# Outline. Uncertainty. Uncertainty. Making decisions under uncertainty. Probability. Methods for handling uncertainty

Save this PDF as:

Size: px
Start display at page:

Download "Outline. Uncertainty. Uncertainty. Making decisions under uncertainty. Probability. Methods for handling uncertainty"

## Transcription

1 Outline Uncertainty Chapter 13 Uncertainty Probability Syntax and Semantics Inference Independence and Bayes' Rule Uncertainty Let action A t = leave for airport t minutes before flight Will A t get me there on time? Problems: 1. partial observability (road state, other drivers' plans, etc.) 2. noisy sensors (traffic reports) 3. uncertainty in action outcomes (flat tire, etc.) 4. immense complexity of modeling and predicting traffic Hence a purely logical approach either 1. risks falsehood: A 25 will get me there on time, or 2. leads to conclusions that are too weak for decision making: A 25 will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc. (A 1440 might reasonably be said to get me there on time but I'd have to stay overnight in the airport ) Methods for handling uncertainty Default or nonmonotonic logic: Assume my car does not have a flat tire Assume A 25 works unless contradicted by evidence Issues: What assumptions are reasonable? How to handle contradiction? Rules with fudge factors : A get there on time Sprinkler 0.99 WetGrass WetGrass 0.7 Rain Issues: Problems with combination, e.g., Sprinkler causes Rain?? Probability Model agent's degree of belief Given the available evidence, A 25 will get me there on time with probability 0.04 Probability Probabilistic assertions summarize effects of laziness : failure to enumerate exceptions, qualifications, etc. ignorance : lack of relevant facts, initial conditions, etc. Subjective probability: Probabilities relate propositions to agent's own state of knowledge e.g., P(A 25 no reported accidents) = 0.06 These are not assertions about the world Probabilities of propositions change with new evidence: e.g., P(A 25 no reported accidents, 5 a.m.) = 0.15 Making decisions under uncertainty Suppose I believe the following: P(A 25 gets me there on time ) = 0.04 P(A 90 gets me there on time ) = 0.70 P(A 120 gets me there on time ) = 0.95 P(A 1440 gets me there on time ) = Which action to choose? Depends on my preferences for missing flight vs. time spent waiting, etc. Utility theory is used to represent and infer preferences Decision theory = probability theory + utility theory 1

2 Need way of reasoning Update belief state based on an action and percept calculate new probabilities choose the action with highest expected utility. Formal Language for reasoning under uncertainty probability theory Nature of sentences to which degrees of belief are assigned (propositions) Dependence of the degree of belief on the agent s experience Syntax of language for reasoning about uncertainty Basic element: random variable refers to a part of the world whose status is initially unknown Similar to propositional logic: possible worlds defined by assignment of values to random variables. Boolean random variables e.g., Cavity (do I have a cavity?) Discrete random variables e.g., Weather is one of <sunny,rainy,cloudy,snow> Domain values must be exhaustive and mutually exclusive Elementary proposition constructed by assignment of a value to a random variable: e.g., Weather = sunny, Cavity = false (abbreviated as cavity) Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny ^ Cavity = false Syntax Atomic event: A complete specification of the state of the world about which the agent is uncertain E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events: Cavity = false ^Toothache = false Cavity = false ^ Toothache = true Cavity = true ^ Toothache = false Cavity = true ^ Toothache = true Axioms of probability For any propositions A, B 0 P(A) 1 P(true) = 1 and P(false) = 0 P(A ν B) = P(A) + P(B) - P(A ^ B ) Atomic events are mutually exclusive and exhaustive Prior probability Prior or unconditional probabilities of propositions e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence Probability distribution gives values for all possible assignments: P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1) The above corresponds to P(Weather=sunny)=0.72, P(Weather=rain)=0.1, P(Weather=cloudy)=0.08, P(Weather=snow)=0.1 Prior probability Sometimes it is useful to think about a complete set of variables all at once.. Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables P(Weather,Cavity) = a 4 2 matrix of values: Weather = sunny rainy cloudy snow Cavity = true Cavity = false Every question about a domain can be answered by the joint distribution 2

3 Conditional probability Once the agent has some evidence concerning the previously unknown random variables, prior probabilities are no longer applicable. Conditional or posterior probabilities e.g., P(cavity toothache ) = 0.8 i.e., given that toothache is all I know Notation for conditional distributions: P(Cavity Toothache) = gives the values P(Cavity=xi Toothache=yj) for all values of xi and yj here 4 elements) Conditional probability If we know more, e.g., cavity is also given, then we have P(cavity toothache,cavity ) = 1 New evidence may be irrelevant, allowing simplification, e.g., P(cavity toothache, sunny) = P(cavity toothache) = 0.8 This kind of inference, sanctioned by domain knowledge, is crucial Conditional probability Definition of conditional probability: P(a b) = P(a ^ b) / P(b) if P(b ) > 0 Product rule gives an alternative formulation: P(a ^ b) = P(a b) P(b) = P(b a) P(a ) Conditional probability A general version holds for whole distributions, e.g., P(Weather,Cavity) = P(Weather Cavity) P(Cavity) (View as a set of 4 2 equations, not matrix mult.) Chain rule is derived by successive application of product rule: P(X 1,,X n ) = P(X 1,...,X n-1 ) P(X n X 1,...,X n-1 ) = P(X 1,...,X n-2 ) P(X n-1 X 1,...,X n-2 ) P(X n X 1,...,X n-1 ) = = π i= 1,n P(X i X 1,,X i-1 ) Inference using Full Joint Distributions Probabilistic inference the computation from observed evidence of posterior probabilities for query propositions. We can use the full joint distribution as a Knowledge Base from which we can derive answers to all questions about the probabilities of the probabilities of the values for the random variables. For any proposition φ, sum the atomic events where it is true: P(φ) = Σ ω:ω φ P(ω ) 3

4 For any proposition φ, sum the atomic events where it is true: P(φ) = Σ ω:ω φ P(ω ) P(toothache ) = = 0.2 For any proposition φ, sum the atomic events where it is true: P(φ) = Σ ω:ω φ P(ω ) P(toothache ) = = 0.2 P(cavity V toothache) = Just to check, let s try opposite value for cavity: Can also compute conditional probabilities: P( cavity toothache) = P( cavity ^ toothache) P(toothache) = = 0.4 Can also compute conditional probabilities: P(cavity toothache) = P(cavity ^ toothache) P(toothache) = = 0.6 Normalization Notice in the above two calculations the term 1/P(toothache) remains constant, no matter what value of Cavity we calculate. It can be viewed as a normalization constant for the distribution ensuring that it sums to 1. The book uses α to denote that constant. We can calculete the above two values at once P(Cavity toothache) Normalization Denominator can be viewed as a normalization constant α P(Cavity toothache) = α, P(Cavity,toothache) = α, [P(Cavity,toothache,catch) + P(Cavity,toothache, catch)] = α, [<0.108,0.016> + <0.012,0.064>] = α, <0.12,0.08> = <0.6,0.4> General Inference Procedure: compute distribution on query variable (Cavity) by fixing evidence variables (Toothache) and summing over hidden variables (Catch) 4

5 , contd. Typically, we are interested in the posterior joint distribution of the query variables Y given specific values e for the evidence variables E Independence A and B are independent iff P(A B) = P(A) or P(B A) = P(B) or P(A, B) = P(A) P(B ) Let the hidden variables be H = X - Y - E Then the required summation of joint entries is done by summing out the hidden variables: P(Y E = e) = αp(y,e = e) = ασ h P(Y,E= e, H = h ) The terms in the summation are joint entries because Y, E and H together exhaust the set of random variables Obvious problems: 1. Worst-case time complexity O(d n ) where d is the largest arity 2. Space complexity O(d n ) to store the joint distribution 3. How to find the numbers for O(d n ) entries? P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity) P(Weather) 32 entries reduced to 12; for n independent biased coins, O(2 n ) O(n) Absolute independence powerful but rare Dentistry is a large field with hundreds of variables, none of which are independent. What to do? Bayes' Rule Product rule P(a^b) = P(a b) P(b) = P(b a) P(a ) Bayes' rule: P(a b) = P(b a) P(a) / P(b ) This rule underlies all modern AI systems for probabilistic inference. or in distribution form P(Y X) = P(X Y) P(Y) / P(X) = αp(x Y) P(Y) Or conditionalized on some background evidence e P(Y X,e) = P(X Y,e) P(Y,e) / P(X,e) Bayes' Rule Bayes' rule: P(a b) = P(b a) P(a) / P(b ) What s the win? Useful for assessing diagnostic probability from causal probability: P(Cause Effect) = P(Effect Cause) P(Cause) / P(Effect ) E.g., let M be meningitis, S be stiff neck: P(m s) = P(s m) P(m) / P(s) = / 0.1 = Note: doctor may know p(m s) through observations (i.e., may have quantitative information in the diagnostic direction from symptoms to causes). But, diagnostic knowledge is often more fragile than causal knowledge. E.g., P(m) would go up in an epidemic as would P(m s) so observations no longer correct. P(s m) would not change, however. Bayes' Rule: Combining Evidence How can we apply Bayes rule when we have more evidence? E.g., P(Cavity toothache ^ catch)? With the full joint distribution this is easy just read off the values: P(Cavity toothache ^ catch) = α<0.108, 0.016> <0.871, 0.129> Problem: this approach won t scale! How about using Bayes rule? P(Cavity toothache ^ catch) = αp(toothache ^ catch Cavity) P(Cavity) Still have a problem with scaling up as we have more evidence. Might as well use the full joint distribution! Conditional independence P(Cavity toothache ^ catch) = αp(toothache ^ catch Cavity) P(Cavity) P(Toothache, Cavity, Catch) has = 7 independent entries It would be nice if Toothache and Catch were independent but they are not. However If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache: (1) P(catch toothache, cavity) = P(catch cavity) The same independence holds if I haven't got a cavity: (2) P(catch toothache, cavity) = P(catch cavity) Catch is conditionally independent of Toothache given Cavity : P(Catch Toothache,Cavity) = P(Catch Cavity ) Equivalent statements: P(Toothache Catch, Cavity) = P(Toothache Cavity ) P(Toothache, Catch Cavity) = P(Toothache Cavity) P(Catch Cavity ) 5

6 Conditional independence contd. Write out full joint distribution using chain rule: P(Toothache, Catch, Cavity) = P(Toothache Catch, Cavity) P(Catch, Cavity ) = P(Toothache Catch, Cavity) P(Catch Cavity) P(Cavity ) = P(Toothache Cavity) P(Catch Cavity) P(Cavity ) I.e., = 5 independent numbers In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n. Conditional independence is our most basic and robust form of knowledge about uncertain environments. Bayes' Rule and conditional independence P(Cavity toothache ^ catch) = αp(toothache ^ catch Cavity) P(Cavity) = αp(toothache Cavity) P(catch Cavity) P(Cavity) This is an example of a naïve Bayes model: P(Cause,Effect 1,,Effect n ) = P(Cause) π i P(Effect i Cause ) Total number of parameters is linear in n Summary Probability is a rigorous formalism for uncertain knowledge Joint probability distribution specifies probability of every atomic event Queries can be answered by summing over atomic events For nontrivial domains, we must find a way to reduce the joint size Independence and conditional independence provide the tools 6

### Basics of Probability

Basics of Probability 1 Sample spaces, events and probabilities Begin with a set Ω the sample space e.g., 6 possible rolls of a die. ω Ω is a sample point/possible world/atomic event A probability space

### 13.3 Inference Using Full Joint Distribution

191 The probability distribution on a single variable must sum to 1 It is also true that any joint probability distribution on any set of variables must sum to 1 Recall that any proposition a is equivalent

### Logic, Probability and Learning

Logic, Probability and Learning Luc De Raedt luc.deraedt@cs.kuleuven.be Overview Logic Learning Probabilistic Learning Probabilistic Logic Learning Closely following : Russell and Norvig, AI: a modern

### Marginal Independence and Conditional Independence

Marginal Independence and Conditional Independence Computer Science cpsc322, Lecture 26 (Textbook Chpt 6.1-2) March, 19, 2010 Recap with Example Marginalization Conditional Probability Chain Rule Lecture

### Outline. Probability. Random Variables. Joint and Marginal Distributions Conditional Distribution Product Rule, Chain Rule, Bayes Rule.

Probability 1 Probability Random Variables Outline Joint and Marginal Distributions Conditional Distribution Product Rule, Chain Rule, Bayes Rule Inference Independence 2 Inference in Ghostbusters A ghost

### Artificial Intelligence. Conditional probability. Inference by enumeration. Independence. Lesson 11 (From Russell & Norvig)

Artificial Intelligence Conditional probability Conditional or posterior probabilities e.g., cavity toothache) = 0.8 i.e., given that toothache is all I know tation for conditional distributions: Cavity

### Probability, Conditional Independence

Probability, Conditional Independence June 19, 2012 Probability, Conditional Independence Probability Sample space Ω of events Each event ω Ω has an associated measure Probability of the event P(ω) Axioms

### CS 331: Artificial Intelligence Fundamentals of Probability II. Joint Probability Distribution. Marginalization. Marginalization

Full Joint Probability Distributions CS 331: Artificial Intelligence Fundamentals of Probability II Toothache Cavity Catch Toothache, Cavity, Catch false false false 0.576 false false true 0.144 false

### CS 188: Artificial Intelligence. Probability recap

CS 188: Artificial Intelligence Bayes Nets Representation and Independence Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore Conditional probability

### 15-381: Artificial Intelligence. Probabilistic Reasoning and Inference

5-38: Artificial Intelligence robabilistic Reasoning and Inference Advantages of probabilistic reasoning Appropriate for complex, uncertain, environments - Will it rain tomorrow? Applies naturally to many

### Lecture 2: Introduction to belief (Bayesian) networks

Lecture 2: Introduction to belief (Bayesian) networks Conditional independence What is a belief network? Independence maps (I-maps) January 7, 2008 1 COMP-526 Lecture 2 Recall from last time: Conditional

### Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1

Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

### Bayesian Networks. Mausam (Slides by UW-AI faculty)

Bayesian Networks Mausam (Slides by UW-AI faculty) Bayes Nets In general, joint distribution P over set of variables (X 1 x... x X n ) requires exponential space for representation & inference BNs provide

### Bayesian Networks Chapter 14. Mausam (Slides by UW-AI faculty & David Page)

Bayesian Networks Chapter 14 Mausam (Slides by UW-AI faculty & David Page) Bayes Nets In general, joint distribution P over set of variables (X 1 x... x X n ) requires exponential space for representation

### Attribution. Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley)

Machine Learning 1 Attribution Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley) 2 Outline Inductive learning Decision

10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

### Artificial Intelligence Mar 27, Bayesian Networks 1 P (T D)P (D) + P (T D)P ( D) =

Artificial Intelligence 15-381 Mar 27, 2007 Bayesian Networks 1 Recap of last lecture Probability: precise representation of uncertainty Probability theory: optimal updating of knowledge based on new information

### Logic in general. Inference rules and theorem proving

Logical Agents Knowledge-based agents Logic in general Propositional logic Inference rules and theorem proving First order logic Knowledge-based agents Inference engine Knowledge base Domain-independent

### A crash course in probability and Naïve Bayes classification

Probability theory A crash course in probability and Naïve Bayes classification Chapter 9 Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s

### A Few Basics of Probability

A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study

### The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs

The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Rules of Inference Section 1.6 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments

### Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

### Data Mining Chapter 6: Models and Patterns Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 6: Models and Patterns Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Models vs. Patterns Models A model is a high level, global description of a

### The Basics of Graphical Models

The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures

### Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

### Statistics in Geophysics: Introduction and Probability Theory

Statistics in Geophysics: Introduction and Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/32 What is Statistics? Introduction Statistics is the

### Probability Theory. Elementary rules of probability Sum rule. Product rule. p. 23

Probability Theory Uncertainty is key concept in machine learning. Probability provides consistent framework for the quantification and manipulation of uncertainty. Probability of an event is the fraction

### (x + a) n = x n + a Z n [x]. Proof. If n is prime then the map

22. A quick primality test Prime numbers are one of the most basic objects in mathematics and one of the most basic questions is to decide which numbers are prime (a clearly related problem is to find

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

### Bayesian Networks. Read R&N Ch. 14.1-14.2. Next lecture: Read R&N 18.1-18.4

Bayesian Networks Read R&N Ch. 14.1-14.2 Next lecture: Read R&N 18.1-18.4 You will be expected to know Basic concepts and vocabulary of Bayesian networks. Nodes represent random variables. Directed arcs

### RELIABILITY OF SYSTEMS WITH VARIOUS ELEMENT CONFIGURATIONS

Application Example 1 (Probability of combinations of events; binomial and Poisson distributions) RELIABILITY OF SYSTEMS WITH VARIOUS ELEMENT CONFIGURATIONS Note: Sections 1, 3 and 4 of this application

### Pooling and Meta-analysis. Tony O Hagan

Pooling and Meta-analysis Tony O Hagan Pooling Synthesising prior information from several experts 2 Multiple experts The case of multiple experts is important When elicitation is used to provide expert

### Gaussian Classifiers CS498

Gaussian Classifiers CS498 Today s lecture The Gaussian Gaussian classifiers A slightly more sophisticated classifier Nearest Neighbors We can classify with nearest neighbors x m 1 m 2 Decision boundary

### Fuzzy Implication Rules. Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey

Fuzzy Implication Rules Adnan Yazıcı Dept. of Computer Engineering, Middle East Technical University Ankara/Turkey Fuzzy If-Then Rules Remember: The difference between the semantics of fuzzy mapping rules

### Probability and statistics; Rehearsal for pattern recognition

Probability and statistics; Rehearsal for pattern recognition Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception

### Chapter ML:IV. IV. Statistical Learning. Probability Basics Bayes Classification Maximum a-posteriori Hypotheses

Chapter ML:IV IV. Statistical Learning Probability Basics Bayes Classification Maximum a-posteriori Hypotheses ML:IV-1 Statistical Learning STEIN 2005-2015 Area Overview Mathematics Statistics...... Stochastics

### Bayesian probability theory

Bayesian probability theory Bruno A. Olshausen arch 1, 2004 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using probability. The foundations

### Applications of Methods of Proof

CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

### Learning from Data: Naive Bayes

Semester 1 http://www.anc.ed.ac.uk/ amos/lfd/ Naive Bayes Typical example: Bayesian Spam Filter. Naive means naive. Bayesian methods can be much more sophisticated. Basic assumption: conditional independence.

### Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

### Intelligent Systems: Reasoning and Recognition. Uncertainty and Plausible Reasoning

Intelligent Systems: Reasoning and Recognition James L. Crowley ENSIMAG 2 / MoSIG M1 Second Semester 2015/2016 Lesson 12 25 march 2015 Uncertainty and Plausible Reasoning MYCIN (continued)...2 Backward

### Cell Phone based Activity Detection using Markov Logic Network

Cell Phone based Activity Detection using Markov Logic Network Somdeb Sarkhel sxs104721@utdallas.edu 1 Introduction Mobile devices are becoming increasingly sophisticated and the latest generation of smart

### CS 441 Discrete Mathematics for CS Lecture 5. Predicate logic. CS 441 Discrete mathematics for CS. Negation of quantifiers

CS 441 Discrete Mathematics for CS Lecture 5 Predicate logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Negation of quantifiers English statement: Nothing is perfect. Translation: x Perfect(x)

### Joint Probability Distributions and Random Samples. Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

5 Joint Probability Distributions and Random Samples Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Two Discrete Random Variables The probability mass function (pmf) of a single

### On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information

Finance 400 A. Penati - G. Pennacchi Notes on On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information by Sanford Grossman This model shows how the heterogeneous information

### CHAPTER 2 Estimating Probabilities

CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a

### 2. Methods of Proof Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try.

2. METHODS OF PROOF 69 2. Methods of Proof 2.1. Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try. Trivial Proof: If we know q is true then

### E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

### Basics of Statistical Machine Learning

CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu Modern machine learning is rooted in statistics. You will find many familiar

### Part III: Machine Learning. CS 188: Artificial Intelligence. Machine Learning This Set of Slides. Parameter Estimation. Estimation: Smoothing

CS 188: Artificial Intelligence Lecture 20: Dynamic Bayes Nets, Naïve Bayes Pieter Abbeel UC Berkeley Slides adapted from Dan Klein. Part III: Machine Learning Up until now: how to reason in a model and

### Concept Learning. Learning from examples General-to specific ordering of hypotheses Version spaces and candidate elimination algorithm Inductive bias

Concept Learning Learning from examples Generalto specific ordering of hypotheses Version spaces and candidate elimination algorithm Inductive bias What s Concept Learning? infer the general definition

### def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true

### Uncertainty in AI. Uncertainty I: Probability as Degree of Belief. The (predominantly logic-based) methods covered so far have assorted

We now examine: Uncertainty I: Probability as Degree of Belief how probability theory might be used to represent and reason with knowledge when we are uncertain about the world; how inference in the presence

### Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

### Basic Probability Concepts

page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

### Data Mining Practical Machine Learning Tools and Techniques

Some Core Learning Representations Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter of Data Mining by I. H. Witten and E. Frank Decision trees Learning Rules Association rules

### Probability OPRE 6301

Probability OPRE 6301 Random Experiment... Recall that our eventual goal in this course is to go from the random sample to the population. The theory that allows for this transition is the theory of probability.

### Formal Modeling in Cognitive Science

Formal Modeling in Cognitive Science Joint, Marginal, and Miles Osborne (originally: Frank Keller) School of Informatics University of Edinburgh miles@inf.ed.ac.uk February 4, 2008 Miles Osborne (originally:

### Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment,

Uncertainty Problems often have a certain amount of uncertainty, possibly due to: Incompleteness of information about the environment, E.g., loss of sensory information such as vision Incorrectness in

### THE MULTINOMIAL DISTRIBUTION. Throwing Dice and the Multinomial Distribution

THE MULTINOMIAL DISTRIBUTION Discrete distribution -- The Outcomes Are Discrete. A generalization of the binomial distribution from only 2 outcomes to k outcomes. Typical Multinomial Outcomes: red A area1

### Chapter 3: The basic concepts of probability

Chapter 3: The basic concepts of probability Experiment: a measurement process that produces quantifiable results (e.g. throwing two dice, dealing cards, at poker, measuring heights of people, recording

### Lecture 11: Graphical Models for Inference

Lecture 11: Graphical Models for Inference So far we have seen two graphical models that are used for inference - the Bayesian network and the Join tree. These two both represent the same joint probability

### Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

1 Learning Goals Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1. Be able to apply Bayes theorem to compute probabilities. 2. Be able to identify

### Exam 2 Study Guide and Review Problems

Exam 2 Study Guide and Review Problems Exam 2 covers chapters 4, 5, and 6. You are allowed to bring one 3x5 note card, front and back, and your graphing calculator. Study tips: Do the review problems below.

### Generalized Modus Ponens

Generalized Modus Ponens This rule allows us to derive an implication... True p 1 and... p i and... p n p 1... p i-1 and p i+1... p n implies p i implies q implies q allows: a 1 and... a i and... a n implies

### Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

### Probability for AI students who have seen some probability before but didn t understand any of it

Probability for AI students who have seen some probability before but didn t understand any of it I am inflicting these proofs on you for two reasons: 1. These kind of manipulations will need to be second

### Tagging with Hidden Markov Models

Tagging with Hidden Markov Models Michael Collins 1 Tagging Problems In many NLP problems, we would like to model pairs of sequences. Part-of-speech (POS) tagging is perhaps the earliest, and most famous,

### Reliability Applications (Independence and Bayes Rule)

Reliability Applications (Independence and Bayes Rule ECE 313 Probability with Engineering Applications Lecture 5 Professor Ravi K. Iyer University of Illinois Today s Topics Review of Physical vs. Stochastic

### Rigorous Software Development CSCI-GA 3033-009

Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical

### Linear Threshold Units

Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

### Problems on Discrete Mathematics 1

Problems on Discrete Mathematics 1 Chung-Chih Li 2 Kishan Mehrotra 3 Syracuse University, New York L A TEX at January 11, 2007 (Part I) 1 No part of this book can be reproduced without permission from

### m (t) = e nt m Y ( t) = e nt (pe t + q) n = (pe t e t + qe t ) n = (qe t + p) n

1. For a discrete random variable Y, prove that E[aY + b] = ae[y] + b and V(aY + b) = a 2 V(Y). Solution: E[aY + b] = E[aY] + E[b] = ae[y] + b where each step follows from a theorem on expected value from

### Probability Models.S1 Introduction to Probability

Probability Models.S1 Introduction to Probability Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard The stochastic chapters of this book involve random variability. Decisions are

### Model-based Synthesis. Tony O Hagan

Model-based Synthesis Tony O Hagan Stochastic models Synthesising evidence through a statistical model 2 Evidence Synthesis (Session 3), Helsinki, 28/10/11 Graphical modelling The kinds of models that

### Grammars and introduction to machine learning. Computers Playing Jeopardy! Course Stony Brook University

Grammars and introduction to machine learning Computers Playing Jeopardy! Course Stony Brook University Last class: grammars and parsing in Prolog Noun -> roller Verb thrills VP Verb NP S NP VP NP S VP

### Business Statistics 41000: Probability 1

Business Statistics 41000: Probability 1 Drew D. Creal University of Chicago, Booth School of Business Week 3: January 24 and 25, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

### CHAPTER 7 GENERAL PROOF SYSTEMS

CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes

### Chapter 5 A Survey of Probability Concepts

Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible

### STA 371G: Statistics and Modeling

STA 371G: Statistics and Modeling Decision Making Under Uncertainty: Probability, Betting Odds and Bayes Theorem Mingyuan Zhou McCombs School of Business The University of Texas at Austin http://mingyuanzhou.github.io/sta371g

### 1 Uncertainty and Preferences

In this chapter, we present the theory of consumer preferences on risky outcomes. The theory is then applied to study the demand for insurance. Consider the following story. John wants to mail a package

### MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample

MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of

### L10: Probability, statistics, and estimation theory

L10: Probability, statistics, and estimation theory Review of probability theory Bayes theorem Statistics and the Normal distribution Least Squares Error estimation Maximum Likelihood estimation Bayesian

### Induction. Margaret M. Fleck. 10 October These notes cover mathematical induction and recursive definition

Induction Margaret M. Fleck 10 October 011 These notes cover mathematical induction and recursive definition 1 Introduction to induction At the start of the term, we saw the following formula for computing

### Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

### Lecture 9 Maher on Inductive Probability

Lecture 9 Maher on Inductive Probability Patrick Maher Scientific Thought II Spring 2010 Two concepts of probability Example You know that a coin is either two-headed or two-tailed but you have no information

### Practice Problems for Homework #8. Markov Chains. Read Sections 7.1-7.3. Solve the practice problems below.

Practice Problems for Homework #8. Markov Chains. Read Sections 7.1-7.3 Solve the practice problems below. Open Homework Assignment #8 and solve the problems. 1. (10 marks) A computer system can operate

### Confindence Intervals and Probability Testing

Confindence Intervals and Probability Testing PO7001: Quantitative Methods I Kenneth Benoit 3 November 2010 Using probability distributions to assess sample likelihoods Recall that using the µ and σ from

### Software Verification and System Assurance

Software Verification and System Assurance John Rushby Based on joint work with Bev Littlewood (City University UK) Computer Science Laboratory SRI International Menlo Park CA USA John Rushby, SR I Verification

### Basic Probability Theory I

A Probability puzzler!! Basic Probability Theory I Dr. Tom Ilvento FREC 408 Our Strategy with Probability Generally, we want to get to an inference from a sample to a population. In this case the population

### Bayesian probability: P. State of the World: X. P(X your information I)

Bayesian probability: P State of the World: X P(X your information I) 1 First example: bag of balls Every probability is conditional to your background knowledge I : P(A I) What is the (your) probability

### Machine Learning I Week 14: Sequence Learning Introduction

Machine Learning I Week 14: Sequence Learning Introduction Alex Graves Technische Universität München 29. January 2009 Literature Pattern Recognition and Machine Learning Chapter 13: Sequential Data Christopher

### Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

### Prediction of Heart Disease Using Naïve Bayes Algorithm

Prediction of Heart Disease Using Naïve Bayes Algorithm R.Karthiyayini 1, S.Chithaara 2 Assistant Professor, Department of computer Applications, Anna University, BIT campus, Tiruchirapalli, Tamilnadu,

### P (A) = lim P (A) = N(A)/N,

1.1 Probability, Relative Frequency and Classical Definition. Probability is the study of random or non-deterministic experiments. Suppose an experiment can be repeated any number of times, so that we

### Decision Trees and Networks

Lecture 21: Uncertainty 6 Today s Lecture Victor R. Lesser CMPSCI 683 Fall 2010 Decision Trees and Networks Decision Trees A decision tree is an explicit representation of all the possible scenarios from

### Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22

CS 70 Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette

### Math 150 Sample Exam #2

Problem 1. (16 points) TRUE or FALSE. a. 3 die are rolled, there are 1 possible outcomes. b. If two events are complementary, then they are mutually exclusive events. c. If A and B are two independent

### Boris Kovalerchuk Dept. of Computer Science Central Washington University USA borisk@cwu.edu

Boris Kovalerchuk Dept. of Computer Science Central Washington University USA borisk@cwu.edu 1 I support the optimistic view: Scientific rigor is compatible with the high uncertainty and the combination