IMPROVED EQUIVALENCING TECHNIQUE FOR SHORT CIRCUIT CONTRIBUTION OF WIND FARMS IN LARGE POWER SYSTEMS

Size: px
Start display at page:

Download "IMPROVED EQUIVALENCING TECHNIQUE FOR SHORT CIRCUIT CONTRIBUTION OF WIND FARMS IN LARGE POWER SYSTEMS"

Transcription

1 The Eighth Asia-Pacific Conference on Wind Engineering, December 10 14, 2013, Chennai, India IMPROVED EQUIVALENCING TECHNIQUE FOR SHORT CIRCUIT CONTRIBUTION OF WIND FARMS IN LARGE POWER SYSTEMS Aditya Patil 1, Chandrasekhar Reddy Atla 2, Dr. Balaraman K 3 1 Research student at Power Research & Development Consultants Pvt Ltd., India. aditya@prdcinfotech.com 2 Research Student at Power Research & Development Consultants Pvt Ltd., India. sekhar.atla@gmail.com 3 CGM at Power Research & Development Consultants Pvt Ltd., India. balaraman@prdcinfotech.com ABSTRACT The utilization of wind power- a major renewable energy source is expected to constantly increase during the next few years. Interaction between the Wind Farms (WFs) and the grid needs to be investigated for different power system studies. A number of issues related to the influence of large wind power penetration into the grid are evacuation feasibility; transient stability and the ensuing short-circuit levels. This paper focuses on the short circuit contribution from wind farms to the grid when integrated to large power systems. To determine the short circuit level of a large wind farm, it is necessary to utilize the equivalent model to minimize the modeling complications. The simulations presented in the literature show that the fault current contribution from equivalent model has large variation as compared to individual turbine models. Hence this paper focuses on improvements of equivalent technique for short circuit studies. Case studies are carried out on different wind farms to determine the fault current contribution. Keywords: wind farm equivalencing, short circuit contribution of wind power plant, Fault Ride Through, wind power generation Introduction Electrical networks are normally designed such that maximum short-circuit current never exceed the rating of the switchgear and thermal, mechanical endurance of the equipment. WF s are generally concentrated in high wind potential locations which mostly fall in remote windy areas which are typically equipped with weak electrical networks. The short circuit levels at the point of common coupling (PCC) will change with the integration of wind farms into the grid. It should be noticed that wind farms mainly affect short circuit level of medium level voltages which are under the DIStribution COMpanies (DISCOMs). Although during high windy seasons, the short circuit level of the higher voltage level may also be affected. Effect of wind power integration was not considered earlier as the penetration level was less in comparison with the grid capacity. Earlier countries like Denmark, Spain, Netherlands, Ireland, Portugal, Germany etc., had penetration level lesser than 10%. With rapid increase in wind turbine technology and awareness about harnessing the renewable energy, wind power penetration has reached around 15-20% in all of the above nations according to World Wind Energy Report (WWEA) The wind penetration in India according to [India Wind Energy Outlook 2012] is around 12% and increasing. Such high penetrations cannot be neglected as it can have implications in the total system operation and stability. Proc. of the 8th Asia-Pacific Conference on Wind Engineering Nagesh R. Iyer, Prem Krishna, S. Selvi Rajan and P. Harikrishna (eds) Copyright c 2013 APCWE-VIII. All rights reserved. Published by Research Publishing, Singapore. ISBN: doi: /

2 In India the wind turbines are equipped with Induction Generators (IGs). These induction generators do not have voltage control facility. Hence to provide voltage control facility in these machines during the system transients, arrangements such as mechanically switched capacitor banks area adopted. However, in order to improve dynamic performance the use of STATCOMs SVCs etc., are being suggested. These arrangements will also assist the wind turbines to keep connected to the grid during the faults and under voltage condition. This phenomenon is known as Fault Ride Through (FRT) of the wind turbines. The FRT requirement of the wind turbines depend on the fault current and the critical clearing time for the worst case fault scenario. The induction generators in wind farms are Squirrel Cage Induction Generator (SCIG), Wound Rotor Induction Generator (WRIG) and Doubly Fed Induction Generator (DFIG). During the fault for the first few cycles (approximately 2-3 cycles), DFIG s behave as IGs and consequently modeled as IG as described by Morren J & de Haan S W H. During this operation the power electronic converters (rotor and stator side) are blocked by the crow bar protection or current limitation function of rotor side converter and the transients of rotor side current starts decaying. The short-circuit behavior of IGs is strongly dependent on their characteristics. Some approximate equations to determine the maximum short-circuit current for induction generators has been shown by Boutsika T. et al. This paper presents the case studies on comparison of fault contribution in detailed model and equivalent model of wind farms. The paper focuses on improving the equivalencing technique such that the fault current contribution for equivalent technique is nearer to detailed model. Four different wind farms connected to the grid are considered for case studies. SCIGs, WRIGs and DFIG wind turbines are considered for short circuit studies. The type IV wind turbine with Full End Converter (FEC) is not analyzed as it is completely decoupled with the grid through the converters. Both the detailed and equivalent models are developed in MiPower TM simulation software with [MiPower user manual]. Three phase to ground fault is considered for the analysis as this fault yields the maximum fault current. Modeling of IGs for short circuit level calculations This type of wind turbines consist of IGs which are directly coupled to the electrical grid. The equivalent circuit of the squirrel cage induction generator has been modeled for the short circuit analysis (Divya K C. et al. in [June 2006]). For WRIG equivalent circuit an external resistance R ex is added in series with rotor resistance. DFIG can be modeled as IG during the fault application (Morren J & de Haan S W H). The SCIG operation can also simulated using the fourth order model expressed in a reference rotating at synchronous speed w s as explained by Ong C M in Prentice Hall publications in 1998 and Krause P C., McGraw Hill, Calculation of fault contribution from the wind farm The fault contribution from the wind farm is calculated similar to any power system fault contribution. Figure. 1 shows an example on equivalent representation of wind farm connected to a grid. 1270

3 Fig. 1 Equivalent representation of wind farm The equivalent wind generator model, pad mounted transformer model and equivalent collector system model are represented in Figure. 1 This entire wind farm model is connected to 34.5/230 kv nearest pooling substation. The existing wind farm equivalencing is carried out referring to Equivalencing collector system of a large wind power plant by Muljadi E. et. al. The grid equivalent is modeled at 230kV with 3phase to ground and single line to ground short circuit fault levels. Now, to determine the fault contribution from the wind farm, it is necessary to calculate the contribution from bus 2 to bus 3. This is done by conducting operations on Z bus matrix. Assume three phase to ground fault occurs at bus p. The performance equation during the fault is given as.1 The is the unknown voltage vector,.2 is the known voltage vector prior to the fault condition. current vector during the fault bus (say fault bus p) is the unknown bus 3 and is the three phase bus impedance matrix

4 The three phase voltage vector at the faulted bus p, is given as,...5 Combining Eq 1 and Eq 5 we can write as..6 Solving the above equation 6 for yields, 7 Now to calculate fault current contribution from the wind farm, it is necessary to calculate contribution through that branch or element (referring fig 1, the element connected between 2 and 3 needs to be considered). The fault current through the branch/element is represented, in terms of voltage across the element as shown in Eq Where is the fault current contribution from the i-j branch, is the admittance of the i-j branch obtained from admittance matrix, is the faulted bus voltage and is the bus voltage of the branch impedance. The fault contribution from the equivalent wind farm can be known by the Eq. 8 and the admittance of the branch is known as old. The expected fault contribution if the detailed wind farm is represented can be calculated internally by utilizing all the data entered for equivalencing. For this new fault current new will be determined. The difference between the new and old will give the correction factor z. This correction factor will aid in manipulating the old. Hence the correction factor will be included in the equivalent impedance of the pad mounted transformer. With inclusion of this correction factor z, there will be a appropriate variation in the Z bus elements in the short circuit path of the wind farm. Hence fault current nearer to the detailed model will be witnessed. Case studies In this section three phase to ground fault study is carried out on the LV bus of 34.5/230 kv pooling substation. Four different wind farms are considered for the analysis. Each wind farm is modeled as detailed representation and equivalent representation. The calculation of correction factor as explained in the earlier section is carried out and an appropriate change in the equivalent impedance is done. Simulations are carried out on detailed models, existing equivalent model and proposed equivalent model. The comparision of the results are shown in Table 4. All simulations are conducted in MiPower TM simulation software. Details of different cases considered for the studies are as follows: 1272

5 Case 1: Wind farm 1 consists of 20 wind turbines. The machine details are shown in Table 1 and network configuration is given in [Final project report on WECC Wind Generator Development ]. All the other wind farms are having similar machine details with different wind farm network layout. *All values are in pu on machine MVA rating. Table 1: Wind farm machine details Description Induction Generator details Nominal voltage [kv] kv Rated power 2.5 MW Rated MVA 2.84 MVA Efficiency at nominal operation 97% Acceleration constant 1 sec Number of pole pairs 2 Stator resistance Rs [pu] Magnetic reactance Xm [pu] Stator reactance Xs [pu] Rotor resistance Rr [pu] Rotor reactance Xr [pu] Power factor 0.88 Case 2: Wind farm 2 consists of 24 wind turbines and machine details are shown in Table 1 Case 3: Wind farm 3 consists of 28 wind turbines and machine details are shown in Table 1 Case 4: Wind farm 4 consists of 37 wind turbines and machine details are shown in Table 1 Table 2 represents the pad mounted transformer details and the short circuit level details of the grid connection. Table 2: Transformer and grid short circuit level details Transformer MVA 3 MVA Primary/Secondary voltage 0.575kV / 34.5 kv Impedance Z in pu 6.25 % Grid short circuit level at 220kV 3 phase fault level 1500 MVA Single line to ground fault level 940 MVA The wind farm internal network is at 34.5kV and the details of the line are shown in Table 3 Table 3: Wind farm internal network details Line details Voltage level R in ohms X in ohms B/2 in mho Dog Conductor 34.5 kv e

6 A three phase to ground fault simulation study is analyzed upon assuming fault occurrence at the LV side of the main pooling substation transformer. The fault contribution for detailed wind farm model, existing equivalent wind farm model and proposed equivalent wind farm model are shown in Table 4. Table 4: Comparison of results of detailed wind farm model, existing equivalent wind farm model and proposed equivalent wind farm model No. of wind turbines and wind farm capacity Case No. 1 Wind farm- 1 (20 turbines= 50MW) 2 Wind farm- 2 (24 turbines=60 MW) 3 Wind farm- 3 (28 turbines=70) 4 Wind farm- 4 (37 turbines=92.5 MW) Fault current contribution in Amperes with detailed wind farm model Fault current contribution in Amperes with equivalent wind farm model Fault current contribution in Amperes equivalent wind farm model with proposed correction factor The results show that the current contributions from the equivalent model vary when compared to the detailed model. These results may mislead the system operators during integration of a large wind farm into the grid. The above variations can be reduced by introducing the correction factor z in the equivalent wind farm model. This proposed technique will act in the Z bus matrix of the equivalent wind farm and reduce the variation of fault contribution. Conclusions Simulation studies have been carried out with the existing equivalencing technique and proposed equivalencing technique for short circuit study. The proposed equivalencing technique presented better results compared to existing equivalencing technique. The results in this paper are encouraging and show that the fault current contribution from proposed equivalent wind farm model are nearer to detailed wind farm model. References Boutsika T., Papathanassiou S., and Drossos N., Calculation of the fault level contribution of distributed generation according to IEC standard 60909, presented at the CIGRE DG Symp., Athens, Greece, Apr Divya K C. and Nagendra Rao P S., Models for wind turbine generating systems and their application in load flow studies, ELSEIVER,Electric Power Systems Research, vol 76, Issues9-10, June 2006, Pages Final project report on WECC Wind Generator Development Prepared for CIEE by: National Renewable Energy Laboratory, pp

7 Kanellos F D. and Kabouris John. Wind Farms Modeling for Short-Circuit Level Calculations in Large Power Systems IEEE transactions on Power delivery, Vol 24, no.3, July 2009 Krause P. C., Analysis of Electric Machinery. New York: McGraw- Hill, MiPower user manual, How to Solve by M/s. PRDC Pvt Lt., Morren J. and. de Haan S.W.H, Short-circuit current of wind turbines with doubly fed induction generator, IEEE Trans. Energy Convers.,vol. 22, no. 1, pp , Mar Muljadi E, Butterfield C P, Ellis A., Mechenbier J., Hochhmeimer J., Young R., Miller N., Delmerico R, Zavadil R. & Smith J C. Equivalencing collector system of a large wind power plant. Conference paper NREL/CP January 2006 Ong C M., Dynamic Simulation of Electric Machinery Using Matlab /Simulink. Englewood Cliffs, NJ: Prentice- Hall, Samaan Nader, Zavadil Robert, Charles Smith J and Conto Jose, Modeling of Wind Power Plants for Short Circuit Analysis in the transmission Network IEEE Transmission and Distribution Conference and Exposition, pp 1-7, IEEE/PES

Request for Payment Instructions Wholesale Distribution Access Tariff (WDAT) Attachment I - GIP

Request for Payment Instructions Wholesale Distribution Access Tariff (WDAT) Attachment I - GIP Grid Interconnection & Contract Development Request for Payment Instructions Wholesale Distribution Access Tariff (WDAT) Attachment I - GIP Submittal Instructions Prior to submitting your application and

More information

Analysis, Calculation and Reduction of Shaft Voltage in Induction Generators

Analysis, Calculation and Reduction of Shaft Voltage in Induction Generators European Association for the Development of Renewable Energies, Environment and Power Quality International Conference on Renewable Energies and Power Quality (ICREPQ 09) alencia (Spain), 15th to 17th

More information

Power Quality Paper #3

Power Quality Paper #3 The Effect of Voltage Dips On Induction Motors by: M D McCulloch 1. INTRODUCTION Voltage depressions caused by faults on the system affect the performance of induction motors, in terms of the production

More information

Advance Electronic Load Controller for Micro Hydro Power Plant

Advance Electronic Load Controller for Micro Hydro Power Plant Journal of Energy and Power Engineering 8 (2014) 1802-1810 D DAVID PUBLISHING Advance Electronic Load Controller for Micro Hydro Power Plant Dipesh Shrestha, Ankit Babu Rajbanshi, Kushal Shrestha and Indraman

More information

Simulation of Cable Overloading Problem on a University Distribution System

Simulation of Cable Overloading Problem on a University Distribution System Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 6 (2013), pp. 765-770 Research India Publications http://www.ripublication.com/aeee.htm Simulation of Cable Overloading

More information

Performance Analysis of Grid connected Wind Energy Conversion System with a DFIG during Fault Condition

Performance Analysis of Grid connected Wind Energy Conversion System with a DFIG during Fault Condition Performance Analysis of Grid connected Wind Energy Conversion System with a DFIG during Fault Condition Sasi.C Assistant Professor Department of Electrical Engineering Annamalai University Chidambaram,

More information

Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current

Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current Summary Dually Fed Permanent Magnet Synchronous Generator Condition Monitoring Using Stator Current Joachim Härsjö, Massimo Bongiorno and Ola Carlson Chalmers University of Technology Energi och Miljö,

More information

Modeling and Simulation of a Large Chipper Drive

Modeling and Simulation of a Large Chipper Drive The Open Electrical & Electronic Engineering Journal, 009, 3, 1-8 1 Modeling and Simulation of a Large Chipper Drive Open Access Christian Kral, Anton Haumer, Hansjörg Kapeller and Gert Pascoli Austrian

More information

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3 AUTOMATIC VOLTAGE CONTROL Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide necessary direct current to the field winding of the synchronous generator.

More information

Reactive Power Generation by DFIG Based Wind Farms with AC Grid

Reactive Power Generation by DFIG Based Wind Farms with AC Grid Reactive Power Generation by DFIG Based Wind Farms with AC Grid Connection I. Erlich, M. Wilch and C. Feltes UNIVERSITY DUISBURG-ESSEN Bismarckstr. 81 D-47057 Duisburg Tel.: +49 / (203) 379 3437 Fax: +49

More information

PacifiCorp Original Sheet No. 476 FERC Electric Tariff, Substitute 6 th Rev Volume No. 11 APPENDIX 2 TO SGIP

PacifiCorp Original Sheet No. 476 FERC Electric Tariff, Substitute 6 th Rev Volume No. 11 APPENDIX 2 TO SGIP PacifiCorp Original Sheet No. 476 APPENDIX 2 TO SGIP SMALL GENERATOR INTERCONNECTION REQUEST (Application Form) Transmission Provider: Designated Contact Person: Address: Telephone Number: An Interconnection

More information

Physical Address: City: State: Zip Code:

Physical Address: City: State: Zip Code: Application for Small Generator Facility Interconnection Tier 2, Tier 3 or Tier 4 Interconnection (For Small Generator Facilities with Electric Nameplate Capacities of 10 MW and less) Applicant Contact

More information

Verification of Short Circuit Test Results of Salient Poles Synchronous Generator

Verification of Short Circuit Test Results of Salient Poles Synchronous Generator Verification of Short Circuit Test Results of Salient Poles Synchronous Generator Abdul Jabbar Khan 1, Amjadullah Khattak 2 1 PG Student, University of Engineering and Technology, Peshawar, Department

More information

The following table shows approximate percentage wise the

The following table shows approximate percentage wise the SHORT-CIRCUIT CALCULATION INTRODUCTION Designing an electrical system is easy and simple, if only the normal operation of the network is taken into consideration. However, abnormal conditions which are

More information

The design and performance of Static Var Compensators for particle accelerators

The design and performance of Static Var Compensators for particle accelerators CERN-ACC-2015-0104 Karsten.Kahle@cern.ch The design and performance of Static Var Compensators for particle accelerators Karsten Kahle, Francisco R. Blánquez, Charles-Mathieu Genton CERN, Geneva, Switzerland,

More information

INTRODUCTION TO HARMONIC ASSESSMENT IN POWER SYSTEMS

INTRODUCTION TO HARMONIC ASSESSMENT IN POWER SYSTEMS INTRODUCTION TO HARMONIC ASSESSMENT IN POWER SYSTEMS LIST OF CONTENT 1. INTRODUCTION... 1 2. HARMONIC VOLTAGE ASSESSMENT REQUIREMENT IN THE UK... 2 3. THE ASSESSMENT... 2 3.1. SYSTEM MODELLING...3 3.2.

More information

Wind Turbine Operation in Power Systems and Grid Connection Requirements

Wind Turbine Operation in Power Systems and Grid Connection Requirements Wind Turbine Operation in Power Systems and Grid Connection Requirements A. Sudrià 1, M. Chindris 2, A. Sumper 1, G. Gross 1 and F. Ferrer 1 1 Centre for Technological Innovation in Static Converters and

More information

A Clustering based Wind Farm Collector System Cable Layout Design

A Clustering based Wind Farm Collector System Cable Layout Design A Clustering based Wind Farm Collector System Cable Layout Design S. Dutta, Student Member, IEEE, and T. J. Overbye, Fellow, IEEE Abstract The goal of achieving % wind power penetration by in the US has

More information

Solar Power Plant Design and Interconnection

Solar Power Plant Design and Interconnection Solar Power Plant Design and Interconnection Wind & Solar Super Session July 27, 2011 E.H. Camm, S.E. Williams S&C Electric Company Outline Introduction Utility-scale PV power plant Grounding Reactive

More information

Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3

Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3 Power System review W I L L I A M V. T O R R E A P R I L 1 0, 2 0 1 3 Basics of Power systems Network topology Transmission and Distribution Load and Resource Balance Economic Dispatch Steady State System

More information

EEL303: Power Engineering I - Tutorial 4

EEL303: Power Engineering I - Tutorial 4 1. Determine the voltage at the generating station and the efficiency of the following system (Figure 1): Both transformers have ratio of 2kV/11kV. The resistance on LV side of both Figure 1: transformers

More information

Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink

Transient analysis of integrated solar/diesel hybrid power system using MATLAB Simulink Transient analysis of integrated solar/diesel hybrid power system using ATLAB Simulink Takyin Taky Chan School of Electrical Engineering Victoria University PO Box 14428 C, elbourne 81, Australia. Taky.Chan@vu.edu.au

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION ÿþ üûúùø öõöôùóùõò CT Dimensioning DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION Application note GER3973 1 CT Dimensioning ÿþ üûúùø öõöôùóùõò GER-3973 Application note ÿþ üûúùø öõöôùóùõò

More information

Lab 14: 3-phase alternator.

Lab 14: 3-phase alternator. Lab 14: 3-phase alternator. Objective: to obtain the no-load saturation curve of the alternator; to determine the voltage regulation characteristic of the alternator with resistive, capacitive, and inductive

More information

Power Technology Issue 104. Modeling of Two-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E

Power Technology Issue 104. Modeling of Two-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E SIEMENS Siemens Energy, Inc. Power Technology Issue 104 Modeling of TwoWinding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E Carlos GrandeMoran, Ph.D. Principal Consultant

More information

LOSSELESS STARTING METHOD FOR THE WOUND ROTOR INDUCTION MOTOR

LOSSELESS STARTING METHOD FOR THE WOUND ROTOR INDUCTION MOTOR LOSSELESS STARTING METHOD FOR THE WOUND ROTOR INDUCTION MOTOR Sergiu Ivanov Mihai Rdulescu University of Craiova, Romania INDA Craiova Faculty of Electrical Engineering 30, Mr#e#ti Street 107, Decebal

More information

THIS paper reports some results of a research, which aims to investigate the

THIS paper reports some results of a research, which aims to investigate the FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no. 2, August 2009, 227-234 Determination of Rotor Slot Number of an Induction Motor Using an External Search Coil Ozan Keysan and H. Bülent Ertan

More information

Chapter 9 Balanced Faults

Chapter 9 Balanced Faults Chapter 9 alanced Faults 9.1 Introduction The most common types of fault are (in order) single-line-to-ground fault, line-to-line fault, and double-line-to-ground fault. All of these are unbalanced faults.

More information

Renewable Energy Laboratory for Engineering Students

Renewable Energy Laboratory for Engineering Students dspace User Conference 2010 India Sept 24 th 10 Renewable Energy Laboratory for Engineering Students H.T Jadhav, S. D. Joshi Rajarambapu Institute Of Technology ABSTRACT Renewal Energy is now included

More information

Application for Small Generator Facility Interconnection Tier 2, Tier 3 or Tier 4 Interconnection

Application for Small Generator Facility Interconnection Tier 2, Tier 3 or Tier 4 Interconnection Application for Small Generator Facility Interconnection Tier 2, Tier 3 or Tier 4 Interconnection (See ARSD chapter 20:10:36 for the requirements for a Tier 2, Tier 3, or Tier 4 Interconnection.) Applicant/Interconnection

More information

Outline. Turbine Generators. Generator History 3/25/2014

Outline. Turbine Generators. Generator History 3/25/2014 Turbine Generators Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 andrew-kusiak@uiowa.edu Tel: 319-335-5934 Fax: 319-335-5669 http://www.icaen.uiowa.edu/~ankusiak Outline Generators Synchronous

More information

EARTHING SYSTEM CALCULATION

EARTHING SYSTEM CALCULATION BAZIAN STEAL FACTORY S/S 132/11kV, 1x30/40MVA EARTHING SYSTEM CALCULATION Kurdistan Region Sulaimani May 2011 Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA Contents: 1. Introduction... 3 2. List of references

More information

Study to Determine the Limit of Integrating Intermittent Renewable (wind and solar) Resources onto Pakistan's National Grid

Study to Determine the Limit of Integrating Intermittent Renewable (wind and solar) Resources onto Pakistan's National Grid Pakistan Study to Determine the Limit of Integrating Intermittent Renewable (wind and solar) Resources onto Pakistan's National Grid Final Report: Executive Summary - November 2015 for USAID Energy Policy

More information

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 By: R.C. Zowarka T.J. Hotz J.R. Uglum H.E. Jordan 13th Electromagnetic Launch Technology Symposium, Potsdam (Berlin), Germany,

More information

International Review of Grid Connection Requirements related with Voltage Dips for Wind Farms

International Review of Grid Connection Requirements related with Voltage Dips for Wind Farms International Review of Grid Connection Requirements related with Voltage Dips for Wind Farms J. A. Fuentes, M. Cañas, A. Molina, E. Gómez, F. Jiménez Abstract In this work, the Spanish grid code is compared

More information

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor International Journal of Engineering Inventions e-issn: 78-7461, p-issn: 319-6491 Volume 3, Issue 5 (December 013) PP: 36-41 Modelling, Simulation and Performance Analysis of A Variable Frequency Drive

More information

IV. Three-Phase Induction Machines. Induction Machines

IV. Three-Phase Induction Machines. Induction Machines IV. Three-Phase Induction Machines Induction Machines 1 2 3 4 5 6 7 8 9 10 11 12 13 Example 1: A 480V, 60 Hz, 6-pole, three-phase, delta-connected induction motor has the following parameters: R 1 =0.461

More information

APPLICATION NOTE. Increasing PV Hosting Capacity on LV Secondary Circuits with the Gridco System empower TM Solution

APPLICATION NOTE. Increasing PV Hosting Capacity on LV Secondary Circuits with the Gridco System empower TM Solution APPLICATION NOTE Increasing PV Hosting Capacity on LV Secondary Circuits with the Gridco System empower TM Solution INCREASING PV HOSTING WITH EMPOWER TM SOLUTION Executive Summary Distributed solar photovoltaic

More information

GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY GUJARAT TECHNOLOGICAL UNIVERSITY ELECTRICAL & ELECTRONICS ENGINEERING (08) & ELECTRICAL ENGINEERING (09) ELECTRICAL POWER GENERATION SUBJECT CODE: 2140908 B.E. 4 th SEMESTER Type of Course: Engineering

More information

The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies

The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies DATE: November 17, 1999 REVISION: AUTHOR: John Merrell Introduction In some short circuit studies, the X/R ratio is ignored when comparing

More information

HARMONIC DISTORTION IN THE ELECTRIC SUPPLY SYSTEM

HARMONIC DISTORTION IN THE ELECTRIC SUPPLY SYSTEM Technical Note No.3 March 2000 HARMONIC DISTORTION IN THE ELECTRIC SUPPLY SYSTEM This Technical Note discusses harmonic distortion, its causes and adverse effects, what levels are unacceptable and how

More information

System Protection Schemes in Eastern Denmark

System Protection Schemes in Eastern Denmark System Protection Schemes in Eastern Denmark Joana Rasmussen COWI A/S, Energy Department System Protection Schemes in Eastern Denmark 1.Advanced system protection schemes are investigated and perspectives

More information

LIMITING SHORT-CIRCUIT CURRENTS IN MEDIUM-VOLTAGE APPLICATIONS

LIMITING SHORT-CIRCUIT CURRENTS IN MEDIUM-VOLTAGE APPLICATIONS LIMITING SHORT-CIRCUIT CURRENTS IN MEDIUM-VOLTAGE APPLICATIONS Terence Hazel Senior Member IEEE Schneider Electric 38050 Grenoble France Abstract The power requirements for large industrial sites is increasing.

More information

Sensitivity Analysis of Waveform Distortion Assessment for Wind Plants

Sensitivity Analysis of Waveform Distortion Assessment for Wind Plants Sensitivity Analysis of Waveform Distortion Assessment for Wind Plants Mariana B. Pereira 1, Einar V. Larsen 2, Sebastian A. Achilles 3 Energy Consulting General Electric 1 Av. Magalhães de Castro 4800,

More information

General Validation Test Program for Wind Power Plants Connected to the Hydro-Québec Transmission System

General Validation Test Program for Wind Power Plants Connected to the Hydro-Québec Transmission System General Validation Test Program for Wind Power Plants Connected to the Hydro-Québec Transmission System Direction Planification des actifs et expertise de transport February 2011 TABLE OF CONTENTS 1. CONDUCTING

More information

8 Speed control of Induction Machines

8 Speed control of Induction Machines 8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque

More information

ANCILLARY EQUIPMENT AND ELECTRICAL EQUIPMENT Power Supply Systems and Electrical Equipment for Desalination Plants - Y.M. Hamud and A.H.

ANCILLARY EQUIPMENT AND ELECTRICAL EQUIPMENT Power Supply Systems and Electrical Equipment for Desalination Plants - Y.M. Hamud and A.H. POWER SUPPLY SYSTEMS AND ELECTRICAL EQUIPMENT FOR DESALINATION PLANTS Y.M. Hamud and A.H. Anwar Abu Dhabi Water and Electricity Authority, Abu Dhabi, UAE Keywords : Electrical System, Network for Desalination,

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING ELECTRICAL ENGINEERING The master degree programme of Teacher Training in Electronical Engineering is designed to develop graduates competencies in the field of Curriculum Development and Instructional

More information

WIND TURBINE TECHNOLOGY

WIND TURBINE TECHNOLOGY Module 2.2-2 WIND TURBINE TECHNOLOGY Electrical System Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Contents Module 2.2 Types of generator systems

More information

VOLTAGE CONTROL IN DISTRIBUTION SYSTEMS AS A LIMITATION OF THE HOSTING CAPACITY FOR DISTRIBUTED ENERGY RESOURCES

VOLTAGE CONTROL IN DISTRIBUTION SYSTEMS AS A LIMITATION OF THE HOSTING CAPACITY FOR DISTRIBUTED ENERGY RESOURCES VOLTAGE CONTROL IN DISTRIBUTION SYSTEMS AS A LIMITATION OF THE HOSTING CAPACITY FOR DISTRIBUTED ENERGY RESOURCES C. Schwaegerl*, M.H.J. Bollen, K. Karoui #, A. Yagmur + *Siemens AG, # Tractebel STRI AB

More information

Offshore Wind Farm Layouts

Offshore Wind Farm Layouts Offshore Wind Farm Layouts Performance Comparison for a 540 MW Offshore Wind Farm Thomas Haugsten Hansen Master of Science in Energy and Environment Submission date: July 2009 Supervisor: Terje Gjengedal,

More information

V112-3.0 MW. Your best option for low cost energy production at low and medium wind sites. Federico Gonzalez Vives. Director Technology.

V112-3.0 MW. Your best option for low cost energy production at low and medium wind sites. Federico Gonzalez Vives. Director Technology. V112-3.0 MW Your best option for low cost energy production at low and medium wind sites Federico Gonzalez Vives. Director Technology. Vestas MED REOLTEC. Jornadas tecnicas 17 de junio de 2010 vestas.com

More information

Simple Methods for Calculating Short Circuit Current Without a Computer By Dennis McKeown, PE GE Senior System Application Engineer

Simple Methods for Calculating Short Circuit Current Without a Computer By Dennis McKeown, PE GE Senior System Application Engineer Simple Methods for Calculating Short Circuit Current Without a Computer By Dennis McKeown, PE GE Senior System Application Engineer A Short Circuit analysis is used to determine the magnitude of short

More information

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION Introduction Howard W. Penrose, Ph.D., CMRP Vice President, Engineering and Reliability Services Dreisilker Electric Motors, Inc.

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 3. Symmetrical Components & Faults Calculations

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 3. Symmetrical Components & Faults Calculations SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 3 3.0 Introduction Fortescue's work proves that an unbalanced system of 'n' related phasors can be resolved into 'n' systems of balanced phasors called the

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

Keywords: synchronous generator, synchronous motor, automatic voltage regulator, V- curves, synchronizing power, hunting, excitation system

Keywords: synchronous generator, synchronous motor, automatic voltage regulator, V- curves, synchronizing power, hunting, excitation system SYNCHRONOUS MACHINES Tze-Fun Chan Hong Kong Polytechnic University, Hong Kong, China Keywords: synchronous generator, synchronous motor, automatic voltage regulator, V- curves, synchronizing power, hunting,

More information

Power Technology Issue 106. Modeling of Three-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E

Power Technology Issue 106. Modeling of Three-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E SIEMENS Siemens Energy, Inc. Power Technology Issue 106 Modeling of Three-Winding Voltage Regulating Transformers for Positive Sequence Load Flow Analysis in PSS E Carlos Grande-Moran, Ph.D. Principal

More information

Guidelines for Large Photovoltaic System Integration

Guidelines for Large Photovoltaic System Integration 1 Guidelines for Large Photovoltaic System Integration Silviu Darie, PhD(EE), PE(EE) Abstract- The paper summarizes the result of a research project funded by the Department of Energy (DOE) in collaboration

More information

Symmetrical Components in the Time Domain and Their Application to Power Network Calculations

Symmetrical Components in the Time Domain and Their Application to Power Network Calculations 522 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 2, MAY 2000 Symmetrical Components in the Time Domain and Their Application to Power Network Calculations Gerardus C. Paap, Senior Member, IEEE Abstract

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR 1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.

More information

Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit

Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit Performance Enhancement of Wound Rotor Induction Motor by VSI with Dynamic Capacitor Controlled Rotor Circuit K.Ranjith kumar kumar, Dr.S.Palaniswami K.Priyadharsini, Senior Senior Lecturer Lecturer Professor

More information

Design and Analysis of Switched Reluctance Motors

Design and Analysis of Switched Reluctance Motors Design and Analysis of Switched Reluctance Motors İbrahim ŞENGÖR, Abdullah POLAT, and Lale T. ERGENE Electrical and Electronic Faculty, İstanbul Technical University, 34469, Istanbul, TURKEY sengoribrahim@gmail.com,

More information

EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID

EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID Tension (kv) Impedance (Ohms) EMTP STUDIES PERFORMED TO INSERT LONG AC CABLES IN THE FRENCH GRID frequency (Hz) Simon DESCHANVRES Yannick VERNAY RTE, CNER, Substations Department t (ms) EMTP-RV Users Group

More information

Context: significant penetration of DG = increased risks for system security

Context: significant penetration of DG = increased risks for system security Distributed Generation: towards an effective contribution to power system security IEEE Tampa GM 2007: Panel on Impact of Dispersed Generation on Power System structure & security Bruno Meyer Outline Context:

More information

Case Studies in On-Line Measurement of PD in Motors Fed by Voltage Source PWM Drives

Case Studies in On-Line Measurement of PD in Motors Fed by Voltage Source PWM Drives Case Studies in On-Line Measurement of PD in Motors Fed by Voltage Source PWM Drives G.C. Stone, I. Culbert, H.G. Sedding Qualitrol-Iris Power Mississauga, Ontario, Canada Abstract On-line partial discharge

More information

Transformer Based Voltage Sag Generator to test Renewable Energy Systems during Grid Faults in the Laboratory

Transformer Based Voltage Sag Generator to test Renewable Energy Systems during Grid Faults in the Laboratory Transformer Based Voltage Sag Generator to test Renewable Energy Systems during Grid Faults in the Laboratory C. Wessels, T. Wehrend and F. W. Fuchs Institute of Power Electronics and Electrical Drives,

More information

LAB1 INTRODUCTION TO PSS/E EE 461 Power Systems Colorado State University

LAB1 INTRODUCTION TO PSS/E EE 461 Power Systems Colorado State University LAB1 INTRODUCTION TO PSS/E EE 461 Power Systems Colorado State University PURPOSE: The purpose of this lab is to introduce PSS/E. This lab will introduce the following aspects of PSS/E: Introduction to

More information

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions Padma Chaturvedi 1, Amarish Dubey 2 1 Department of Electrical Engineering, Maharana Pratap Engineering College,

More information

Motor Fundamentals. DC Motor

Motor Fundamentals. DC Motor Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

More information

Hybrid Wind-Fuel Cell Renewable Energy Utilization Scheme for Village Electricity

Hybrid Wind-Fuel Cell Renewable Energy Utilization Scheme for Village Electricity Proceedings of the 4 th International Middle East Power Systems Conference (MEPCON 0), Cairo University, Egypt, December 9-, 00, Paper ID 3. Hybrid Wind-Fuel Cell Renewable Energy Utilization Scheme for

More information

16 West Coast Regional Plan

16 West Coast Regional Plan 16 West Coast Regional Plan 16.1 Regional overview 16.2 West Coast transmission system 16.3 West Coast demand 16.4 West Coast generation 16.5 West Coast significant maintenance work 16.6 Future West Coast

More information

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt. Lab 13: Wound rotor induction motor. Objective: to examine the construction of a 3-phase wound rotor induction motor; to understand exciting current, synchronous speed and slip in this motor; to determine

More information

Genetic Algorithm approach to find excitation capacitances for 3- phase smseig operating single phase loads

Genetic Algorithm approach to find excitation capacitances for 3- phase smseig operating single phase loads Genetic Algorithm approach to find excitation capacitances for 3- phase smseig operating single phase loads Authors & Affiliation: V.Ravi Kiran, V.Manoj and P.Praveen Kumar Asst. Professor, EEE Dept GMRIT,

More information

Reactive Power and Importance to Bulk Power System OAK RIDGE NATIONAL LABORATORY ENGINEERING SCIENCE & TECHNOLOGY DIVISION

Reactive Power and Importance to Bulk Power System OAK RIDGE NATIONAL LABORATORY ENGINEERING SCIENCE & TECHNOLOGY DIVISION Reactive Power and Importance to Bulk Power System OAK RIDGE NATIONAL LABORATORY ENGINEERING SCIENCE & TECHNOLOGY DIVISION Outline What is Reactive Power and where does it come from? Why is it important?

More information

Brochure. Electric generators to power the world

Brochure. Electric generators to power the world Brochure Electric generators to power the world We provide motors and generators, services and expertise to save energy and improve customers processes over the total life cycle of our products, and beyond.

More information

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. Modeling of Wind Turbines for Power System Studies

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. Modeling of Wind Turbines for Power System Studies THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Modeling of Wind Turbines for Power System Studies TOMÁŠ PETRŮ Department of Electric Power Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden

More information

Practical Seminar Integration of Renewable Energy Resources using DIgSILENT PowerFactory (Basic V15): Generic Model

Practical Seminar Integration of Renewable Energy Resources using DIgSILENT PowerFactory (Basic V15): Generic Model Practical Seminar Integration of Renewable Energy Resources using DIgSILENT PowerFactory (Basic V15): Generic Model 1. Introduction Santiago de Chile-Chile 19 th - 20 th August 2015 The planning, design,

More information

Bill is the author of 15 papers and lectures on transmission lines and other power system topics.

Bill is the author of 15 papers and lectures on transmission lines and other power system topics. Transmission Lines Electricity s Highway This talk starts with an explanation of Surge Impedance Loading and demonstrates how it is used for transmission line work. The St. Clair Curve widely used in transmission

More information

Power transformers. Generator step-up and system intertie power transformers Securing high-quality AC transmission

Power transformers. Generator step-up and system intertie power transformers Securing high-quality AC transmission Power transformers Generator step-up and system intertie power transformers Securing high-quality AC transmission Generator step-up transformers Built to withstand continuous full load Generator step-up

More information

Requirements for Offshore Grid Connections. in the. Grid of TenneT TSO GmbH

Requirements for Offshore Grid Connections. in the. Grid of TenneT TSO GmbH Requirements for Offshore Grid Connections in the Grid of TenneT TSO GmbH Bernecker Straße 70, 95448 Bayreuth Updated: 21 December 2012 1/10 Requirements for Offshore Grid Connections in the Grid of TenneT

More information

Earthing Guidance Notes

Earthing Guidance Notes Central Networks Earthing Manual Section E2 Earthing Guidance Notes Version: 2 Date of Issue: September 2007 Author: Nigel Johnson Job Title: Earthing Specialist Approver: John Simpson Job Title: Head

More information

Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers

Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers Comparison of an Efficient Buck Converter Configuration for the DC Power Distribution Of Future Green Data Centers Sindhu Shetty 1, I. V. Prasanna 2, S. K. Panda 3 UG student, Dept. of EEE, National Institute

More information

The stable way. Synchronous condenser solutions. siemens.com/energy/facts

The stable way. Synchronous condenser solutions. siemens.com/energy/facts The stable way Synchronous condenser solutions siemens.com/energy/facts Bringing grids in line with new requirements Global climate change poses new challenges for power generation and transmission. Innovative

More information

WIND POWER IN INDIA: PROS AND CONS AN OVERVIEW

WIND POWER IN INDIA: PROS AND CONS AN OVERVIEW Int. J. Elec&Electr.Eng&Telecoms. 2013 Sunita Singh, 2013 Review Article ISSN 2319 2518 www.ijeetc.com Vol. 2, No. 2, April 2013 2013 IJEETC. All Rights Reserved WIND POWER IN INDIA: PROS AND CONS AN OVERVIEW

More information

13 ELECTRIC MOTORS. 13.1 Basic Relations

13 ELECTRIC MOTORS. 13.1 Basic Relations 13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This

More information

NTTG Study Plan for the 2014-2015 Public Policy Consideration Scenario

NTTG Study Plan for the 2014-2015 Public Policy Consideration Scenario NTTG Study Plan for the 2014-2015 Public Policy Consideration Scenario Table of Contents NTTG Study Plan for the 2014-2015 Public Policy Consideration Scenario Table of Contents... 2 1. Executive Summary...

More information

Project description. Power Electronics for Reliable and Energy efficient Renewable Energy Systems

Project description. Power Electronics for Reliable and Energy efficient Renewable Energy Systems Project description Title: Power Electronics for Reliable and Energy efficient Renewable Energy Systems OBJECTIVES Principal objective Provide competence and decision basis for enabling reliable and energy

More information

Low Frequency AC Transmission System

Low Frequency AC Transmission System , pp. 315-326 http://dx.doi.org/10.14257/ijsip.2015.8.5.32 Low Frequency AC Transmission System G. Sirisha Kumari 1 and K.Veerendranath 2 1 M. Tech student in EEE Department 2 Asst. Professor in EEE Department

More information

TRANSIENT STABILITY ANALYSIS AND ENHANCEMENT OF IEEE- 9 BUS SYSTEM

TRANSIENT STABILITY ANALYSIS AND ENHANCEMENT OF IEEE- 9 BUS SYSTEM TRANSIENT STABILITY ANALYSIS AND ENHANCEMENT OF IEEE- 9 BUS SYSTEM Renuka Kamdar 1, Manoj Kumar 2 and Ganga Agnihotri 3 1,3 Department of Electrical Engineering, MANIT, Bhopal, India ABSTRACT System stability

More information

Three phase circuits

Three phase circuits Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

More information

Circulating Current Relay. Type IRXm

Circulating Current Relay. Type IRXm Circulating Current Relay Type IRXm ABB a global technology leader ABB is a global leader in Power and Automation technologies that enable utility and industry customers to improve performance while lowering

More information

Control Strategies of the Doubly Fed Induction Machine for Wind Energy Generation Applications

Control Strategies of the Doubly Fed Induction Machine for Wind Energy Generation Applications Control Strategies of the Doubly Fed Induction Machine for Wind Energy Generation Applications AUTHORS Dr. Gonzalo Abad, The University of Mondragon, SPAIN. Dr. Miguel Ángel Rodríguez, Ingeteam Transmission

More information

Distributed Generation and Power Quality Case Study

Distributed Generation and Power Quality Case Study 16 Distributed Generation and Power Quality Case Study Vu Van Thong and Johan Driesen C16.1 DISTRIBUTION NETWORK A segment of an existing Belgian medium-voltage distribution system is used to study the

More information

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

Variable Frequency Drives - a Comparison of VSI versus LCI Systems Variable Frequency Drives - a Comparison of VSI versus LCI Systems Introduction TMEIC is a leader in the innovative design and manufacture of large ac variable f requency drive systems. TMEIC has been

More information

GENERATOR DIFFERENTIAL PROTECTION RELAY STABILITY VIS-A -VIS SELECTION OF CTS MR. H. C. MEHTA & MR. JAY MEHTA Power Linker Group Co.

GENERATOR DIFFERENTIAL PROTECTION RELAY STABILITY VIS-A -VIS SELECTION OF CTS MR. H. C. MEHTA & MR. JAY MEHTA Power Linker Group Co. GENERATOR DIFFERENTIAL PROTECTION RELAY STABILITY VIS-A -VIS SELECTION OF CTS MR. H. C. MEHTA & MR. JAY MEHTA Power Linker Group Co., Mumbai ABSTRACT : For generator differential protection, one set of

More information

Measurement, Modeling and Simulation of Capacitor Bank Switching Transients

Measurement, Modeling and Simulation of Capacitor Bank Switching Transients Measurement, Modeling and Simulation of Capacitor Bank Switching Transients Mirza Softić*, Amir Tokić**, Ivo Uglešić*** *Kreka - Dubrave e, Dubrave, Bosnia and Herzegovina (e-mail: softic_mirza@yahoo.com).

More information

SIMULATING HYBRID ENERGY GRIDS IN SMART CITIES FOCUS ON ELECTRIC ENERGY SYSTEMS

SIMULATING HYBRID ENERGY GRIDS IN SMART CITIES FOCUS ON ELECTRIC ENERGY SYSTEMS Sawsan Henein AIT Austrian Institute of Technology Electric Energy Systems Research Group SIMULATING HYBRID ENERGY GRIDS IN SMART CITIES FOCUS ON ELECTRIC ENERGY SYSTEMS Sustainable Places 2015 Savona,

More information

Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement

Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement American Journal of Applied Sciences 3 (1): 1649-1654, 2006 ISSN 1546-9239 2006 Science Publications Modeling and Simulation of a Novel Switched Reluctance Motor Drive System with Power Factor Improvement

More information