If n is odd, then 3n + 7 is even.


 Elwin O’Connor’
 2 years ago
 Views:
Transcription
1
2 Proof:
3 Proof: We suppose...
4 that 3n + 7 is even.
5 that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1.
6 that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. By substituting for n and using algebra, we get 3n + 7 = 3(2k + 1) + 7
7 that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. By substituting for n and using algebra, we get 3n + 7 = 3(2k + 1) + 7 3n + 7 = 6k
8 that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. By substituting for n and using algebra, we get 3n + 7 = 3(2k + 1) + 7 3n + 7 = 6k n + 7 = 6k + 10
9 that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. By substituting for n and using algebra, we get 3n + 7 = 3(2k + 1) + 7 3n + 7 = 6k n + 7 = 6k n + 7 = 2(3k + 5).
10 that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. By substituting for n and using algebra, we get 3n + 7 = 3(2k + 1) + 7 3n + 7 = 6k n + 7 = 6k n + 7 = 2(3k + 5). Since k is an integer, 3k + 5 is also an integer because integers are closed under addition and multiplication.
11 that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. By substituting for n and using algebra, we get 3n + 7 = 3(2k + 1) + 7 3n + 7 = 6k n + 7 = 6k n + 7 = 2(3k + 5). Since k is an integer, 3k + 5 is also an integer because integers are closed under addition and multiplication. If we let q be the integer 3k + 5, then by substitution we have shown 3n + 7 = 2q.
12 that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. By substituting for n and using algebra, we get 3n + 7 = 3(2k + 1) + 7 3n + 7 = 6k n + 7 = 6k n + 7 = 2(3k + 5). Since k is an integer, 3k + 5 is also an integer because integers are closed under addition and multiplication. If we let q be the integer 3k + 5, then by substitution we have shown 3n + 7 = 2q. Therefore, if n is an odd integer, we have shown that 3n + 7 is even.
13 that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. By substituting for n and using algebra, we get 3n + 7 = 3(2k + 1) + 7 3n + 7 = 6k n + 7 = 6k n + 7 = 2(3k + 5). Since k is an integer, 3k + 5 is also an integer because integers are closed under addition and multiplication. If we let q be the integer 3k + 5, then by substitution we have shown 3n + 7 = 2q. Therefore, if n is an odd integer, we have shown that 3n + 7 is even.
14 Alternative proof: that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. By substituting for n and using algebra, we get 3n + 7 = 3(2k + 1) + 7 = 6k = 6k + 10 = 2(3k + 5) = 2q, where q = 3k +5 is an integer because k is an integer, and integers are closed under addition and multiplication. Therefore, we have shown that 3n + 7 is even when n is an odd integer. QED
15 Writing Guidelines We do not consider a proof complete until there is a wellwritten proof.
16 Writing Guidelines We do not consider a proof complete until there is a wellwritten proof. 0. Do all of the thinking, work, and planning first. A KnowShow table or outline or notes or scratch work should be completed prior to writing so you can focus on quality writing, not math.
17 Writing Guidelines We do not consider a proof complete until there is a wellwritten proof. 0. Do all of the thinking, work, and planning first. A KnowShow table or outline or notes or scratch work should be completed prior to writing so you can focus on quality writing, not math. 1. Begin with a carefully worded statement of the theorem or result to be proven. State what you are about to prove. Below that write Proof and begin writing.
18 Writing Guidelines We do not consider a proof complete until there is a wellwritten proof. 0. Do all of the thinking, work, and planning first. A KnowShow table or outline or notes or scratch work should be completed prior to writing so you can focus on quality writing, not math. 1. Begin with a carefully worded statement of the theorem or result to be proven. State what you are about to prove. Below that write Proof and begin writing. 2. Begin the proof with a statement of assumptions. We assume (the hypothesis)... or Suppose (the hypothesis)...
19 Writing Guidelines We do not consider a proof complete until there is a wellwritten proof. 0. Do all of the thinking, work, and planning first. A KnowShow table or outline or notes or scratch work should be completed prior to writing so you can focus on quality writing, not math. 1. Begin with a carefully worded statement of the theorem or result to be proven. State what you are about to prove. Below that write Proof and begin writing. 2. Begin the proof with a statement of assumptions. We assume (the hypothesis)... or Suppose (the hypothesis) Use the pronoun we. Mathematicians are a loving community that does everything together. Do not use I, my, you or similar pronouns in writing proofs. It is our convention that we use the pronouns we and our and us.
20 Writing Guidelines Continued Use italics for variables when typing. 5. Display important equations and mathematical expressions. They should be centered and wellaligned. 6. Tell the reader when you are done. Give some form of QED: Quod Erat Demonstrandum  which was to be demonstrated. Use whatever symbol you like: or or or or $.
Full and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
More informationSEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION
CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ  http://www.inf.unibz.it/ artale/ SECTION 5.2 Mathematical Induction I Copyright Cengage Learning. All rights reserved.
More information8.7 Mathematical Induction
8.7. MATHEMATICAL INDUCTION 8135 8.7 Mathematical Induction Objective Prove a statement by mathematical induction Many mathematical facts are established by first observing a pattern, then making a conjecture
More information2. Methods of Proof Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try.
2. METHODS OF PROOF 69 2. Methods of Proof 2.1. Types of Proofs. Suppose we wish to prove an implication p q. Here are some strategies we have available to try. Trivial Proof: If we know q is true then
More informationChapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1
Chapter 6 Finite sets and infinite sets Copyright 013, 005, 001 Pearson Education, Inc. Section 3.1, Slide 1 Section 6. PROPERTIES OF THE NATURE NUMBERS 013 Pearson Education, Inc.1 Slide Recall that denotes
More informationAlgebra for Digital Communication
EPFL  Section de Mathématiques Algebra for Digital Communication Fall semester 2008 Solutions for exercise sheet 1 Exercise 1. i) We will do a proof by contradiction. Suppose 2 a 2 but 2 a. We will obtain
More informationBasic Proof Techniques
Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
More informationMATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
More informationCourse Notes for Math 320: Fundamentals of Mathematics Chapter 3: Induction.
Course Notes for Math 320: Fundamentals of Mathematics Chapter 3: Induction. February 21, 2006 1 Proof by Induction Definition 1.1. A subset S of the natural numbers is said to be inductive if n S we have
More informationMathematical Induction
Mathematical Induction Victor Adamchik Fall of 2005 Lecture 2 (out of three) Plan 1. Strong Induction 2. Faulty Inductions 3. Induction and the Least Element Principal Strong Induction Fibonacci Numbers
More information1.3 Induction and Other Proof Techniques
4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.
More informationPRINCIPLE OF MATHEMATICAL INDUCTION
Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION Analysis and natural philosophy owe their most important discoveries to this fruitful means, which is called induction Newton was indebted to it for his theorem
More informationNotes from February 11
Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The
More information2.4 Mathematical Induction
2.4 Mathematical Induction What Is (Weak) Induction? The Principle of Mathematical Induction works like this: What Is (Weak) Induction? The Principle of Mathematical Induction works like this: We want
More informationWRITING PROOFS. Christopher Heil Georgia Institute of Technology
WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this
More informationQuantifiers are used to describe variables in statements.  The universal quantifier means for all.  The existential quantifier means there exists.
11 Quantifiers are used to describe variables in statements.  The universal quantifier means for all.  The existential quantifier means there exists. The phrases, for all x in R if x is an arbitrary
More informationIt is time to prove some theorems. There are various strategies for doing
CHAPTER 4 Direct Proof It is time to prove some theorems. There are various strategies for doing this; we now examine the most straightforward approach, a technique called direct proof. As we begin, it
More informationIntroduction. Appendix D Mathematical Induction D1
Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to
More informationCOMPUTER SCIENCE 123. Foundations of Computer Science. 20. Mathematical induction
COMPUTER SCIENCE 123 Foundations of Computer Science 20. Mathematical induction Summary: This lecture introduces mathematical induction as a technique for proving the equivalence of two functions, or for
More informationWUCT121. Discrete Mathematics. Logic
WUCT121 Discrete Mathematics Logic 1. Logic 2. Predicate Logic 3. Proofs 4. Set Theory 5. Relations and Functions WUCT121 Logic 1 Section 1. Logic 1.1. Introduction. In developing a mathematical theory,
More informationChapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
More informationHandout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
More informationSolutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014
Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the
More informationClimbing an Infinite Ladder
Section 5.1 Climbing an Infinite Ladder Suppose we have an infinite ladder and the following capabilities: 1. We can reach the first rung of the ladder. 2. If we can reach a particular rung of the ladder,
More informationELEMENTARY NUMBER THEORY AND METHODS OF PROOF
CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF SECTION 4.4 Direct Proof and Counterexample IV: Division into Cases and the QuotientRemainder Theorem Copyright Cengage Learning. All rights reserved.
More informationIndiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
More informationSets and Subsets. Countable and Uncountable
Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There
More informationMathematical Induction
Mathematical Induction MAT30 Discrete Mathematics Fall 016 MAT30 (Discrete Math) Mathematical Induction Fall 016 1 / 19 Outline 1 Mathematical Induction Strong Mathematical Induction MAT30 (Discrete Math)
More informationSample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
More informationDirect Proofs. CS 19: Discrete Mathematics. Direct Proof: Example. Indirect Proof: Example. Proofs by Contradiction and by Mathematical Induction
Direct Proofs CS 19: Discrete Mathematics Amit Chakrabarti Proofs by Contradiction and by Mathematical Induction At this point, we have seen a few examples of mathematical proofs. These have the following
More information4. PRINCIPLE OF MATHEMATICAL INDUCTION
4 PRINCIPLE OF MATHEMATICAL INDUCTION Ex Prove the following by principle of mathematical induction 1 1 + 2 + 3 + + n 2 1 2 + 2 2 + 3 2 + + n 2 3 1 3 + 2 3 + 3 3 + + n 3 + 4 (1) + (1 + 3) + (1 + 3 + 5)
More informationCHAPTER 3. Fourier Series
`A SERIES OF CLASS NOTES FOR 20052006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL
More informationWarm up. Connect these nine dots with only four straight lines without lifting your pencil from the paper.
Warm up Connect these nine dots with only four straight lines without lifting your pencil from the paper. Sometimes we need to think outside the box! Warm up Solution Warm up Insert the Numbers 1 8 into
More informationMathematical induction
Mathematical induction If we want to prove that P n holds for for all natural numbers n, we can do the following twostep rocket called mathematical induction: 1. Prove that P 0 holds 2. Prove that if P
More informationp 2 1 (mod 6) Adding 2 to both sides gives p (mod 6)
.9. Problems P10 Try small prime numbers first. p p + 6 3 11 5 7 7 51 11 13 Among the primes in this table, only the prime 3 has the property that (p + ) is also a prime. We try to prove that no other
More informationDoug Ravenel. October 15, 2008
Doug Ravenel University of Rochester October 15, 2008 s about Euclid s Some s about primes that every mathematician should know (Euclid, 300 BC) There are infinitely numbers. is very elementary, and we
More informationGeometry  Chapter 2 Review
Name: Class: Date: Geometry  Chapter 2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine if the conjecture is valid by the Law of Syllogism.
More information= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More informationPythagorean Triples Pythagorean triple similar primitive
Pythagorean Triples One of the most farreaching problems to appear in Diophantus Arithmetica was his Problem II8: To divide a given square into two squares. Namely, find integers x, y, z, so that x 2
More informationCHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs
CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce
More informationLecture 3. Mathematical Induction
Lecture 3 Mathematical Induction Induction is a fundamental reasoning process in which general conclusion is based on particular cases It contrasts with deduction, the reasoning process in which conclusion
More informationSection 62 Mathematical Induction
6 Mathematical Induction 457 In calculus, it can be shown that e x k0 x k k! x x x3!! 3!... xn n! where the larger n is, the better the approximation. Problems 6 and 6 refer to this series. Note that
More informationMathematical Induction
MCS236: Graph Theory Handout #A5 San Skulrattanakulchai Gustavus Adolphus College Sep 15, 2010 Mathematical Induction The following three principles governing N are equivalent. Ordinary Induction Principle.
More informationMathematical Induction
Mathematical Induction Victor Adamchik Fall of 2005 Lecture 1 (out of three) Plan 1. The Principle of Mathematical Induction 2. Induction Examples The Principle of Mathematical Induction Suppose we have
More informationChapter 3: Elementary Number Theory and Methods of Proof. January 31, 2010
Chapter 3: Elementary Number Theory and Methods of Proof January 31, 2010 3.4  Direct Proof and Counterexample IV: Division into Cases and the QuotientRemainder Theorem QuotientRemainder Theorem Given
More informationAppendix F: Mathematical Induction
Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another
More informationELEMENTARY NUMBER THEORY AND METHODS OF PROOF
CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.4 Direct Proof and Counterexample IV: Division into Cases and the QuotientRemainder Theorem
More informationWorksheet on induction Calculus I Fall 2006 First, let us explain the use of for summation. The notation
Worksheet on induction MA113 Calculus I Fall 2006 First, let us explain the use of for summation. The notation f(k) means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More information3. Recurrence Recursive Definitions. To construct a recursively defined function:
3. RECURRENCE 10 3. Recurrence 3.1. Recursive Definitions. To construct a recursively defined function: 1. Initial Condition(s) (or basis): Prescribe initial value(s) of the function.. Recursion: Use a
More informationSECTION 102 Mathematical Induction
73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms
More informationMath Circle Beginners Group October 18, 2015
Math Circle Beginners Group October 18, 2015 Warmup problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd
More informationCollatz Sequence. Fibbonacci Sequence. n is even; Recurrence Relation: a n+1 = a n + a n 1.
Fibonacci Roulette In this game you will be constructing a recurrence relation, that is, a sequence of numbers where you find the next number by looking at the previous numbers in the sequence. Your job
More informationMathematical Induction. Rosen Chapter 4.1 (6 th edition) Rosen Ch. 5.1 (7 th edition)
Mathematical Induction Rosen Chapter 4.1 (6 th edition) Rosen Ch. 5.1 (7 th edition) Mathmatical Induction Mathmatical induction can be used to prove statements that assert that P(n) is true for all positive
More information9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
More informationArkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers
More informationThe Factor Theorem and a corollary of the Fundamental Theorem of Algebra
Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside
More information6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
More information1 Investigation of Rightangled Triangles
1 Investigation of Rightangled Triangles Answering this investigation Some tasks in this investigation require you to use Geogebra (www.geogebra. org). All the files are viewable online, so you will not
More informationProof: A logical argument establishing the truth of the theorem given the truth of the axioms and any previously proven theorems.
Math 232  Discrete Math 2.1 Direct Proofs and Counterexamples Notes Axiom: Proposition that is assumed to be true. Proof: A logical argument establishing the truth of the theorem given the truth of the
More informationSOLVING POLYNOMIAL EQUATIONS
C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra
More informationOutline. Cryptography. Bret Benesh. Math 331
Outline 1 College of St. Benedict/St. John s University Department of Mathematics Math 331 2 3 The internet is a lawless place, and people have access to all sorts of information. What is keeping people
More informationRecurrence Relations
Recurrence Relations Introduction Determining the running time of a recursive algorithm often requires one to determine the bigo growth of a function T (n) that is defined in terms of a recurrence relation.
More informationMath 317 HW #5 Solutions
Math 317 HW #5 Solutions 1. Exercise 2.4.2. (a) Prove that the sequence defined by x 1 = 3 and converges. x n+1 = 1 4 x n Proof. I intend to use the Monotone Convergence Theorem, so my goal is to show
More informationDigitalCommons@University of Nebraska  Lincoln
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 71007 Pythagorean Triples Diane Swartzlander University
More informationChapter 1. SigmaAlgebras. 1.1 Definition
Chapter 1 SigmaAlgebras 1.1 Definition Consider a set X. A σ algebra F of subsets of X is a collection F of subsets of X satisfying the following conditions: (a) F (b) if B F then its complement B c is
More informationLogic, Sets, and Proofs
Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Statements. A logical statement is a mathematical statement that is either true or false. Here we denote logical
More informationDiscrete Mathematics
Slides for Part IA CST 2014/15 Discrete Mathematics Prof Marcelo Fiore Marcelo.Fiore@cl.cam.ac.uk What are we up to? Learn to read and write, and also work with, mathematical
More informationThe Foundations: Logic and Proofs. Chapter 1, Part III: Proofs
The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Rules of Inference Section 1.6 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments
More informationMath 313 Lecture #10 2.2: The Inverse of a Matrix
Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is
More informationMathematics for Computer Science
mcs 01/1/19 1:3 page i #1 Mathematics for Computer Science revised Thursday 19 th January, 01, 1:3 Eric Lehman Google Inc. F Thomson Leighton Department of Mathematics and the Computer Science and AI Laboratory,
More informationLecture Notes on Polynomials
Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex
More informationCSE373: Data Structures and Algorithms Lecture 2: Proof by Induction. Linda Shapiro Winter 2015
CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction Linda Shapiro Winter 2015 Background on Induction Type of mathematical proof Typically used to establish a given statement for all natural
More informationMTH124: Honors Algebra I
MTH124: Honors Algebra I This course prepares students for more advanced courses while they develop algebraic fluency, learn the skills needed to solve equations, and perform manipulations with numbers,
More informationAlgebraic Systems, Fall 2013, September 1, 2013 Edition. Todd Cochrane
Algebraic Systems, Fall 2013, September 1, 2013 Edition Todd Cochrane Contents Notation 5 Chapter 0. Axioms for the set of Integers Z. 7 Chapter 1. Algebraic Properties of the Integers 9 1.1. Background
More informationWelcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013
Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move
More informationCongruent Number Problem
University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
More informationMathematical induction. Niloufar Shafiei
Mathematical induction Niloufar Shafiei Mathematical induction Mathematical induction is an extremely important proof technique. Mathematical induction can be used to prove results about complexity of
More informationAlgorithms complexity of recursive algorithms. Jiří Vyskočil, Marko GenykBerezovskyj
complexity of recursive algorithms Jiří Vyskočil, Marko GenykBerezovskyj 20102014 Recurrences A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.
More informationProperties of Real Numbers
16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should
More informationCase #1 Case #2 Case #3. n = 3q n = 3q + 1 n = 3q + 2
Problems 1, 2, and 3 are worth 15 points each (5 points per subproblem). Problems 4 and 5 are worth 30 points each (10 points per subproblem), for a total of 105 points possible. 1. The following are from
More informationFACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS
International Electronic Journal of Algebra Volume 6 (2009) 95106 FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS Sándor Szabó Received: 11 November 2008; Revised: 13 March 2009
More informationCS 441 Discrete Mathematics for CS Lecture 5. Predicate logic. CS 441 Discrete mathematics for CS. Negation of quantifiers
CS 441 Discrete Mathematics for CS Lecture 5 Predicate logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Negation of quantifiers English statement: Nothing is perfect. Translation: x Perfect(x)
More informationInference Rules and Proof Methods
Inference Rules and Proof Methods Winter 2010 Introduction Rules of Inference and Formal Proofs Proofs in mathematics are valid arguments that establish the truth of mathematical statements. An argument
More informationMAT2400 Analysis I. A brief introduction to proofs, sets, and functions
MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take
More informationMathematical Foundations of Computer Science Lecture Outline
Mathematical Foundations of Computer Science Lecture Outline September 21, 2016 Example. How many 8letter strings can be constructed by using the 26 letters of the alphabet if each string contains 3,4,
More informationAlgebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
More informationSome Remarks on Writing Mathematical Proofs
Some Remarks on Writing Mathematical Proofs John M. Lee University of Washington Mathematics Department Writing mathematical proofs is, in many ways, unlike any other kind of writing. Over the years, the
More informationTrigonometric Functions and Equations
Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending
More information3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
More informationAPPLICATIONS OF THE ORDER FUNCTION
APPLICATIONS OF THE ORDER FUNCTION LECTURE NOTES: MATH 432, CSUSM, SPRING 2009. PROF. WAYNE AITKEN In this lecture we will explore several applications of order functions including formulas for GCDs and
More informationSOLUTIONS FOR PROBLEM SET 2
SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such
More informationMath 2331 Linear Algebra
2.2 The Inverse of a Matrix Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University
More information1. What s wrong with the following proofs by induction?
ArsDigita University Month : Discrete Mathematics  Professor Shai Simonson Problem Set 4 Induction and Recurrence Equations Thanks to Jeffrey Radcliffe and Joe Rizzo for many of the solutions. Pasted
More informationJUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
More information6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
More informationMathematical Induction
Mathematical S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 Like dominoes! Mathematical S 0 S 1 S 2 S 3 S4 S 5 S 6 S 7 S 8 S 9 S 10 Like dominoes! S 4 Mathematical S 0 S 1 S 2 S 3 S5 S 6 S 7 S 8 S 9 S 10
More informationThe program also provides supplemental modules on topics in geometry and probability and statistics.
Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students
More information