Computer Algorithms. Merge Sort. Analysis of Merge Sort. Recurrences. Recurrence Relations. Iteration Method. Lecture 6
|
|
|
- Mitchell George
- 9 years ago
- Views:
Transcription
1 Computer Algorithms Lecture 6 Merge Sort Sorting Problem: Sort a sequence of n elements into non-decreasing order. Divide: Divide the n-element sequence to be sorted into two subsequences of n/ elements each Conquer: Sort the two subsequences recursively using merge sort. Combine: Merge the two sorted subsequences to produce the sorted answer. Recurrence Ch. 4 (till Master Theorem) Some of these slides are courtesy of D. Plaisted et al, UNC and M. Nicolescu, UNR Analysis of Merge Sort Running time T(n) of Merge Sort: Divide: computing the middle takes () Conquer: solving subproblems takes T(n/) Combine: merging n elements takes (n) Total: T(n) = () if n = T(n) = T(n/) + (n) if n > T(n) = (n lg n) Recurrences Running time of algorithms with recursive calls can be described using recurrences A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs. For divide-and-conquer algorithms: solving_trivial_problem if n Tn ( ) num_pieces Tn ( / subproblem_size_factor) dividing combining if n Example: Merge Sort () if n Tn ( ) Tn ( /) ( n) if n 3 4 Recurrence Relations Equation or an inequality that characterizes a function by its values on smaller inputs. Solution Methods (Chapter 4) Iteration Method Substitution Method. Recursion-tree Method. Master Method. Recurrence relations arise when we analyze the running time of iterative or recursive algorithms. Ex: Divide and Conquer. T(n) = () if n c T(n) = a T(n/b) + D(n) + C(n) otherwise Iteration Method T(n) = c + T(n/) T(n) = c + T(n/) T(n/) = c + T(n/4) = c + c + T(n/4) T(n/4) = c + T(n/8) = c + c + c + T(n/8) Assume n = k T(n) = c + c + + c + k times = clgn + = Θ(lgn) 5 6
2 Iteration Method Example T(n) = n + T(n/) Assume: n = k T(n) = n + T(n/) T(n/) = n/ + T(n/4) T(n) = n + T(n-) Iteration Method Example T(n) = n + T(n-) 7 8 Substitution method Substitution method Two steps Guess the form of the solution Use mathematical induction to find the constants and show the solution works Useful when it is easy to guess the form of the answer Can be used to establish either upper or lower bound on a recurrence Example: determine upper bound for T ( n) T ( n / ) n guess: T(n) = O(n lg n) prove: T(n) lg n for some c Guess a solution T(n) = O(g(n)) Induction goal: apply the definition of the asymptotic notation T(n) d g(n), for some d > 0 and n n 0 Induction hypothesis: T(k) d g(k) for all k < n Prove the induction goal Use the induction hypothesis to find some values of the constants d and n 0 for which the induction goal holds 9 0 Example Exact Function Recurrence: T(n) = if n = T(n) = T(n/) + n if n > Guess: T(n) = n lg n + n. Induction: Basis: n = n lgn + n = = T(n). Hypothesis: n = k/: T(k/) = (k/) lg (k/) + (k/) Inductive Step: n = k: T(k) = T(k /) + k = ((k /)lg(k /) + (k /)) + k = k (lg(k /)) + k = k lg k k + k = k lg k + k Example T(n) = T(n-) + n Guess: T(n) = O(n ) Induction goal: T(n) c n, for some c and n n 0 Induction hypothesis: T(n-) c(n-) Proof of induction goal: T(n) = T(n-) + n c (n-) + n
3 Substitution Method. Summary Making a good guess Guess the form of the solution, then use mathematical induction to show it correct. Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values hence, the name. Works well when the solution is easy to guess. No general way to guess the correct solution. Need experience and creativity Use recursion trees to generate good guesses If a recurrence is similar to one you are familiar, then guessing a similar solution is reasonable T ( n) T ( n / 7) T(n) = O(n lg n) Why? n 3 4 Recursion-tree Method Example Making a good guess is sometimes difficult with the substitution method. Use recursion trees to devise good guesses. Convert the recurrence into a tree: Each node represents the cost incurred at that level of recursion Sum up the costs of all levels Recursion Trees Show successive expansions of recurrences using trees. Keep track of the time spent on the subproblems of a divide and conquer algorithm. Help organize the algebraic bookkeeping necessary to solve a recurrence. Running time of Merge Sort: T(n) = () if n = T(n) = T(n/) + (n) if n > Rewrite the recurrence as T(n) = c if n = T(n) = T(n/) + if n > c > 0: Running time for the base case and time per array element for the divide and combine steps. 5 6 Recursion Tree for Merge Sort For the original problem, we have a cost of, plus two subproblems each of size (n/) and running time T(n/). Cost of divide and merge. Each of the size n/ problems has a cost of / plus two subproblems, each costing T(n/4). / / Recursion Tree for Merge Sort Continue expanding until the problem size reduces to. / / lg n /4 /4 /4 /4 T(n/) T(n/) Cost of sorting subproblems. T(n/4) T(n/4) T(n/4) T(n/4) 7 c c c c c c Total : lgn+ 8 3
4 Recursion Tree for Merge Sort Continue expanding until the problem size reduces to. / / Each level has total cost. Each time we go down one level, the number of subproblems doubles, but the cost per subproblem halves cost per level remains the same. T(n) = T(n/) + n T(n/) T(n/) T(n/4) T(n/4) T(n/4) T(n/4) T(n/)=(T/4)+(n/) T(n/4)=(T/8)+(n/4) /4 /4 /4 /4 c c c c c c There are lg n + levels, height is lg n. (Assuming n is a power of.) Can be proved by induction. Total cost = sum of costs at each level = (lg n + ) = lgn + = (n lgn). 9 Subproblem size at level i is: n/ i Subproblem size hits when = n/ i i= lgn Cost of the problem at level i = (n/ i ) No. of nodes at level i = i lgn lgn i i n lgn T ( n) T () n n n O( n) n O( n) n i T(n) = O(n ) 0 T(n) = 3T(n/4) + T(n) = T(n/3) + T(n/3) + n The longest path from the root to a leaf is: n (/3)n (/3) n Subproblem size hits when =(/3) i n i=log 3/ n Subproblem size at level i is: n/4 i Subproblem size hits when = n/4 i i= log 4 n Cost of a node at level i =? Number of nodes at level i =? Cost of the problem at level i =? T(n) =? T(n) =? Other Examples Use the recursion-tree method to determine a guess for the recurrences T(n) = 3T( n/4 ) + (n ). T(n) =T(n/3) + T(n/3) + O(n). Recursion Trees Caution Note Recursion trees only generate guesses. Verify guesses using substitution method. A small amount of sloppiness can be tolerated. Why? If careful when drawing out a recursion tree and summing the costs, can be used as direct proof
5 Recursion-Tree Method. Summary Recursion tree Each node represents the cost of a single subproblem somewhere in the set of recursive function invocations Each level denotes iteration Sum the costs within each level of the tree to obtain a set of per-level costs Sum all the per-level costs to determine the total cost of all levels of the recursion Useful when the recurrence describes the running time of a divide-and- conquer algorithm Useful for generating a good guess, which is then verified by the substitution method Use the recursion-tree method to guess the solution (rather than for proving) Example Recurrences T(n) = T(n-) + n Θ(n ) Recursive algorithm that loops through the input to eliminate one item T(n) = T(n/) + c Θ(lgn) Recursive algorithm that halves the input in one step T(n) = T(n/) + n Θ(n) Recursive algorithm that halves the input but must examine every item in the input T(n) = T(n/) + Θ(n) Recursive algorithm that splits the input into halves and does a constant amount of other work 5 6 Three methods for solving recurrences (obtaining asymptotic Θ or O bounds on the solution) Substitution method Recursion-tree method Master method Notes some technical details are neglected Assumption of integer arguments to functions: T(n) Boundary condition for small n T(n) is constant for small n Floors, ceilings Mathematical induction is used to prove our solution for recurrence Showing base case holds Assume the nth step is true Prove the (n+)th step by the result before the nth step 7 5
Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally
Recurrence Relations Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally modeled by recurrence relations. A recurrence relation is an equation which
Full and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
CS473 - Algorithms I
CS473 - Algorithms I Lecture 4 The Divide-and-Conquer Design Paradigm View in slide-show mode 1 Reminder: Merge Sort Input array A sort this half sort this half Divide Conquer merge two sorted halves Combine
The Tower of Hanoi. Recursion Solution. Recursive Function. Time Complexity. Recursive Thinking. Why Recursion? n! = n* (n-1)!
The Tower of Hanoi Recursion Solution recursion recursion recursion Recursive Thinking: ignore everything but the bottom disk. 1 2 Recursive Function Time Complexity Hanoi (n, src, dest, temp): If (n >
The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,
The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints
the recursion-tree method
the recursion- method recurrence into a 1 recurrence into a 2 MCS 360 Lecture 39 Introduction to Data Structures Jan Verschelde, 22 November 2010 recurrence into a The for consists of two steps: 1 Guess
CSC148 Lecture 8. Algorithm Analysis Binary Search Sorting
CSC148 Lecture 8 Algorithm Analysis Binary Search Sorting Algorithm Analysis Recall definition of Big Oh: We say a function f(n) is O(g(n)) if there exists positive constants c,b such that f(n)
CS473 - Algorithms I
CS473 - Algorithms I Lecture 9 Sorting in Linear Time View in slide-show mode 1 How Fast Can We Sort? The algorithms we have seen so far: Based on comparison of elements We only care about the relative
Data Structures and Algorithms Written Examination
Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where
Introduction to Algorithms March 10, 2004 Massachusetts Institute of Technology Professors Erik Demaine and Shafi Goldwasser Quiz 1.
Introduction to Algorithms March 10, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Quiz 1 Quiz 1 Do not open this quiz booklet until you are directed
Mathematical Induction. Lecture 10-11
Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:
CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm
Algorithms. Margaret M. Fleck. 18 October 2010
Algorithms Margaret M. Fleck 18 October 2010 These notes cover how to analyze the running time of algorithms (sections 3.1, 3.3, 4.4, and 7.1 of Rosen). 1 Introduction The main reason for studying big-o
Solutions of Equations in One Variable. Fixed-Point Iteration II
Solutions of Equations in One Variable Fixed-Point Iteration II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011
Section IV.1: Recursive Algorithms and Recursion Trees
Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller
Appendix: Solving Recurrences [Fa 10] Wil Wheaton: Embrace the dark side! Sheldon: That s not even from your franchise!
Change is certain. Peace is followed by disturbances; departure of evil men by their return. Such recurrences should not constitute occasions for sadness but realities for awareness, so that one may be
Analysis of Algorithms I: Binary Search Trees
Analysis of Algorithms I: Binary Search Trees Xi Chen Columbia University Hash table: A data structure that maintains a subset of keys from a universe set U = {0, 1,..., p 1} and supports all three dictionary
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Lecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
Recursive Algorithms. Recursion. Motivating Example Factorial Recall the factorial function. { 1 if n = 1 n! = n (n 1)! if n > 1
Recursion Slides by Christopher M Bourke Instructor: Berthe Y Choueiry Fall 007 Computer Science & Engineering 35 Introduction to Discrete Mathematics Sections 71-7 of Rosen cse35@cseunledu Recursive Algorithms
CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Linda Shapiro Winter 2015
CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Linda Shapiro Today Registration should be done. Homework 1 due 11:59 pm next Wednesday, January 14 Review math essential
A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called heap-order property
CmSc 250 Intro to Algorithms Chapter 6. Transform and Conquer Binary Heaps 1. Definition A binary heap is a complete binary tree, where each node has a higher priority than its children. This is called
Lecture Notes on Polynomials
Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex
Find-The-Number. 1 Find-The-Number With Comps
Find-The-Number 1 Find-The-Number With Comps Consider the following two-person game, which we call Find-The-Number with Comps. Player A (for answerer) has a number x between 1 and 1000. Player Q (for questioner)
Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees. Binary Search Trees. Lecturer: Georgy Gimel farb
Binary Search Trees Lecturer: Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 27 1 Properties of Binary Search Trees 2 Basic BST operations The worst-case time complexity of BST operations
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
Closest Pair Problem
Closest Pair Problem Given n points in d-dimensions, find two whose mutual distance is smallest. Fundamental problem in many applications as well as a key step in many algorithms. p q A naive algorithm
GRAPH THEORY LECTURE 4: TREES
GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection
TAKE-AWAY GAMES. ALLEN J. SCHWENK California Institute of Technology, Pasadena, California INTRODUCTION
TAKE-AWAY GAMES ALLEN J. SCHWENK California Institute of Technology, Pasadena, California L INTRODUCTION Several games of Tf take-away?f have become popular. The purpose of this paper is to determine the
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,
Scheduling a sequence of tasks with general completion costs
Scheduling a sequence of tasks with general completion costs Francis Sourd CNRS-LIP6 4, place Jussieu 75252 Paris Cedex 05, France [email protected] Abstract Scheduling a sequence of tasks in the acceptation
Lecture 6 Online and streaming algorithms for clustering
CSE 291: Unsupervised learning Spring 2008 Lecture 6 Online and streaming algorithms for clustering 6.1 On-line k-clustering To the extent that clustering takes place in the brain, it happens in an on-line
Sequential Data Structures
Sequential Data Structures In this lecture we introduce the basic data structures for storing sequences of objects. These data structures are based on arrays and linked lists, which you met in first year
9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
Mathematical Induction. Mary Barnes Sue Gordon
Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity.
7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni- Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,
Binary Search Trees CMPSC 122
Binary Search Trees CMPSC 122 Note: This notes packet has significant overlap with the first set of trees notes I do in CMPSC 360, but goes into much greater depth on turning BSTs into pseudocode than
Research Tools & Techniques
Research Tools & Techniques for Computer Engineering Ron Sass http://www.rcs.uncc.edu/ rsass University of North Carolina at Charlotte Fall 2009 1/ 106 Overview of Research Tools & Techniques Course What
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction
Lecture 11 Dynamic Programming 11.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach
Class Overview. CSE 326: Data Structures. Goals. Goals. Data Structures. Goals. Introduction
Class Overview CSE 326: Data Structures Introduction Introduction to many of the basic data structures used in computer software Understand the data structures Analyze the algorithms that use them Know
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
Lecture 4 Online and streaming algorithms for clustering
CSE 291: Geometric algorithms Spring 2013 Lecture 4 Online and streaming algorithms for clustering 4.1 On-line k-clustering To the extent that clustering takes place in the brain, it happens in an on-line
csci 210: Data Structures Recursion
csci 210: Data Structures Recursion Summary Topics recursion overview simple examples Sierpinski gasket Hanoi towers Blob check READING: GT textbook chapter 3.5 Recursion In general, a method of defining
6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks
6.042/8.062J Mathematics for Comuter Science December 2, 2006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Random Walks Gambler s Ruin Today we re going to talk about one-dimensional random walks. In
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
Algorithms Chapter 12 Binary Search Trees
Algorithms Chapter 1 Binary Search Trees Outline Assistant Professor: Ching Chi Lin 林 清 池 助 理 教 授 [email protected] Department of Computer Science and Engineering National Taiwan Ocean University
FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY
FACTORING LARGE NUMBERS, A GREAT WAY TO SPEND A BIRTHDAY LINDSEY R. BOSKO I would like to acknowledge the assistance of Dr. Michael Singer. His guidance and feedback were instrumental in completing this
In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
Data Structures. Algorithm Performance and Big O Analysis
Data Structures Algorithm Performance and Big O Analysis What s an Algorithm? a clearly specified set of instructions to be followed to solve a problem. In essence: A computer program. In detail: Defined
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
Sample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
From Binomial Trees to the Black-Scholes Option Pricing Formulas
Lecture 4 From Binomial Trees to the Black-Scholes Option Pricing Formulas In this lecture, we will extend the example in Lecture 2 to a general setting of binomial trees, as an important model for a single
If n is odd, then 3n + 7 is even.
Proof: Proof: We suppose... that 3n + 7 is even. that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. that 3n + 7 is even. Since n is odd, there exists an integer k so that
1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D.
1. The memory address of the first element of an array is called A. floor address B. foundation addressc. first address D. base address 2. The memory address of fifth element of an array can be calculated
Collatz Sequence. Fibbonacci Sequence. n is even; Recurrence Relation: a n+1 = a n + a n 1.
Fibonacci Roulette In this game you will be constructing a recurrence relation, that is, a sequence of numbers where you find the next number by looking at the previous numbers in the sequence. Your job
Analysis of Algorithms I: Optimal Binary Search Trees
Analysis of Algorithms I: Optimal Binary Search Trees Xi Chen Columbia University Given a set of n keys K = {k 1,..., k n } in sorted order: k 1 < k 2 < < k n we wish to build an optimal binary search
Discrete Mathematics: Homework 7 solution. Due: 2011.6.03
EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that
Data Structure [Question Bank]
Unit I (Analysis of Algorithms) 1. What are algorithms and how they are useful? 2. Describe the factor on best algorithms depends on? 3. Differentiate: Correct & Incorrect Algorithms? 4. Write short note:
Converting a Number from Decimal to Binary
Converting a Number from Decimal to Binary Convert nonnegative integer in decimal format (base 10) into equivalent binary number (base 2) Rightmost bit of x Remainder of x after division by two Recursive
Activity 1: Using base ten blocks to model operations on decimals
Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division
Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.
Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than
Union-Find Problem. Using Arrays And Chains
Union-Find Problem Given a set {,,, n} of n elements. Initially each element is in a different set. ƒ {}, {},, {n} An intermixed sequence of union and find operations is performed. A union operation combines
Solutions to Homework 6
Solutions to Homework 6 Debasish Das EECS Department, Northwestern University [email protected] 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example
From Last Time: Remove (Delete) Operation
CSE 32 Lecture : More on Search Trees Today s Topics: Lazy Operations Run Time Analysis of Binary Search Tree Operations Balanced Search Trees AVL Trees and Rotations Covered in Chapter of the text From
5.2 The Master Theorem
170 CHAPTER 5. RECURSION AND RECURRENCES 5.2 The Master Theorem Master Theorem In the last setion, we saw three different kinds of behavior for reurrenes of the form at (n/2) + n These behaviors depended
The Running Time of Programs
CHAPTER 3 The Running Time of Programs In Chapter 2, we saw two radically different algorithms for sorting: selection sort and merge sort. There are, in fact, scores of algorithms for sorting. This situation
Analysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications
Data Structures and Algorithms
Data Structures and Algorithms CS245-2016S-06 Binary Search Trees David Galles Department of Computer Science University of San Francisco 06-0: Ordered List ADT Operations: Insert an element in the list
Introduction. Appendix D Mathematical Induction D1
Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
The following themes form the major topics of this chapter: The terms and concepts related to trees (Section 5.2).
CHAPTER 5 The Tree Data Model There are many situations in which information has a hierarchical or nested structure like that found in family trees or organization charts. The abstraction that models hierarchical
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,
Algorithm Design and Analysis Homework #1 Due: 5pm, Friday, October 4, 2013 TA email: [email protected]. === Homework submission instructions ===
Algorithm Design and Analysis Homework #1 Due: 5pm, Friday, October 4, 2013 TA email: [email protected] === Homework submission instructions === For Problem 1, commit your source code and a brief documentation
Mathematics for Algorithm and System Analysis
Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
Lecture Notes on Linear Search
Lecture Notes on Linear Search 15-122: Principles of Imperative Computation Frank Pfenning Lecture 5 January 29, 2013 1 Introduction One of the fundamental and recurring problems in computer science is
8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
Probability Generating Functions
page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence
6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
Lecture 10 Union-Find The union-nd data structure is motivated by Kruskal's minimum spanning tree algorithm (Algorithm 2.6), in which we needed two operations on disjoint sets of vertices: determine whether
Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )
1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the
Continued Fractions. Darren C. Collins
Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history
SCORE SETS IN ORIENTED GRAPHS
Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in
PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++
Answer the following 1) The postfix expression for the infix expression A+B*(C+D)/F+D*E is ABCD+*F/DE*++ 2) Which data structure is needed to convert infix notations to postfix notations? Stack 3) The
A Note on Maximum Independent Sets in Rectangle Intersection Graphs
A Note on Maximum Independent Sets in Rectangle Intersection Graphs Timothy M. Chan School of Computer Science University of Waterloo Waterloo, Ontario N2L 3G1, Canada [email protected] September 12,
Properties of Real Numbers
16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should
Data Structures Fibonacci Heaps, Amortized Analysis
Chapter 4 Data Structures Fibonacci Heaps, Amortized Analysis Algorithm Theory WS 2012/13 Fabian Kuhn Fibonacci Heaps Lacy merge variant of binomial heaps: Do not merge trees as long as possible Structure:
IB Maths SL Sequence and Series Practice Problems Mr. W Name
IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =
Lectures 5-6: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
