Effect of Different Aging Times on Sn-Ag-Cu Solder Alloy

Size: px
Start display at page:

Download "Effect of Different Aging Times on Sn-Ag-Cu Solder Alloy"

Transcription

1 TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS Vol. 16, No. 3, pp , June 25, 2015 Regular Paper pissn: eissn: DOI: OAK Central: Effect of Different Aging Times on Sn-Ag-Cu Solder Alloy Ervina Efzan M. N. and Siti Norfarhani I. Faculty of Engineering and Technology, Multimedia University, Ayer Keroh, Melaka, Malaysia Received March 5, 2015; Revised April 15, 2015; Accepted May 3, 2015 This work studied the thickness and contact angle of solder joints between SAC 305 lead-free solder alloy and a Copper (Cu) substrate. Intermetallic compound (IMC) thickness and contact angle of 3Sn-Ag-0.5Cu (SAC 305) leadfree solder were measured using varying aging times, at a fixed temperature at 30. The thickness of IMC and contact angle depend on the aging time. IMC thickness increases as the aging increases. The contact angle gradually decreased from o to o as aging time increased from zero to 24 hours for big solder sample. Meanwhile, for small solder sample, the contact angle increased from o to o from zero to 24 hours. The IMC thickness sharply increased from mm to mm from zero to 24 hours aging time for big solder. In spite of that, for small solder the IMC thickness gradually increased from mm to mm. XRD analysis was used to confirm the intermetallic formation inside the sample. Cu 6 Sn 5, Cu 3 Sn, Ni 3 Sn and Ni 3 Sn 2 IMC layers were formed between the solder and the copper substrate. As the aging time increased, the strength of the solder joint improved due to reduced contact angle. Keywords: Solder, IMC, Contact angle, XRD 1. INTRODUCTION Author to whom all correspondence should be addressed: ervina.noor@mmu.edu.my, ervinaefzan@gmail.com Copyright 2015 KIEEME. All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Solder is a metal substance having a low melting point of about 200. The soldering iron is used to heat the solder using a certain temperature until it melts. The purpose of melting the solder is to use it to join other metals together, which is known as a copper track or component leads when it is solidified again in an electronic study [1]. Nowadays, solder is widely used in the electronic packaging industry, and to establish an electrical connection between parts in the circuit by using molten metal and a soldiering iron [2]. Solders are also used in electronic devices and typically thaw at temperatures beneath 350. Eutectic solder consists of 37% lead (Pb) and 63% tin (Sn). Generally, it is known as 63/37 solder and is preferred as when it is melted, it changes right away from solid to liquid state [3]. Intermetallic and covalent bonds are formed from the reaction between solder and a small quantity of the base metal. The intermetallic compound (IMC) is a chemical compound that develops and grows between the metals existing in the base metal, protective platings and solder. Its formation is essential for an excellent solder connection. However, the excessive formation of IMCs results in fragility [4]. Tin-lead solder alloys are used extensively in the microelectronic industries. The usage of tin-lead became popular due to its low price, high wetting properties and average melting point temperature [5]. There is no requirement for high temperatures. Unfortunately, researchers have found that lead can be hazardous to the environment and to human health, and solder based lead containing toxic [5]. Lead solders could affect human health as lead causes deterioration of the central neural systems and the blood. If Pb particles are inhaled or ingested they will then accumulate in the human body and may cause health risks [6]. Conversions to lead-free alternatives are being considered for several reasons, including health concerns, enormous thermal stresses of elements, and with the increasing use of temperaturesensitive elements and substrates. The most appropriate Pb-free solder alloys are those based on tin and containing copper and/ or silver [7]. This work uses a lead-free solder alloy. Tin-silver-copper (Sn/ Ag/Cu) solder is widely known by the acronym SAC. SAC solder Copyright 11 KIEEME. All rights reserved

2 Trans. Electr. Electron. Mater. 16(3) 112 (2015): Ervina Efzan M.N. et al. 113 is generally considered as eutectic or nearly eutectic at a temperature of almost 217 [8]. Its defrosting stage is 221 and 227, both of which are beneath the melting point of the eutectic tin- 3.5 silver (wt. %) and the eutectic tin-0.7 copper solders, which are commonly known by the acronyms Sn-3.5Ag and Sn-0.7Cu [9]. Generally, the range of composition of SAC alloys is from 0.5 to 0.8% for copper, 3.0 to 4.0% for silver, and the rest of the composition is an Sn alloy [8]. According to Grusd, and in contrast to tin-40lead (Sn/40Pb), Pb-free solders of the combination tinsilver-x offer better slink resistivity at 100 and room temperature [10]. The intermetallic compound (IMC) layer starts to develop and grow as the temperature increases. It grows faster when the temperature is high. During the soldering process, the foremost IMC formed is Cu 6 Sn 5. However, for the reaction between Cu and Cu 6 Sn 5, a very slim film of Cu 3 Sn is formed at the surface [10]. Generally, it is reported that the IMC layer formed on leadfree solder is slightly thicker than the IMC layer formed when a eutectic SnPb solder is used. When an Sn-Ag lead-free solder is used, the IMC layer formed is thinner compared to PbSn. However, in certain cases it is found that the IMC formed is 2~3 times thicker than eutectic PbSn [11]. This paper reports the results of an investigation of the microstructural features, contact angle as well as the thickness and formation of IMCs for varying aging times, using SAC 305 solder. Results show that this solder is suitable for use in industry as the IMC formed is not too thick and the contact angle is less than 90 o. Since the technology depends on the formation of intermetallic compounds, it is important to identify and control its growth, to hinder any disadvantageous effects on the solder joints. was fixed at 30. Specimens then were mounted in epoxy resin, mechanically ground and polished using a 1.0 um polishing pad to observe the interface between the solder and substrate, and to remeasure the IMC thicknesses and contact angles. In this research, the thickness of the IMC layers and contact angles were taken as an average over three magnifications, which were 5x, 10x, and 20x. The average thickness was calculated by dividing the total length of the image. The formation of intermetallic compound between solder and copper substrate was measured using XRD analysis. XRD equipment used in this study was XPERT-PRO by PANalytical with monochromatic Cu kα radiation. Diffractograms generated in XRD measurement were analyzed using XPERT-PRO High Score Plus software. 3. RESULTS AND DISCUSSION Figure 1 presents the results of the investigation of the thickness of IMC at the four duration times with 30 for SAC 305 solder. From Fig. 1 and Table 1, it can be observed that the thickness of the IMC layer increased after the aging process due to the thick formation of Cu 6 Sn 5 and Cu 3 Sn on the interface. The IMC thickness increased from to mm. This is due to the increase in the formation of Cu 6 Sn 5 and Cu 3 Sn when the sample is exposed to high temperatures during the aging process. 2. EXPERIMENTAL PROCEDURES A printed circuit board with SAC 305 lead-free solder was prepared. SAC 305 lead-free solder comprises 96.5% Sn, 3% Ag and 0.5% Cu [12] and was reflowed at a temperature 215 for eight seconds. These samples (SAC 305) were cut into eight smaller pieces using a diamond blade cutter with model Micracut 150 precision cutter, and were divided into four big solder and four small solder. Before they were examined by optical microscope for thicknesses and contact angles, the samples were firstly ground and polished and mounted. All the samples were ground using grit SiC paper to prepare the surface flatness, and polished to remove any excess using abrasive silicon carbide sandpaper with a smooth surface of An 0.05 um polishing pad was used to polish the samples. A Forcipol 2 Grinder-Polisher machine was used to grind and polish the samples. An optical microscope was then used to observe the microstructures of the samples. By using an optical microscope, the contact angle of each sample, the thickness of the solder and IMC and also the substrate are measured. The wetting angle of the solder on the substrate was determined by measuring the contact angle. The thickness of intermetallic compound and contact angle were measured by the microscope with the aid of analytical software (Visver 3.3 (Professional) at 20x magnification). In order to use the analytical software, a scale had to be defined so that measurement results can be presented in calibrated units, such as millimeters. In order to set the scale, the straight line selection tool was used to make a line selection that corresponds to a known distance. The aging process measurements were conducted at 24, 48, and 72 hours duration. Temperature for the aging process Fig. 1. Thickness of IMC for big solder after aging time: 0 hours, 24 hours, 48 hours, and 72 hours, all at 20x magnification. However, the thickness at 48 hours aging time is much lower than that at 24 hours. This finding may be attributable to the increment of crack length as the aging time increase. The thickness of the IMC decreases as the length of crack increases. This Table 1. Average thicknesses for big solder. Aging Time mm 5x 10x 20x Average 0 Hour Hours Hours Hours

3 114 Trans. Electr. Electron. Mater. 16(3) 112 (2015): Ervina Efzan M.N. et al. Fig. 2. Thickness of IMC for small solder after aging time: 0 hour, 24 hours, 48 hours, and 72 hours, all at 20x magnification. Fig. 3. Contact angle for big solder after aging time: 0 hour, 24 hours, 48 hours, and 72 hours, all at 20x magnification. Table 2. Average thicknesses for small solder. Aging Time mm 5x 10x 20x Average 0 Hour mm mm mm mm 24 Hours mm mm mm mm 48 Hours mm mm mm mm 72 Hours mm mm mm mm is supported by Jen, Chiou and Yu in their journal [13]. An IMC with defects such as voids and cracks happens after exposure to aging. This is agreed by Raoeslison, Racine, Zhang, and Buirona in their journal [14]. Figure 2 presents the results of the investigation of the thickness of IMC for small solder at the four duration times with 30 for SAC 305 solder. From Fig. 2 and Table 2, the changes to the IMC layer thickness after the aging process can be observed. The thickness of IMC surged from mm to mm after 24 hours aging, but at 48 hours its thickness had increase by mm only, compared to its thickness at time zero. The thickness of intermetallic compound is surged when the aging time increased from zero to 24 hours. This condition happened because of the superior solid state reaction and is also supported by Niwat and Kannachai [14]. Even though only a small amount of solder is used, the IMC still grows when it is exposed to high temperature during the aging process. According to Raoeslison, Racine, Zhang, and Buirona, IMC may form even with a very little thickness like a micrometer thick [15]. The increase in the thickness of IMC indicates the presence of small Cu 6 Sn 5 at the interface of solder and copper substrates. A Cu 6 Sn 5 layer formed during the reaction at the Sn-based solder and Cu interface. After 72 hours, the thickness of IMC has not increased, probably because of the decrease in the thickness of Cu 6 Sn 5 due to the initial development of Cu 3 Sn at the alloy s surface. Niwat and Kannachai reported that the thickness of Cu 6 Sn 5 reduced as Cu 3 Sn forms at the expense of Cu 6 Sn 5 [16]. The wettability of the solder on the Cu substrate can be determined by the contact angle of the solder on the substrate, as shown in Fig. 3. As the aging time increased from zero to 72 hours, a significant decrease was seen in the contact angle of the solder on the substrate. The reduction of contact angle with increasing reflow temperature may be attributed to the increase in the reaction rate of the flux. For a smaller contact angle, better wetting behavior can be obtained. Fig. 4. Contact angle for small solder after aging time: 0 hour, 24 hours, 48 hours, and 72 hours, all at 20x magnification. The decrease in the contact angle is due to the defects at the interface of the substances, formation of IMC such as Cu 6 Sn 5 and Cu 3 Sn, as well as due to the increase in the area of solid metal contact. This statement is strongly supported by Eustathopoulos, Nicholas, and Drevet [18]. Since the contact angle between the solder and substrate in the investigated aging range is much lower than 90 o it can be concluded that the solderability of this solder is good. Figure 4 presents the contact angles of IMC for small solder at the four duration times with 30 for SAC 305 solder. It can be observed that the contact angle slightly increases after the aging process. This is due to the adsorption of oxygen on solid substrates. All the contact angles obtained after the aging process are below 90 o. Any contact angle below 90 o is considered small, which correspond to excellent wettability. High wettability indicates that the solder joint is good. This statement is strongly supported by Yuan and Lee [15]. According to Suganuma, it is possible for two types of IMC, Cu 6 Sn 5 and Cu 3 Sn, to be formed between an Sn alloy and a Cu

4 Trans. Electr. Electron. Mater. 16(3) 112 (2015): Ervina Efzan M.N. et al CONCLUSIONS Fig. 5. XRD image for intermetallic compound formation between SAC 305/Cu joint for big solder sample. The wettability and microstructural characteristics of SAC 305 lead-free solder were investigated. It can be concluded that the solderability of this solder is good when the contact angle between the solder and substrate in the investigated aging range is much lower than 90. The IMC thickness and contact angle of the solder on Cu were evaluated for 0, 24, 48, and 72 hours aging time. As the aging time increased, the IMC thickness was found to increase. A reduction in contact angle in this sample after the aging process improved wettability was observed as the temperature increased. The intermetallic compounds in the SAC 305 solder are Cu 6 Sn 5, Cu 3 Sn, Ni 3 Sn and Ni 3 Sn 2. The Cu 6 Sn 5 intermetallic compound already existed in the sample, before aging. Ni 3 Sn, Ni 3 Sn 2 and Cu 3 Sn were formed after the aging process. Their formation was in the form of a reaction product between Sn solder alloy and Cu substrate. The free Cu atom diffuses through the Sn solder atom and produces Cu 3 Sn. The thickness of Cu 6 Sn 5 increases because of the formation of Cu 3 Sn at the surface of Cu 6 Sn 5. REFERENCES Fig. 6. XRD image for intermetallic compound formation between SAC 305/Cu joint for small solder sample. substrate at temperatures lower than 350. The presence of Cu 6 Sn 5 (ICDD ) and Cu 3 Sn (ICDD ) was confirmed by XRD analysis (Fig. 5). A Cu 3 Sn layer is usually formed at high temperature. The formation of these IMCs may be attributable to the saturation of molten solder in contact with Cu. The distribution pattern of IMC is different due to the movement and distribution of atoms during the aging process. Besides, through this analysis also, nickel (Ni) was also found to exist in the sample. Thus, Ni 3 Sn 2 (ICDD ) and Ni 3 Sn (ICDD ) are formed from the reaction between solder and Ni substrate. Figure 6. shows the XRD diffractogram obtained from XRD analysis. Cu 6 Sn 5 (ICDD ), Cu 3 Sn (ICDD ) and Ni 3 Sn (ICDD ) IMC layers were confirmed present in the sample. The formation of the Cu 6 Sn 5 layer occurred after the liquid solder spread to the existing Cu 3 Sn layer. The IMC formation is mainly because of the movement of the electrons inside atoms due to high temperature and the diffusion that takes place during the aging process. The diffusion is mathematically investigated by Fick s law [16]. Temperature affects the diffusion coefficients which describe how fast the diffusion can occur. This is supported by Fan, Thomy and Vollersten in their journal [17]. [1] K. Brindley, Chapter 12-Soldering, in Starting Electronics, 4th Ed., (2011) p [2] ehow Contributor. (2013, March 19) Facts about Soldering [Online]. Available [3] J. Sylvester, Eutectic Solder Die Attach for High-Powered Devices, Palomar Technologies, [4] N.A, (2008), Definition of Intermetallic [online]. Available FTP : [5] J.O.G.Parent, et al, Effects of Intermetallic formation at the interface between Copper and Lead-tin Solder, Department of Metallurgical Engineering and Materials Science (Carnegie Mellon University, Pittsburgh, USA) p [6] A. Grusd, Lead-Free Solders in Electronics, Heraeus Inc,West Conshohocken. [7] M. Mouas, et al Staticstructure and dynamic properties in liquid Sn96.2, Ag3.8 lead free solder: Structure factor, diffusion coefficients and viscosity, Elsevier, [8] S. Montgomery, Definition of Soldering. [9] C. M. Carabello. (NA). Lead-Free Solder New Methodolgy and Perception [online]. Available com/pdfs/solutions/hasl_info.pdf [10] T. C. Chiu, et al, Effect of Thermal Aging on Board Level Drop Reliability for Pb-free BGA Packages, Proc.of the 54th Electronic Components and Technology Conf., [11] P. E. Tegehall, Review of the Impact of Intermetallic Layers on the Brittleness of Tin Lead and Lead-Free Solder Joints, IVF Industrial Research and Development Corporation, March [12] Y. M. Jen, et al., Fracture mechanics study on the intermetallic compound cracks for the solder joints of electronic packages, [13] R. N. Raoelison, et al., Magnetic pulse welding: Interface of Al/ Cu joint and Investigation of intermetallic formation effect on the weld features, Laboratory Roberval, [14] N. Mookam and K. Kanlayasiri, Institute of Technology, Ladkrabang, Bangkok, [15] Y. Y. Uan and T. R. Lee, Contact Angle and Wetting Properties (Houston, USA, 2013)

5 116 Trans. Electr. Electron. Mater. 16(3) 112 (2015): Ervina Efzan M.N. et al _1 [16] M. Berthou, et al., Microstructure evolution observation for SAC solder joint: Comparison between thermal cycling and thermal storage, (Talence, France, 2013). [17] J. Fan, et al., Bremer Institut für angewandte Strahltechnik Gmbh (Bremen, Germany, 2011). [18] N. Eustathopoulos et al., Wettability at High Temperatures, Pergamon Materials Series (Elsevier, The Boulevard, UK, 1999).

Effect of PWB Plating on the Microstructure and Reliability of SnAgCu Solder Joints

Effect of PWB Plating on the Microstructure and Reliability of SnAgCu Solder Joints Effect of PWB Plating on the Microstructure and Reliability of SnAgCu Solder Joints Y. Zheng, C. Hillman, P. McCluskey CALCE Electronic Products and Systems Center A. James Clark School of Engineering

More information

Interfacial Reaction between Sn Ag Co Solder and Metals

Interfacial Reaction between Sn Ag Co Solder and Metals Materials Transactions, Vol. 46, No. 11 (25) pp. 2394 to 2399 Special Issue on Lead-Free ing in Electronics III #25 The Japan Institute of Metals Interfacial Reaction between Sn Ag Co and Metals Hiroshi

More information

, Yong-Min Kwon 1 ) , Ho-Young Son 1 ) , Jeong-Tak Moon 2 ) Byung-Wook Jeong 2 ) , Kyung-In Kang 2 )

, Yong-Min Kwon 1 ) , Ho-Young Son 1 ) , Jeong-Tak Moon 2 ) Byung-Wook Jeong 2 ) , Kyung-In Kang 2 ) Effect of Sb Addition in Sn-Ag-Cu Solder Balls on the Drop Test Reliability of BGA Packages with Electroless Nickel Immersion Gold (ENIG) Surface Finish Yong-Sung Park 1 ), Yong-Min Kwon 1 ), Ho-Young

More information

Characterization and Kinetics of the Interfacial Reactions in Solder Joints of Tin-Based Solder Alloys on Copper Substrates

Characterization and Kinetics of the Interfacial Reactions in Solder Joints of Tin-Based Solder Alloys on Copper Substrates Characterization and Kinetics of the Interfacial Reactions in Solder Joints of Tin-Based Solder Alloys on Copper Substrates J. C. Madeni*, S. Liu* and T. A. Siewert** *Center for Welding, Joining and Coatings

More information

Solutions without Boundaries. PCB Surface Finishes. Todd Henninger, C.I.D. Sr. Field Applications Engineer Midwest Region

Solutions without Boundaries. PCB Surface Finishes. Todd Henninger, C.I.D. Sr. Field Applications Engineer Midwest Region Solutions without Boundaries PCB Surface Finishes Todd Henninger, C.I.D. Sr. Field Applications Engineer Midwest Region 1 Notice Notification of Proprietary Information: This document contains proprietary

More information

Influence of Solder Reaction Across Solder Joints

Influence of Solder Reaction Across Solder Joints Influence of Solder Reaction Across Solder Joints Kejun Zeng FC BGA Packaging Development Semiconductor Packaging Development Texas Instruments, Inc. 6 th TRC Oct. 27-28, 2003 Austin, TX 1 Outline Introduction

More information

PRODUCT PROFILE. ELECTROLOY in partnership with FCT Asia Pte Limited. in manufacturing. Nihon Superior Lead Free Solder Bar.

PRODUCT PROFILE. ELECTROLOY in partnership with FCT Asia Pte Limited. in manufacturing. Nihon Superior Lead Free Solder Bar. PRODUCT PROFILE ELECTROLOY in partnership with FCT Asia Pte Limited in manufacturing Nihon Superior Lead Free Solder Bar SN100C Product Name Product Code LEAD FREE BAR LEAD FREE BAR ( TOP UP ALLOY ) SN100C

More information

REACTIONS IN THE SN CORNER OF THE CU-SN-ZN ALLOY SYSTEM

REACTIONS IN THE SN CORNER OF THE CU-SN-ZN ALLOY SYSTEM REACTIONS IN THE SN CORNER OF THE CU-SN-ZN ALLOY SYSTEM D.D. Perovic, L Snugovsky and J.W. Rutter Department of Materials Science and Engineering University of Toronto Toronto, ON, Canada doug.perovic@utoronto.ca

More information

Choosing a Low-Cost Alternative to SAC Alloys for PCB Assembly

Choosing a Low-Cost Alternative to SAC Alloys for PCB Assembly Choosing a Low-Cost Alternative to SAC Alloys for PCB Assembly Our thanks to Indium Corporation for allowing us to reprint the following article. By Brook Sandy and Ronald C. Lasky, PhD, PE., Indium Corporation

More information

Lapping and Polishing Basics

Lapping and Polishing Basics Lapping and Polishing Basics Applications Laboratory Report 54 Lapping and Polishing 1.0: Introduction Lapping and polishing is a process by which material is precisely removed from a workpiece (or specimen)

More information

Technical Note Recommended Soldering Parameters

Technical Note Recommended Soldering Parameters Technical Note Recommended Soldering Parameters Introduction Introduction The semiconductor industry is moving toward the elimination of Pb from packages in accordance with new international regulations.

More information

Interface Reaction and Mechanical Properties of Lead-free Sn Zn Alloy/Cu Joints

Interface Reaction and Mechanical Properties of Lead-free Sn Zn Alloy/Cu Joints Materials Transactions, Vol. 43, No. 8 (2002) pp. 1797 to 1801 Special Issue on Lead-Free Electronics Packaging c 2002 The Japan Institute of Metals Interface Reaction and Mechanical Properties of Lead-free

More information

Comparative Wetting Ability of Lead-Free Alloys

Comparative Wetting Ability of Lead-Free Alloys Comparative Wetting Ability of Lead-Free Alloys Understanding the wetting kinetics of lead-free alloys becomes crucial in selecting a suitable lead-free composition for assembling PCBs. KaiHwa Chew, Vincent

More information

Pb-Free Plating for Electronic Components

Pb-Free Plating for Electronic Components Pb-Free Plating for Electronic Components by Morimasa Tanimoto *, Hitoshi Tanaka *, Satoshi Suzuki * and Akira Matsuda * The authors have developed Pb-free tin alloy plating materials. Preliminary ABSTRACT

More information

Lead-free Defects in Reflow Soldering

Lead-free Defects in Reflow Soldering Lead-free Defects in Reflow Soldering Author: Peter Biocca, Senior Development Engineer, Kester, Des Plaines, Illinois. Telephone 972.390.1197; email pbiocca@kester.com February 15 th, 2005 Lead-free Defects

More information

Review of the Impact of Intermetallic Layers on the Brittleness of Tin-Lead and Lead-Free Solder Joints

Review of the Impact of Intermetallic Layers on the Brittleness of Tin-Lead and Lead-Free Solder Joints Review of the Impact of Intermetallic Layers on the Brittleness of Tin-Lead and Lead-Free Solder Joints Per-Erik Tegehall, Ph.D. 6-03-15 Preface This review has been funded by Vinnova (Swedish Governmental

More information

Thermal Fatigue Assessment of Lead-Free Solder Joints

Thermal Fatigue Assessment of Lead-Free Solder Joints Thermal Fatigue Assessment of Lead-Free Solder Joints Qiang YU and Masaki SHIRATORI Department of Mechanical Engineering and Materials Science Yokohama National University Tokiwadai 79-5, Hodogaya-ku,

More information

Customer Service Note Lead Frame Package User Guidelines

Customer Service Note Lead Frame Package User Guidelines Customer Service Note Lead Frame Package User Guidelines CSN30: Lead Frame Package User Guidelines Introduction Introduction When size constraints allow, the larger-pitched lead-frame-based package design

More information

Cross-Interaction Between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples

Cross-Interaction Between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples Cross-Interaction Between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples C. W. Chang 1, Q. P. Lee 1, C. E. Ho 1 1, 2, *, and C. R. Kao 1 Department of Chemical & Materials Engineering 2 Institute of Materials

More information

DETECTION OF DEFECT ON FBGA SOLDER BALLS USING X-RAY TECHNOLOGY

DETECTION OF DEFECT ON FBGA SOLDER BALLS USING X-RAY TECHNOLOGY DETECTION OF DEFECT ON FBGA SOLDER BALLS USING X-RAY TECHNOLOGY Pavel Řihák Doctoral Degree Programme (2), FEEC BUT E-mail: xrihak02@stud.feec.vutbr.cz Supervised by: Ivan Szendiuch E-mail: szend@feec.vutbr.cz

More information

Good Boards = Results

Good Boards = Results Section 2: Printed Circuit Board Fabrication & Solderability Good Boards = Results Board fabrication is one aspect of the electronics production industry that SMT assembly engineers often know little about.

More information

DVD-15C Soldering Iron Tip Care

DVD-15C Soldering Iron Tip Care DVD-15C Soldering Iron Tip Care Below is a copy of the narration for DVD-15C. The contents for this script were developed by a review group of industry experts and were based on the best available knowledge

More information

Lead Free Wave Soldering

Lead Free Wave Soldering China - Korea - Singapore- Malaysia - USA - Netherlands - Germany WAVE SELECTIVE REFLOW SOLDERING SOLDERING SOLDERING Lead Free Wave Soldering Ursula Marquez October 18, 23 Wave Soldering Roadmap Parameter

More information

Analysis of BGA Solder Joint Reliability for Selected Solder Alloy and Surface Finish Configurations

Analysis of BGA Solder Joint Reliability for Selected Solder Alloy and Surface Finish Configurations Analysis of BGA Solder Joint Reliability for Selected Solder Alloy and Surface Finish Configurations Hugh Roberts / Atotech USA Inc Sven Lamprecht and Christian Sebald / Atotech Deutschland GmbH Mark Bachman,

More information

Printed Circuits. Danilo Manstretta. microlab.unipv.it/ danilo.manstretta@unipv.it. AA 2012/2013 Lezioni di Tecnologie e Materiali per l Elettronica

Printed Circuits. Danilo Manstretta. microlab.unipv.it/ danilo.manstretta@unipv.it. AA 2012/2013 Lezioni di Tecnologie e Materiali per l Elettronica Lezioni di Tecnologie e Materiali per l Elettronica Printed Circuits Danilo Manstretta microlab.unipv.it/ danilo.manstretta@unipv.it Printed Circuits Printed Circuits Materials Technological steps Production

More information

Rework stations: Meeting the challenges of lead-free solders

Rework stations: Meeting the challenges of lead-free solders Rework stations: Meeting the challenges of lead-free solders Market forces, particularly legislation against the use of lead in electronics, have driven electronics manufacturers towards lead-free solders

More information

17 IMPLEMENTATION OF LEAD-FREE SOLDERING TECHNOLOGY. Eva Kotrčová České Vysoké Učení Technické Fakulta Elektrotechnická Katedra Elektrotechnologie

17 IMPLEMENTATION OF LEAD-FREE SOLDERING TECHNOLOGY. Eva Kotrčová České Vysoké Učení Technické Fakulta Elektrotechnická Katedra Elektrotechnologie 17 IMPLEMENTATION OF LEAD-FREE SOLDERING TECHNOLOGY Eva Kotrčová České Vysoké Učení Technické Fakulta Elektrotechnická Katedra Elektrotechnologie 1. Introduction Lead is the toxic heavy metal which is

More information

Interfacial Properties of Zn Sn Alloys as High Temperature Lead-Free Solder on Cu Substrate

Interfacial Properties of Zn Sn Alloys as High Temperature Lead-Free Solder on Cu Substrate Materials Transactions, Vol. 46, No. 11 (2005) pp. 2413 to 2418 Special Issue on Lead-Free Soldering in Electronics III #2005 The Japan Institute of Metals Interfacial Properties of Zn Sn Alloys as High

More information

How do you create a RoHS Compliancy-Lead-free Roadmap?

How do you create a RoHS Compliancy-Lead-free Roadmap? How do you create a RoHS Compliancy-Lead-free Roadmap? When a company begins the transition to lead-free it impacts the whole organization. The cost of transition will vary and depends on the number of

More information

The Interactions between SNAGCU Solder and NI(P)/AU, NI(P)/PD/AU UBMS

The Interactions between SNAGCU Solder and NI(P)/AU, NI(P)/PD/AU UBMS The Interactions between SNAGCU Solder and NI(P)/AU, NI(P)/PD/AU UBMS Jui-Yun Tsai, Josef Gaida, Gerhard Steinberger and Albrecht Uhlig Atotech Deutschland GmbH Berlin, Germany ABSTRACT The metallurgical

More information

Application Note AN-0994 Maximizing the Effectiveness of your SMD Assemblies

Application Note AN-0994 Maximizing the Effectiveness of your SMD Assemblies Application Note AN-0994 Maximizing the Effectiveness of your SMD Assemblies Table of Contents Page Method...2 Thermal characteristics of SMDs...2 Adhesives...4 Solder pastes...4 Reflow profiles...4 Rework...6

More information

Materials Chemistry and Physics 85 (2004) 63 67. Meng-Kuang Huang, Pei-Lin Wu, Chiapyng Lee

Materials Chemistry and Physics 85 (2004) 63 67. Meng-Kuang Huang, Pei-Lin Wu, Chiapyng Lee Materials Chemistry and Physics 85 (2004) 63 67 Effects of different printed circuit board surface finishes on the formation and growth of intermetallics at thermomechanically fatigued small outline J

More information

Application Note. Soldering Methods and Procedures for 1st and 2nd Generation Power Modules. Overview. Analysis of a Good Solder Joint

Application Note. Soldering Methods and Procedures for 1st and 2nd Generation Power Modules. Overview. Analysis of a Good Solder Joint Soldering Methods and Procedures for 1st and 2nd Generation Power Modules Overview This document is intended to provide guidance in utilizing soldering practices to make high quality connections of Vicor

More information

Lead-free Wave Soldering Some Insight on How to Develop a Process that Works

Lead-free Wave Soldering Some Insight on How to Develop a Process that Works Lead-free Wave Soldering Some Insight on How to Develop a Process that Works Author: Peter Biocca, Senior Market Development Engineer, Kester, Des Plaines, Illinois. Telephone: 972.390.1197; email pbiocca@kester.com

More information

Difference Between Various Sn/Ag/Cu Solder Compositions. Almit Ltd. Tadashi Sawamura Takeo Igarashi

Difference Between Various Sn/Ag/Cu Solder Compositions. Almit Ltd. Tadashi Sawamura Takeo Igarashi Difference Between Various Sn/Ag/Cu Solder Compositions Almit Ltd. Tadashi Sawamura Takeo Igarashi 29/6/2005 Table Of Contents 1. Overview 2. Mechanical Properties 3. Reliability Results 4. Conclusion

More information

Selective Soldering Defects and How to Prevent Them

Selective Soldering Defects and How to Prevent Them Selective Soldering Defects and How to Prevent Them Gerjan Diepstraten Vitronics Soltec BV Introduction Two major issues affecting the soldering process today are the conversion to lead-free soldering

More information

RoHS-Compliant Through-Hole VI Chip Soldering Recommendations

RoHS-Compliant Through-Hole VI Chip Soldering Recommendations APPLICATION NOTE AN:017 RoHS-Compliant Through-Hole VI Chip Soldering Recommendations Ankur Patel Associate Product Line Engineer Contents Page Introduction 1 Wave Soldering 1 Hand Soldering 4 Pin/Lead

More information

Lead Free Reliability Testing

Lead Free Reliability Testing Lead Free Reliability Testing Reliability Implications of Lead-Free Reliability, of what? Solder Joints Laminate Solder Joint Reliability Components SAC vs. SAC main alternative alloy Comparison is desired,

More information

PRINTED CIRCUIT BOARD SURFACE FINISHES - ADVANTAGES AND DISADVANTAGES

PRINTED CIRCUIT BOARD SURFACE FINISHES - ADVANTAGES AND DISADVANTAGES PRINTED CIRCUIT BOARD SURFACE FINISHES - ADVANTAGES AND DISADVANTAGES By Al Wright, PCB Field Applications Engineer Epec Engineered Technologies Anyone involved within the printed circuit board (PCB) industry

More information

LEAD FREE HALOGENFREE. Würth Elektronik PCB Design Conference 2007. Lothar Weitzel 2007 Seite 1

LEAD FREE HALOGENFREE. Würth Elektronik PCB Design Conference 2007. Lothar Weitzel 2007 Seite 1 LEAD FREE HALOGENFREE Würth Elektronik PCB Design Conference 2007 Lothar Weitzel 2007 Seite 1 Content Solder surfaces/overview Lead free soldering process requirements/material parameters Different base

More information

Trend of Solder Alloys Development

Trend of Solder Alloys Development Trend of Solder Alloys Development Dr. Ning-Cheng Lee Indium Corporation 1 Solder Is The Choice of Most Electronic Bonding For Years To Come (Indium) (Aprova) (Toleno) Property Soldering Wire Bonding Conductive

More information

Evaluation of Soft Soldering on Aluminium Nitride (AlN) ESTEC Contract No. 19220/05/NL/PA. CTB Hybrids WG ESTEC-22nd May 2007

Evaluation of Soft Soldering on Aluminium Nitride (AlN) ESTEC Contract No. 19220/05/NL/PA. CTB Hybrids WG ESTEC-22nd May 2007 Evaluation of Soft Soldering on Aluminium Nitride (AlN) ESTEC Contract No. 19220/05/NL/PA CTB Hybrids WG ESTEC-22nd May 2007 Evaluation of Soft Soldering on AlN Schedule Project presentation Feasibility

More information

Basic Properties and Application of Auto Enamels

Basic Properties and Application of Auto Enamels Basic Properties and Application of Auto Enamels Composition of Ceramic Automotive Glass Enamels Ceramic automotive glass colours are glass enamels that fire on to the glass during the bending process

More information

Soldering Definition and Differences

Soldering Definition and Differences Soldering Understanding the Basics Copyright 2014 ASM International M. Schwartz, editor All rights reserved www.asminternational.org Chapter 1 Soldering Definition and Differences SOLDER IS A FUSIBLE METAL

More information

Engine Bearing Materials

Engine Bearing Materials Engine Bearing Materials Dr. Dmitri Kopeliovich (Research & Development Manager) The durable operation of an engine bearing is achieved if its materials combine high strength (load capacity, wear resistance,

More information

PCB Quality Inspection. Student Manual

PCB Quality Inspection. Student Manual PCB Quality Inspection Student Manual Unit 2: Inspection Overview Section 2.1: Purpose of Inspection What Is The Purpose of Inspection? There are 2 reasons why Inspection is performed: o To verify the

More information

Soldering of EconoPACK TM, EconoPIM TM, EconoBRIDGE TM, EconoPACK +, EconoDUAL, EasyPACK and EasyPIM TM - Modules

Soldering of EconoPACK TM, EconoPIM TM, EconoBRIDGE TM, EconoPACK +, EconoDUAL, EasyPACK and EasyPIM TM - Modules Seite 1 Soldering of EconoPACK TM, EconoPIM TM, EconoBRIDGE TM, EconoPACK +, EconoDUAL, EasyPACK and EasyPIM TM - Modules Soldering with alloys containing lead (SnPb) is the standard connection technology

More information

Taking the Pain Out of Pb-free Reflow

Taking the Pain Out of Pb-free Reflow Taking the Pain Out of Pb-free Reflow Paul N. Houston & Brian J. Lewis Siemens Dematic Electronics Assembly Systems (770) 797-3362 Presented at APEX 2003, Anaheim CA Daniel F. Baldwin Engent, Inc. Norcross,

More information

MICROALLOYED Sn-Cu Pb-FREE SOLDER FOR HIGH TEMPERATURE APPLICATIONS

MICROALLOYED Sn-Cu Pb-FREE SOLDER FOR HIGH TEMPERATURE APPLICATIONS MICROALLOYED Sn-Cu Pb-FREE SOLDER FOR HIGH TEMPERATURE APPLICATIONS Keith Howell 1, Keith Sweatman 1, Motonori Miyaoka 1, Takatoshi Nishimura 1, Xuan Quy Tran 2, Stuart McDonald 2, and Kazuhiro Nogita

More information

Development of Sn-Zn-Al Lead-Free Solder Alloys

Development of Sn-Zn-Al Lead-Free Solder Alloys Development of Sn-Zn-Al Lead-Free Solder Alloys V Masayuki Kitajima V Tadaaki Shono (Manuscript received January, 5) Fujitsu has implemented a company-wide effort to progressively reduce the use of lead

More information

ENIG with Ductile Electroless Nickel for Flex Circuit Applications

ENIG with Ductile Electroless Nickel for Flex Circuit Applications ENIG with Ductile Electroless Nickel for Flex Circuit Applications Yukinori Oda, Tsuyoshi Maeda, Chika Kawai, Masayuki Kiso, Shigeo Hashimoto C.Uyemura & Co., Ltd. George Milad and Donald Gudeczauskas

More information

Wetting Behavior of Pb-free Solder on Immersion Tin Surface Finishes in Different Reflow Atmospheres

Wetting Behavior of Pb-free Solder on Immersion Tin Surface Finishes in Different Reflow Atmospheres Wetting Behavior of Pb-free Solder on Immersion Tin Surface Finishes in Different Reflow Atmospheres Sven Lamprecht 1, Dr. Kenneth Lee 2, Bill Kao 3, Günter Heinz 1 1 Atotech Deutschland GmbH, Berlin,

More information

How to manage wave solder alloy contaminations. Gerjan Diepstraten & Harry Trip Cobar Europe BV Balver Zinn

How to manage wave solder alloy contaminations. Gerjan Diepstraten & Harry Trip Cobar Europe BV Balver Zinn How to manage wave solder alloy contaminations Gerjan Diepstraten & Harry Trip Cobar Europe BV Balver Zinn Content SnPb solder and impurities Lead-free solder change Pb contaminations in lead-free Measure

More information

Reliability of Eutectic Sn-Pb Solder Bumps and Flip Chip Assemblies

Reliability of Eutectic Sn-Pb Solder Bumps and Flip Chip Assemblies Reliability of Eutectic Sn-Pb Solder Bumps and Flip Chip Assemblies Xingjia Huang 1, Christine Kallmayer 2, Rolf Aschenbrenner 2, S.-W. Ricky Lee 1 1 Department of Mechanical Engineering Hong Kong University

More information

Today's Vapor Phase Soldering An Optimized Reflow Technology for Lead Free Soldering

Today's Vapor Phase Soldering An Optimized Reflow Technology for Lead Free Soldering Today's Vapor Phase Soldering An Optimized Reflow Technology for Lead Free Soldering Dipl.-Ing. Helmut Leicht; Andreas Thumm IBL-Löttechnik GmbH www.ibl-loettechnik.de, Germany ABSTRACT In the beginning

More information

9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure

9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure 9-13 9.8: 9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure (a) The first liquid forms at the temperature at which a vertical line at this composition

More information

The Effect of Temperature on Microstructure of Lead-free Solder Joints

The Effect of Temperature on Microstructure of Lead-free Solder Joints The Effect of Temperature on Microstructure of Lead-free Solder Joints Thomas Le Toux, Milos Dusek & Christopher Hunt November 2003 The Effect of Temperature on Microstructure of Lead-free Solder Joints

More information

Process Parameters Optimization for Friction Stir Welding of Pure Aluminium to Brass (CuZn30) using Taguchi Technique

Process Parameters Optimization for Friction Stir Welding of Pure Aluminium to Brass (CuZn30) using Taguchi Technique MATEC Web of Conferences43, 03005 ( 016) DOI: 10.1051/ matecconf/ 016 4303005 C Owned by the authors, published by EDP Sciences, 016 Process Parameters Optimization for Friction Stir Welding of Pure Aluminium

More information

Optical and Auger Microanalyses of Solder Adhesion Failures in Printed Circuit Boards

Optical and Auger Microanalyses of Solder Adhesion Failures in Printed Circuit Boards Optical and Auger Microanalyses of Solder Adhesion Failures in Printed Circuit Boards K. Kumar and A. Moscaritolo The Charles Stark Draper Laboratory, Incorporated, Cambridge, Massachusetts 02139 ABSTRACT

More information

Phase. Gibbs Phase rule

Phase. Gibbs Phase rule Phase diagrams Phase A phase can be defined as a physically distinct and chemically homogeneous portion of a system that has a particular chemical composition and structure. Water in liquid or vapor state

More information

Lead-Free Universal Solders for Optical and MEMS Packaging

Lead-Free Universal Solders for Optical and MEMS Packaging Lead-Free Universal Solders for Optical and MEMS Packaging Sungho Jin Univ. of California, San Diego, La Jolla CA 92093 OUTLINE -- Introduction -- Universal Solder Fabrication -- Microstructure -- Direct

More information

SURFACE FINISHING FOR PRINTED CIRCUIT BOARDS

SURFACE FINISHING FOR PRINTED CIRCUIT BOARDS SURFACE FINISHING FOR PRINTED CIRCUIT BOARDS In a world of ever-increasing electronic component complexity and pin count requirements for component packaging, focus is once again on the age-old question

More information

Recommended Soldering Techniques for ATC 500 Series Capacitors

Recommended Soldering Techniques for ATC 500 Series Capacitors Recommended Soldering Techniques for ATC 500 Series Capacitors ATC# 001-884 Rev. D; 10/05 1.0. SCOPE. The following procedures have been successful in soldering ATC500 series capacitors to both soft and

More information

Measuring of the Temperature Profile during the Reflow Solder Process Application Note

Measuring of the Temperature Profile during the Reflow Solder Process Application Note Measuring of the Temperature Profile during the Reflow Solder Process Application Note Abstract With reference to the application note Further Details on lead free reflow soldering of LEDs the present

More information

LOGO. Modeling and Simulation of Microstructural Changes in Composite Sn-Ag-Cu Solder Alloys with Cu Nanoparticles

LOGO. Modeling and Simulation of Microstructural Changes in Composite Sn-Ag-Cu Solder Alloys with Cu Nanoparticles Modeling and Simulation of Microstructural Changes in Composite Sn-Ag-Cu Solder Alloys with Cu Nanoparticles Yuanyuan Guan, A.Durga, Nele Moelans Dept. Metallurgy and Materials Engineering, K.U. Leuven,

More information

Soldering of SMD Film Capacitors in Practical Lead Free Processes

Soldering of SMD Film Capacitors in Practical Lead Free Processes Soldering of SMD Film Capacitors in Practical Lead Free Processes Matti Niskala Product Manager, SMD products Evox Rifa Group Oyj, a Kemet Company Lars Sonckin kaari 16, 02600 Espoo, Finland Tel: + 358

More information

Lead-free Hand-soldering Ending the Nightmares

Lead-free Hand-soldering Ending the Nightmares Lead-free Hand-soldering Ending the Nightmares Most issues during the transition seem to be with Hand-soldering As companies transition over to lead-free assembly a certain amount of hand-soldering will

More information

The following document contains information on Cypress products.

The following document contains information on Cypress products. The following document contains information on Cypress products. HANDLING PRECAUTIONS 1. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure

More information

Interfacial Reactions Between Sn 58 mass%bi Eutectic Solder and (Cu, Electroless Ni P/Cu) Substrate

Interfacial Reactions Between Sn 58 mass%bi Eutectic Solder and (Cu, Electroless Ni P/Cu) Substrate Materials Transactions, Vol. 43, No. 8 (2002) pp. 1821 to 1826 Special Issue on Lead-Free Electronics Packaging c 2002 The Japan Institute of Metals Interfacial Reactions Between Sn 58 mass%bi Eutectic

More information

CONSIDERATIONS FOR SELECTING A PRINTED CIRCUIT BOARD SURFACE FINISH

CONSIDERATIONS FOR SELECTING A PRINTED CIRCUIT BOARD SURFACE FINISH CONSIDERATIONS FOR SELECTING A PRINTED CIRCUIT BOARD SURFACE FINISH Randy Schueller, Ph.D. DfR Solutions Minneapolis, MN, USA rschueller@dfrsolutions.com ABSTRACT The selection of the surface finish to

More information

Microstructure and Mechanical Properties of Sn 0.7Cu Flip Chip Solder Bumps Using Stencil Printing Method

Microstructure and Mechanical Properties of Sn 0.7Cu Flip Chip Solder Bumps Using Stencil Printing Method Materials Transactions, Vol. 46, No. 11 (2005) pp. 2366 to 2371 Special Issue on Lead-Free Soldering in Electronics III #2005 The Japan Institute of Metals Microstructure and Mechanical Properties of Sn

More information

TechCut 4 Precision Low Speed Saw

TechCut 4 Precision Low Speed Saw Product Brochure TechCut 4 Precision Low Speed Saw 3" - 6" Blade Range Digital Speed Display 1-Micron Sample Indexing Spring-Loaded Dressing Stick Attachment All Aluminum & Stainless Steel Construction

More information

Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness

Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness Journal of ELECTRONIC MATERIALS, Vol. 36, No. 11, 2007 DOI: 10.1007/s11664-007-0270-x Ó 2007 TMS Special Issue Paper -Cu Intermetallic Grain Morphology Related to Layer Thickness MIN-HSIEN LU 1 and KER-CHANG

More information

Inert Soldering With Lead-Free Alloys: Review And Evaluation

Inert Soldering With Lead-Free Alloys: Review And Evaluation Presented at IPC SMEMA Council APEX SM 2001 www.goapex.org Inert Soldering With Lead-Free Alloys: Review And Evaluation Claude Carsac, Jason Uner, and Martin Theriault Air Liquide Versailles, France Abstract

More information

Correlation of Material properties to the Reliability performance of High Density BGA Package solder joints:

Correlation of Material properties to the Reliability performance of High Density BGA Package solder joints: Correlation of Material properties to the Reliability performance of High Density BGA Package solder joints: By.S. devan For IPC Reliability Summit February 23, 2007 Legal Information THIS DOCUMENT AND

More information

MuAnalysis. Printed Circuit Board Reliability and Integrity Characterization Using MAJIC. M. Simard-Normandin MuAnalysis Inc. Ottawa, ON, Canada

MuAnalysis. Printed Circuit Board Reliability and Integrity Characterization Using MAJIC. M. Simard-Normandin MuAnalysis Inc. Ottawa, ON, Canada Printed Circuit Board Reliability and Integrity Characterization Using MAJIC M. Simard-Normandin Inc. Ottawa, ON, Canada Abstract The recent need to develop lead-free electrical and electronic products

More information

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS Kris Vaithinathan and Richard Lanam Engelhard Corporation Introduction There has been a significant increase in the world wide use of platinum for jewelry

More information

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1 Phase Diagrams University of Tennessee, Dept. of Materials Science and Engineering 1 Chapter Outline: Phase Diagrams Microstructure and Phase Transformations in Multicomponent Systems Definitions and basic

More information

Features. Typical Applications G9. ProLight PEA2-3FVE 3W Warm White AC LED Technical Datasheet Version: 1.7 1 DS-0042

Features. Typical Applications G9. ProLight PEA2-3FVE 3W Warm White AC LED Technical Datasheet Version: 1.7 1 DS-0042 ProLight PEA2-3FVE 3W Warm White AC LED Technical Datasheet Version: 1.7 Features High Color rendering index Follow ANSI C78.788.2008 Chromaticity co-ordinates High flux per LED Good color uniformity Industry

More information

Q&A. Contract Manufacturing Q&A. Q&A for those involved in Contract Manufacturing using Nelco Electronic Materials

Q&A. Contract Manufacturing Q&A. Q&A for those involved in Contract Manufacturing using Nelco Electronic Materials Q&A Q&A for those involved in Contract Manufacturing using Nelco Electronic Materials 1. Do Nelco laminates have any discoloration effects or staining issues after multiple high temperature exposures?

More information

First Published in the ECWC 10 Conference at IPC Printed Circuits Expo, Apex and Designer Summit 2005, Anaheim, Calif., Feb.

First Published in the ECWC 10 Conference at IPC Printed Circuits Expo, Apex and Designer Summit 2005, Anaheim, Calif., Feb. First Published in the ECWC 10 Conference at IPC Printed Circuits Expo, Apex and Designer Summit 2005, Anaheim, Calif., Feb. 22-24, 2005 Test and Inspection as part of the lead-free manufacturing process

More information

Pure Tin - The Finish of Choice for Connectors

Pure Tin - The Finish of Choice for Connectors Pure Tin - The Finish of Choice for Connectors Pete Elmgren and Dan Dixon Molex Lisle, IL Robert Hilty, Ph.D. Tyco Electronics Harrisburg, PA Thomas Moyer and Sudarshan Lal, Ph.D. FCI Etters, PA Axel Nitsche

More information

Chapter 5 - Aircraft Welding

Chapter 5 - Aircraft Welding Chapter 5 - Aircraft Welding Chapter 5 Section A Study Aid Questions Fill in the Blanks 1. There are 3 types of welding:, and, welding. 2. The oxy acetylene flame, with a temperature of Fahrenheit is produced

More information

AMP INCORPORATED. Technical Report. The Tin Commandments: Guidelines For The Use Of Tin On Connector Contacts

AMP INCORPORATED. Technical Report. The Tin Commandments: Guidelines For The Use Of Tin On Connector Contacts ... AMP INCORPORATED Technical Report The Tin Commandments: Guidelines For The Use Of Tin On Connector Contacts Copyright 2004 by Tyco Electronics Corporation. All rights reserved. TIN COMMANDMENTS TIN

More information

Wurth Electronics Midcom Policy Statement on RoHS Compliance And Lead-Free Products

Wurth Electronics Midcom Policy Statement on RoHS Compliance And Lead-Free Products Wurth Electronics Midcom Policy Statement on RoHS Compliance And Lead-Free Products General Environmental Policy Wurth Electronics Midcom is committed to the manufacture of environmentally-friendly products

More information

Friction Surfacing of Austenitic Stainless Steel on Low Carbon Steel: Studies on the Effects of Traverse Speed

Friction Surfacing of Austenitic Stainless Steel on Low Carbon Steel: Studies on the Effects of Traverse Speed , June 30 - July 2, 2010, London, U.K. Friction Surfacing of Austenitic Stainless Steel on Low Carbon Steel: Studies on the Effects of Traverse Speed H. Khalid Rafi, G. D. Janaki Ram, G. Phanikumar and

More information

Overview of Risk Assessment, Mitigation, and Management Research for Pb-free Electronics

Overview of Risk Assessment, Mitigation, and Management Research for Pb-free Electronics Overview of Risk Assessment, Mitigation, and Management Research for Pb-free Electronics Formed 1987 Electronic Products and Systems Center College Park, MD 20742 (301) 405-5323 http://www.calce.umd.edu

More information

Soldering Methods and Procedures for Vicor Power Modules

Soldering Methods and Procedures for Vicor Power Modules APPLICATION NOTE Soldering Methods and Procedures for Vicor Power Modules LEAD-FREE PINS (ROHS); TIN / LEAD PINS see page 6 OVERVIEW The following pages contain soldering information for the following

More information

Flex Circuit Design and Manufacture.

Flex Circuit Design and Manufacture. Flex Circuit Design and Manufacture. Hawarden Industrial Park, Manor Lane, Deeside, Flintshire, CH5 3QZ Tel 01244 520510 Fax 01244 520721 Sales@merlincircuit.co.uk www.merlincircuit.co.uk Flex Circuit

More information

Mounting of Meritec SMT Products Using Lead-Free Solder

Mounting of Meritec SMT Products Using Lead-Free Solder Mounting of Meritec SMT Products Using Lead-Free Solder 10/10/08 rev B Mounting of Meritec SMT Products Using Lead-Free Solder Contents Page 2 Scope Page 3 Test Samples/Preparation Page 3 Facilities/Equipment

More information

The mechanical properties of metal affected by heat treatment are:

The mechanical properties of metal affected by heat treatment are: Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.

More information

Mix Alloy Soldering. (Sn/Pb Soldering in a Pb Free World)

Mix Alloy Soldering. (Sn/Pb Soldering in a Pb Free World) Mix Aoy Sodering (Sn/Pb Sodering in a Pb Free Word) Dr. Nei Pooe January 2007 Why Backward Compatibiity? Some eectronics products have exemptions in EU RoHS directive Lead in soders in high reiabiity appications

More information

Choosing a Stencil. By William E. Coleman, Ph.D. and Michael R. Burgess

Choosing a Stencil. By William E. Coleman, Ph.D. and Michael R. Burgess Choosing a Stencil Is a stencil a commodity or a precision tool? A commodity is something that can be purchased from many suppliers, with the expectation that the performance will be the same. A precision

More information

Solder Reflow Guide for Surface Mount Devices

Solder Reflow Guide for Surface Mount Devices June 2015 Introduction Technical Note TN1076 This technical note provides general guidelines for a solder reflow and rework process for Lattice surface mount products. The data used in this document is

More information

BGA - Ball Grid Array Inspection Workshop. Bob Willis leadfreesoldering.com

BGA - Ball Grid Array Inspection Workshop. Bob Willis leadfreesoldering.com BGA - Ball Grid Array Inspection Workshop Bob Willis leadfreesoldering.com Mixed Technology Assembly Processes Adhesive Dispensing Component Placement Adhesive Curing Turn Boar Over Conventional Insertion

More information

Thermal Management Solutions for Printed Circuit Boards used in Digital and RF Power Electronics and LED assemblies

Thermal Management Solutions for Printed Circuit Boards used in Digital and RF Power Electronics and LED assemblies Thermal Management Solutions for Printed Circuit Boards used in Digital and RF Power Electronics and LED assemblies Sandy Kumar, Ph.D. Director of Technology American Standard Circuits, Inc 3615 Wolf Road

More information

PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL

PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Grade Sheet 310S (S31008)/ EN 1.4845 Introduction: SS310 is a highly alloyed austenitic stainless steel designed for elevated-temperature service.

More information

Part Design and Process Guidelines

Part Design and Process Guidelines Part Design and Process Guidelines For Pulse Heated Reflow Soldering of Flexible Circuits to Printed Circuit Boards INTRODUCTION This report will cover the process definition and components used in the

More information