option Pricing Formulas Lecture 4 From Binomial Trees to the Black-Scholes Option Pricing Formulas In this lecture, we will extend the example in Lecture 2 to a general setting of binomial trees, as an important model for a single

More information

4 Sums of Random Variables

4 Sums of Random Variables Sums of a Random Variables 47 4 Sums of Random Variables Many of the variables dealt with in physics can be expressed as a sum of other variables; often the components of the sum are statistically independent.

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine Aït-Sahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times

More information

THE SQUARE PARTIAL SUMS OF THE FOURIER TRANSFORM OF RADIAL FUNCTIONS IN THREE DIMENSIONS

THE SQUARE PARTIAL SUMS OF THE FOURIER TRANSFORM OF RADIAL FUNCTIONS IN THREE DIMENSIONS Scientiae Mathematicae Japonicae Online, Vol. 5,, 9 9 9 THE SQUARE PARTIAL SUMS OF THE FOURIER TRANSFORM OF RADIAL FUNCTIONS IN THREE DIMENSIONS CHIKAKO HARADA AND EIICHI NAKAI Received May 4, ; revised

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Stochastic Processes and Advanced Mathematical Finance. Ruin Probabilities

Stochastic Processes and Advanced Mathematical Finance. Ruin Probabilities Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Stochastic Processes and Advanced

More information

Properties of moments of random variables

Properties of moments of random variables Properties of moments of rom variables Jean-Marie Dufour Université de Montréal First version: May 1995 Revised: January 23 This version: January 14, 23 Compiled: January 14, 23, 1:5pm This work was supported

More information

CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 Solutions CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

How To Understand The Theory Of Hyperreals

How To Understand The Theory Of Hyperreals Ultraproducts and Applications I Brent Cody Virginia Commonwealth University September 2, 2013 Outline Background of the Hyperreals Filters and Ultrafilters Construction of the Hyperreals The Transfer

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

Mean Value Coordinates

Mean Value Coordinates Mean Value Coordinates Michael S. Floater Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

More information

Mathematics for Econometrics, Fourth Edition

Mathematics for Econometrics, Fourth Edition Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents

More information

Lecture 7: Continuous Random Variables

Lecture 7: Continuous Random Variables Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

2 Fourier Analysis and Analytic Functions

2 Fourier Analysis and Analytic Functions 2 Fourier Analysis and Analytic Functions 2.1 Trigonometric Series One of the most important tools for the investigation of linear systems is Fourier analysis. Let f L 1 be a complex-valued Lebesgue-integrable

More information

CHAPTER IV - BROWNIAN MOTION

CHAPTER IV - BROWNIAN MOTION CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time

More information

Concentration inequalities for order statistics Using the entropy method and Rényi s representation

Concentration inequalities for order statistics Using the entropy method and Rényi s representation Concentration inequalities for order statistics Using the entropy method and Rényi s representation Maud Thomas 1 in collaboration with Stéphane Boucheron 1 1 LPMA Université Paris-Diderot High Dimensional

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME

ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME Alexey Chuprunov Kazan State University, Russia István Fazekas University of Debrecen, Hungary 2012 Kolchin s generalized allocation scheme A law of

More information

Mechanics 1: Vectors

Mechanics 1: Vectors Mechanics 1: Vectors roadly speaking, mechanical systems will be described by a combination of scalar and vector quantities. scalar is just a (real) number. For example, mass or weight is characterized

More information

Columbia University in the City of New York New York, N.Y. 10027

Columbia University in the City of New York New York, N.Y. 10027 Columbia University in the City of New York New York, N.Y. 10027 DEPARTMENT OF MATHEMATICS 508 Mathematics Building 2990 Broadway Fall Semester 2005 Professor Ioannis Karatzas W4061: MODERN ANALYSIS Description

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

More information

Transformations and Expectations of random variables

Transformations and Expectations of random variables Transformations and Epectations of random variables X F X (): a random variable X distributed with CDF F X. Any function Y = g(x) is also a random variable. If both X, and Y are continuous random variables,

More information

The Analysis of Dynamical Queueing Systems (Background)

The Analysis of Dynamical Queueing Systems (Background) The Analysis of Dynamical Queueing Systems (Background) Technological innovations are creating new types of communication systems. During the 20 th century, we saw the evolution of electronic communication

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

ON THE EXISTENCE AND LIMIT BEHAVIOR OF THE OPTIMAL BANDWIDTH FOR KERNEL DENSITY ESTIMATION

ON THE EXISTENCE AND LIMIT BEHAVIOR OF THE OPTIMAL BANDWIDTH FOR KERNEL DENSITY ESTIMATION Statistica Sinica 17(27), 289-3 ON THE EXISTENCE AND LIMIT BEHAVIOR OF THE OPTIMAL BANDWIDTH FOR KERNEL DENSITY ESTIMATION J. E. Chacón, J. Montanero, A. G. Nogales and P. Pérez Universidad de Extremadura

More information

A characterization of trace zero symmetric nonnegative 5x5 matrices

A characterization of trace zero symmetric nonnegative 5x5 matrices A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the

More information

MATH 381 HOMEWORK 2 SOLUTIONS

MATH 381 HOMEWORK 2 SOLUTIONS MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

Appendix 3 IB Diploma Programme Course Outlines

Appendix 3 IB Diploma Programme Course Outlines Appendix 3 IB Diploma Programme Course Outlines The following points should be addressed when preparing course outlines for each IB Diploma Programme subject to be taught. Please be sure to use IBO nomenclature

More information

Section 5.1 Continuous Random Variables: Introduction

Section 5.1 Continuous Random Variables: Introduction Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

More information