Reactions of Benzene & Its Derivatives

Size: px
Start display at page:

Download "Reactions of Benzene & Its Derivatives"

Transcription

1 rganic Lecture Series Reactions of Benzene & Its Derivatives Chapter 22 1 Reactions of Benzene rganic Lecture Series The most characteristic reaction of aromatic compounds is substitution at a ring carbon alogenation e 3 2 Chlorobenzene itration 2 S itrobenzene 2

2 Reactions of Benzene rganic Lecture Series Sulfonation S 3 2 S 4 S 3 Benzenesulfonic acid Alkylation RX AlX 3 R X An alkylbenzene Acylation RCX AlX 3 CR X An acylbenzene 3 rganic Lecture Series Carbon-Carbon Bond ormations R R Al 3 Arenes Alkylbenzenes 4

3 rganic Lecture Series Electrophilic Aromatic Substitution Electrophilic aromatic substitution a reaction in which a hydrogen atom of an aromatic ring is replaced by an electrophile E E In this section several common types of electrophiles how each is generated the mechanism by which each replaces hydrogen 5 EAS General Mechanism A general mechanism rganic Lecture Series Step 1 Step 2 E E Electro - phile fast slow, rate determining E Resonance-stabilized cation intermediate E Key question What is the electrophile and how is it generated? 6

4 rganic Lecture Series 7 Chlorination Step 1 formation of a chloronium ion rganic Lecture Series e Chlorine (a Lewis base) erric chloride (a Lewis acid) - - e e 4 A molecular complex An ion pair with a positive charge containing a on chlorine ch loronium ion Step 2 attack of the chloronium ion on the ring slow, rate determining Resonance-stabilized cation intermediate; the positive charge is delocalized onto three atoms of the ring 8

5 Chlorination rganic Lecture Series Step 3 proton transfer regenerates the aromatic character of the ring Cation intermediate - fast -e 3 e 3 Chlorobenzene 9 Bromination rganic Lecture Series ebr Br 3 Br 2 Br Bromobenzene This is the general method for Substitution of halogen onto a benzene ring (CAT be halogenated by ree Radical Mechanism) 10

6 rganic Lecture Series Bromination-Why not addn of Br 2? Regains Aromatic Energy 11 itration Generation of the nitronium ion, 2 Step 1 proton transfer to nitric acid rganic Lecture Series S 3 S 4 Sulfuric itric Conju gate acid acid pk a = -3 acid pk a = -1.4 of nitric acid Step 2 loss of 2 gives the nitronium ion, a very strong electrophile The nitronium ion 12

7 itration rganic Lecture Series Step 1 attack of the nitronium ion (an electrophile) on the aromatic ring (a nucleophile) Resonance-stabilized cation intermediate Step 2 proton transfer regenerates the aromatic ring itration rganic Lecture Series A particular value of nitration is that the nitro group can be reduced to a 1 amino group C C 3 2 i (3 atm) itrobenzoic acid 2 4-Aminobenzoic acid 14

8 Sulfonation rganic Lecture Series Carried out using concentrated sulfuric acid containing dissolved sulfur trioxide 2 S 4 S 3 S 3 Benzene B enzenesulfonic acid (S 3 in 2 S 4 is sometimes called fuming sulfuric acid.) 15 riedel-crafts Alkylation rganic Lecture Series riedel-crafts alkylation forms a new C-C bond between an aromatic ring and an alkyl group Al 3 Benzene 2-Chloropropane (Isoprop yl chlorid e) Cumene (Isopropylbenzene) The electrophilic partner is a carbocation; it will arrange to the most stable ion allylic>3 o >2 o >1 o 16

9 riedel-crafts Alkylation rganic Lecture Series Step 1 formation of an alkyl cation as an ion pair - R Al R Al R - Al 4 A molecular An ion pair containing comp lex a carbocation Step 2 attack of the alkyl cation on the aromatic ring R R Step 3 proton transfer regenerates the aromatic ring R A resonance-stabilized cation R R Al 3 R Al 3 17 riedel-crafts Alkylation rganic Lecture Series There are two major limitations on riedel-crafts alkylations 1. carbocation rearrangements are common Al 3 Benzene Isobutyl chloride tert-butylbenzene C 3 C 3 - C 3 CC 2 - Al 3 C 3 C- C 2 --Al 3 I sobutyl chloride amolecular complex C 3 C 3 C - Al 4 C 3 an ion pair 18

10 riedel-crafts Alkylation rganic Lecture Series 2. -C alkylation fails on benzene rings bearing one or more of these strongly electronwithdrawing groups Y RX Al 3 o reacti on When Y Equals Any of These Groups, the Benzene Ring Does ot Undergo riedel-crafts Alkylation C CR C CR S 3 C 2 R 3 C 2 C 3 C 3 19 rganic Lecture Series 20

11 rganic Lecture Series The De-activation of Aromatic Systems ote deactivation refers to the rate of EAS 21 riedel-crafts Acylation rganic Lecture Series riedel-crafts acylation forms a new C-C bond between a benzene ring and an acyl group C 3 C Al 3 Benzene Acetyl ch loride Acetophenone Al 3 4-Phenylbutanoyl chlorid e α-tetralon e 22

12 riedel-crafts Acylation The electrophile is an acylium ion rganic Lecture Series R-C An acyl chloride Al- Aluminum chloride (1) - R-C Al A molecular complex with a positive charge charge on chlorine (2) R-C - Al 4 A n ion pair containing an acylium ion 23 riedel-crafts Acylation rganic Lecture Series an acylium ion is a resonance hybrid of two major contributing structures complete valence shells R-C R-C The more important contributing structure -C acylations are free of a major limitation of -C alkylations; acylium ions do not rearrange. 24

13 riedel-crafts Acylation rganic Lecture Series A special value of -C acylations is preparation of unrearranged alkylbenzenes Al 3 2-Methylpropanoyl chloride 2 4, K diethylene 2-Methyl-1- glycol phenyl-1-propanone Isobutylbenzene 25 Di- and Polysubstitution rganic Lecture Series nly a trace 26

14 Di- and Polysubstitution rganic Lecture Series rientation on nitration of monosubstituted benzenes Substituent ortho meta para ortho para meta C trace C trace Br C C Di- and Polysubstitution rientation rganic Lecture Series certain substituents direct preferentially to ortho & para positions; others to meta positions substituents are classified as either ortho-para directing or meta directing toward further substitution 28

15 Rate Di- and Polysubstitution rganic Lecture Series certain substituents cause the rate of a second substitution to be greater than that for benzene itself; others cause the rate to be lower substituents are classified as activating or deactivating toward further substitution 29 rganic Lecture Series 30

16 Di- and Polysubstitution rganic Lecture Series -C 3 is ortho-para directing C 3 C 32 C 3 3 C3 C 2 Anisole o-itroanisole (44%) -C 2 is meta directing 2 p- itroanis ole (55%) C C C C 2 S C 2 Ben zoic 2 acid o-itrobenzoic acid (18%) m-itrobenzoic acid (80%) p-itrobenzoic acid (2%) 31 Di- and Polysubstitution rganic Lecture Series rtho-para Directing Strongly activating 2 R R 2 Moderately activating Weakly activating Weakly deactivating CR R CAr CR Br I CAr R Meta Directing Moderately deactivating Strongly deactivating C CR C C 2 S CR C C 3 C 3 32

17 Di- and Polysubstitution rganic Lecture Series the order of steps is important C 3 C 3 K 2 Cr S 4 2 S 4 C p-itrobenzoic acid C C K 2 Cr S 4 2 S 4 2 m- itroben zoic acid 33 Theory of Directing Effects rganic Lecture Series The rate of EAS is limited by the slowest step in the reaction or almost every EAS, the ratedetermining step is attack of E on the aromatic ring to give a resonancestabilized cation intermediate The more stable this cation intermediate, the faster the ratedetermining step and the faster the overall reaction 34

18 Theory of Directing Effects rganic Lecture Series or ortho-para directors, ortho-para attack forms a more stable cation than meta attack ortho-para products are formed faster than meta products or meta directors, meta attack forms a more stable cation than ortho-para attack meta products are formed faster than ortho-para products 35 Theory of Directing Effects itration of anisole -C 3 ; examine the meta attack rganic Lecture Series C 3 2 slow C 3 C 3 C (a) (b) (c) fast - C

19 itration of anisole rganic Lecture Series -C 3 examine the ortho-para attack C 3 C 3 2 slow C 3 C 3 C 3 C (d) (e) (f) (g) 2 - fast This resonance structure accounts for the selectivity 37 Theory of Directing Effects rganic Lecture Series - 2 ; examine the meta attack C 2 slow itration of benzoic acid C C C C 2 2 (a) (b) (c) fast

20 itration of benzoic acid rganic Lecture Series - 2 assume ortho-para attack C slow 2 C C C C fast (d) (e) (f) The most disfavored contributing structure 2 This resonance structure accounts for the selectivity 39 Activating-Deactivating rganic Lecture Series Any resonance effect, such as that of - 2, -, and -R, that delocalizes the positive charge on the cation intermediate lowers the activation energy for its formation, and has an activating effect toward further EAS Any resonance effect, such as that of - 2, -C, -C, and -S 3, that decreases electron density on the ring deactivates the ring toward further EAS 40

21 Activating-Deactivating rganic Lecture Series Any inductive effect, such as that of - C 3 or other alkyl group, that releases electron density toward the ring activates the ring toward further EAS Any inductive effect, such as that of halogen, -R 3, -C 3, or -C 3, that decreases electron density on the ring deactivates the ring toward further EAS 41 Di- and Polysubstitution rganic Lecture Series Generalizations alkyl, phenyl, and all other substituents in which the atom bonded to the ring has an unshared pair of electrons are orthopara directing; all other substituents are meta directing all ortho-para directing groups except the halogens are activating toward further substitution; the halogens are weakly deactivating 42

22 Activating-Deactivating rganic Lecture Series for the halogens, the inductive and resonance effects run counter to each other, but the former is somewhat stronger the net effect is that halogens are deactivating but ortho-para directing E E E 43 Di- and Polysubstitution rganic Lecture Series rtho-para Directing Strongly activating 2 R R 2 Moderately activating Weakly activating Weakly deactivating CR R CAr CR Br I CAr R Meta Directing Moderately deactivating Strongly deactivating C CR C C 2 S CR C C 3 C 3 44

23 rganic Lecture Series Medicinal Chemistry Benzodiazepins 1) Sedative-hypnotic 2) Anticonvulsant 3) Muscle relaxant Valium 4) Anxiolytic 45 Retrosynthetic Analysis 3 C rganic Lecture Series Medicinal Chemistry 3 C C riedel-crafts Acylation X 46

24 rganic Lecture Series Medicinal Chemistry Short Problem Using EAS the synthesis of p-aminochlorobenzene e S 4 2 Pt or Pd Separate o from p 47 rganic Lecture Series Medicinal Chemistry The Synthesis of the amide section 2 3 C 3 C C 3 a C 3 Br 48

25 rganic Lecture Series Medicinal Chemistry riedel Crafts Acylation 3 C C 3 3 C Al 3 Amide is activating & o p directing 49 3 C rganic Lecture Series Medicinal Chemistry 3 C 1) a 2) 3 C 3 3 C 2 loss 2 formation of imine 50

26 rganic Lecture Series Medicinal Chemistry treatment of schizophrenia and acute psychotic states and delirium. Chlorpromazine (Thorazine) The introduction (1950) of chlorpromazine into clinical use has been described as the single greatest advance in psychiatric care, dramatically improving the prognosis of patients in psychiatric hospitals worldwide the availability of antipsychotic drugs curtailed indiscriminate use of electroconvulsive therapy and psychosurgery, and was one of the driving forces behind the deinstitutionalization movement. 51 rganic Lecture Series Medicinal Chemistry 52

27 rganic Lecture Series Medicinal Chemistry C 3 C 2 1) LiAl 4 2) Michael Reaction in Context rganic Lecture Series Medicinal Chemistry 2eq C 2 C 3 2 C 2 C 3 C 2 C 3 54

28 rganic Lecture Series Medicinal Chemistry Dieckmann Condensation in Context C 2 C 3 C 2 C 3 ac 3 C 3 C 2 C 3 55 rganic Lecture Series Medicinal Chemistry C 2 C 3 1) a 2) 3 3) Δ 56

29 rganic Lecture Series Medicinal Chemistry 1) MgBr 2) 3 aloperidol 57 Al 3 C 1) / 2) S 2 rganic Lecture Series C 3 2 1) LiAl 4 2) 3 C 2 2eq C 2 C 3 C 2 C 3 C 2 C 3 ac 3 C 3 C 2 C 3 1) a 2) 3 3) aloperidol 1) 2) 3 MgBr 58

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution: a reaction in which the hydrogen atom of an aromatic ring is replaced as a result of an electrophilic attack on the aromatic ring

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Electrophilic substitution is the typical reaction type for aromatic rings. Generalized electrophilic aromatic substitution: E E Electrophile Lewis acid: may be or neutral.

More information

Benzene Benzene is best represented as a resonance hybrid:

Benzene Benzene is best represented as a resonance hybrid: Electrophilic Aromatic Substitution (EAS) is a substitution reaction usually involving the benzene ring; more specifically it is a reaction in which the hydrogen atom of an aromatic ring is replaced as

More information

Electrophilic Aromatic Substitution Reactions

Electrophilic Aromatic Substitution Reactions Electrophilic Aromatic Substitution Reactions, Course Notes Archive, 1 Electrophilic Aromatic Substitution Reactions An organic reaction in which an electrophile substitutes a hydrogen atom in an aromatic

More information

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway "Organic Chemistry" by Maitland Jones, 4 th edition Chapter 14 Homework: 1, 2, 5, 7, 13, 19, 20, 23, 26, 27, 28, 30, 31, 34, 35, 36, 41, 46,

More information

REACTIONS OF AROMATIC COMPOUNDS

REACTIONS OF AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic Aromatic Substitution (EAS), Nucleophilic Aromatic Substitution (S N Ar) and Elimination-Addition

More information

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic ring Some substituents activate the ring, making it more reactive than benzene

More information

CHEM 211 CHAPTER 16 - Homework

CHEM 211 CHAPTER 16 - Homework CHEM 211 CHAPTER 16 - Homework SHORT ANSWER Consider the Friedel-Crafts alkylation reaction below to answer the following question(s): 1. Refer to the reaction above. Draw the structure of the electrophilic

More information

Aromaticity and Reactions of Benzene

Aromaticity and Reactions of Benzene Aromaticity and eactions of Benzene ark College Benzene is a unique molecule it is highly unsaturated with 6 carbons and 6 hydrogens, it is planar, and has a high degree of symmetry. These features explain

More information

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6 Aromatic compounds GE 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out some suitable structures which fit the molecular formula

More information

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700)

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700) 750 CAPTER 6 TE CEITRY F BENZENE AND IT DERIVATIVE This hybridization allows one of its electron pairs to occupy a 2p orbital, which has the same size, shape, and orientation as the carbon 2p orbitals

More information

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity

More information

Acids and Bases: Molecular Structure and Acidity

Acids and Bases: Molecular Structure and Acidity Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive

More information

ammonium salt (acidic)

ammonium salt (acidic) Chem 360 Jasperse Ch. 19 otes. Amines 1 eactions of Amines 1. eaction as a proton base (Section 19-5 and 19-6) amine base -X (proton acid) a X ammonium salt (acidic) Mechanism: equired (protonation) everse

More information

Chemistry Notes for class 12 Chapter 13 Amines

Chemistry Notes for class 12 Chapter 13 Amines 1 P a g e Chemistry Notes for class 12 Chapter 13 Amines Amines constitute an important class of organic compounds derived by replacing one or more hydrogen atoms ofnh 3 molecule by alkyl/aryl group(s).

More information

Mass Spec - Fragmentation

Mass Spec - Fragmentation Mass Spec - Fragmentation An extremely useful result of EI ionization in particular is a phenomenon known as fragmentation. The radical cation that is produced when an electron is knocked out of a neutral

More information

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO:

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: A STUDENT SHULD BE ABLE T: ARMATIC CMPUNDS 1. Name benzene derivatives given the structures, and draw the structures given the names. This includes: Monosubstituted benzenes named as derivatives of benzene:

More information

Electrophilic Addition Reactions

Electrophilic Addition Reactions Electrophilic Addition Reactions Electrophilic addition reactions are an important class of reactions that allow the interconversion of C=C and C C into a range of important functional groups. Conceptually,

More information

Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction?

Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Studying an Organic Reaction How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Information we want to know: How much heat is generated? How fast is

More information

Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name

Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name Chapter 10 Conjugation in Alkadienes and Allylic Systems Chapter 10 suggested problems: I. The allyl group Class Notes A. B. The allyl group is both a common name and an accepted IUPAC name 1. Allyl alcohol

More information

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes History and Application: The rate of a reaction directly impacts the commercial

More information

Everything You Need to Know About Mechanisms. First rule: Arrows are used to indicate movement of electrons

Everything You Need to Know About Mechanisms. First rule: Arrows are used to indicate movement of electrons Everything You eed to Know About Mechanisms A) The orrect Use of Arrows to Indicate Electron Movement The ability to write an organic reaction mechanism properly is key to success in organic chemistry

More information

Writing a Correct Mechanism

Writing a Correct Mechanism Chapter 2 1) Balancing Equations Writing a Correct Mechanism 2) Using Arrows to show Electron Movement 3) Mechanisms in Acidic and Basic Media 4) Electron rich Species: Nucleophile or Base? 5) Trimolecular

More information

Chapter 6 An Overview of Organic Reactions

Chapter 6 An Overview of Organic Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and

More information

Conjugation is broken completely by the introduction of saturated (sp3) carbon:

Conjugation is broken completely by the introduction of saturated (sp3) carbon: Chapter 16 Conjugation, resonance, and dienes Conjugation relies on the partial overlap of p-orbitals on adjacent double or triple bonds. A common conjugated system involves 1,3-dienes, such as 1,3-butadiene.

More information

Figure 8. Example of simple benzene naming with chlorine and NO 2 as substituents.

Figure 8. Example of simple benzene naming with chlorine and NO 2 as substituents. BENZENE NAMING EXPLAINED. This was excerpted from CHEM WIKI and is used with appreciation to the authors. http://chemwiki.ucdavis.edu/organic_chemistry/hydrocarbons/aromatics/naming_the_benzenes. Simple

More information

Chapter 22 Carbonyl Alpha-Substitution Reactions

Chapter 22 Carbonyl Alpha-Substitution Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 22 Carbonyl Alpha-Substitution Reactions The α Position The carbon next to the carbonyl group is designated as being in the α position Electrophilic

More information

ALCOHOLS: Properties & Preparation

ALCOHOLS: Properties & Preparation ALLS: Properties & Preparation General formula: R-, where R is alkyl or substitued alkyl. Ar-: phenol - different properties. Nomenclature 1. ommon names: Name of alkyl group, followed by word alcohol.

More information

methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example

methyl RX example primary RX example secondary RX example secondary RX example tertiary RX example ucleophilic Substitution & Elimination hemistry 1 eginning patterns to knowfor S and E eactions - horizontal and vertical templates for practice Example 1 - two possible perspectives (deuterium and tritium

More information

Chapter 15 Radical Reactions. Radicals are reactive species with a single unpaired electron, formed by

Chapter 15 Radical Reactions. Radicals are reactive species with a single unpaired electron, formed by Chapter 15 Radical Reactions Radicals are reactive species with a single unpaired electron, formed by homolysis of a covalent bond; a radical contains an atom that does not have an octet of electrons,

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 2 Polar Covalent Bonds; Acids and Bases John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity

More information

partial positive an acid is a hydrogen ion donor, or proton donor base is a hydrogen ion acceptor, or proton acceptor acidic protons acid base

partial positive an acid is a hydrogen ion donor, or proton donor base is a hydrogen ion acceptor, or proton acceptor acidic protons acid base INTRDUCTIN T INIC MECANISMS PART I: FUNDAMENTALS F BRNSTED-LWRY ACID-BASE CEMISTRY YDRGEN ATMS AND PRTNS IN RGANIC MLECULES - A hydrogen atom that has lost its only electron is sometimes referred to as

More information

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information

INTDUCTIN T LEWIS ACID-BASE CEMISTY DEINITINS Lewis acids and bases are defined in terms of electron pair transfers. A Lewis base is an electron pair donor, and a Lewis acid is an electron pair acceptor.

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas unsaturated

More information

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS

17.2 REACTIONS INVOLVING ALLYLIC AND BENZYLIC RADICALS 17. REACTINS INVLVING ALLYLIC AND BENZYLIC RADICALS 793 As Eq. 17. shows, the products derived from the reaction of water at the ring carbons are not formed. The reason is that these products are not aromatic

More information

Double Bonds. Hydration Rxns. Hydrogenation Rxns. Halogenation. Formation of epoxides. Syn addition of 2 OH. Ozonolysis

Double Bonds. Hydration Rxns. Hydrogenation Rxns. Halogenation. Formation of epoxides. Syn addition of 2 OH. Ozonolysis Double Bonds What do we do with double bonds? We do addition reactions. In an addition reaction, something is added to both carbons involved in a double bond (or not involved in the double bond, in the

More information

NMR Spectroscopy of Aromatic Compounds (#1e)

NMR Spectroscopy of Aromatic Compounds (#1e) NMR Spectroscopy of Aromatic Compounds (#1e) 1 H NMR Spectroscopy of Aromatic Compounds Erich Hückel s study of aromaticity in the 1930s produced a set of rules for determining whether a compound is aromatic.

More information

Resonance Structures Arrow Pushing Practice

Resonance Structures Arrow Pushing Practice Resonance Structures Arrow Pushing Practice The following is a collection of ions and neutral molecules for which several resonance structures can be drawn. For the ions, the charges can be delocalized

More information

California State Polytechnic University, Pomona. Exam Points 1. Nomenclature (1) 30

California State Polytechnic University, Pomona. Exam Points 1. Nomenclature (1) 30 Chem 316 Final Exam Winter, 2008 Beauchamp ame: Topic Total Points Exam Points 1. omenclature (1) 30 Credit 2. Explanation of elative eactivities of Aromatic 20 Compounds or Carbonyl Compounds 3. eactions

More information

Formal Charges. Step 2. Assign the formal charge to each atom. Formal charge is calculated using this formula: H O H H

Formal Charges. Step 2. Assign the formal charge to each atom. Formal charge is calculated using this formula: H O H H Formal harges Discussion: Ions bear a positive or negative charge. If the ion is polyatomic (is constructed of more than on atom), we might ask which atom(s) of the ion carry the charge? Knowledge of charge

More information

Addition Reactions of Carbon-Carbon Pi Bonds - Part 1

Addition Reactions of Carbon-Carbon Pi Bonds - Part 1 Addition eactions of arbon-arbon Pi Bonds - Part 1 3 δ+ 2 δ 3 3 3 + 2 3 2 3 What Is an Addition eaction? Addition reaction: Atoms or groups are added to opposite ends of a pi bond. X Y Why should I study

More information

ALKENES AND ALKYNES REACTIONS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO:

ALKENES AND ALKYNES REACTIONS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO: ALKENES AND ALKYNES REACTINS A STUDENT W AS MASTERED TE MATERIAL IN TIS SECTIN SULD BE ABLE T: 1. Given the starting materials and reaction conditions, predict the products of the following reactions of

More information

ALKENES AND ALKYNES REACTIONS

ALKENES AND ALKYNES REACTIONS A STUDENT SHULD BE ABLE T: ALKENES AND ALKYNES REACTINS 1. Given the starting materials and reaction conditions, predict the products of the following reactions of alkenes and alkynes. Regioselective Markovnikov

More information

3.4 BRØNSTED LOWRY ACIDS AND BASES

3.4 BRØNSTED LOWRY ACIDS AND BASES 96 CAPTER 3 ACIDS AND BASES. TE CURVED-ARROW NOTATION and that the unshared electron pair (and negative charge) is shared equally by the two terminal carbons. C L C A C 1 allyl anion (c) Using the curved-arrow

More information

CHE 232 - Organic Chemistry Exam 1, February 10, 2004

CHE 232 - Organic Chemistry Exam 1, February 10, 2004 CE 232 - rganic Chemistry Exam 1, February 10, 2004 ame Student ID o. Before you begin this exam: First: You are allowed to have a simple model set at your seat. Please put away all other materials. Second:

More information

SULFONATE AND INORGANIC ESTER DERIVATIVES OF ALCOHOLS

SULFONATE AND INORGANIC ESTER DERIVATIVES OF ALCOHOLS 0. ULFNATE AND INRGANIC ETER DERIVATIVE F ALCL 44 R 2 C L CR 2 carbocation Lewis acid base association X (halide ion) 2 $ R 2 C L CR 2 R R X C A C $ alkyl halide R R alkene $ $ Brønsted acid base reaction

More information

IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1

IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1 Spectroscopy Data Tables Infrared Tables (short summary of common absorption frequencies) The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers,

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY MLEULAR REPRESENTATINS AND INFRARED SPETRSPY A STUDENT SULD BE ABLE T: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give examples

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch 13_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In organic chemistry, the term unsaturated means a molecule A) which contains one or more

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule

More information

CHEM 203 Exam 1. KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

CHEM 203 Exam 1. KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. CHEM 203 Exam 1 KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. _D C 1. Which of the following elements is a large percentage of both

More information

Physicochemical Properties of Drugs

Physicochemical Properties of Drugs Therapeutics I Michael B. Bolger 1/3/02 bjectives: At the end of the next hour: Physicochemical Properties of Drugs 1. The student should be able to calculate the degree of ionization for an acidic or

More information

ACID and BASES - a Summary

ACID and BASES - a Summary AID and BASES - a Summary Stefan Svensson 2004 Brönsted-Lowry : Acids donate protons Lewis -acid : Electron pair acceptor Bases accept protons Lewis-base: Electron pair donator. Acetic acid ättiksyra 3

More information

ORGANIC CHEM I Practice Questions for Ch. 4

ORGANIC CHEM I Practice Questions for Ch. 4 ORGANIC CHEM I Practice Questions for Ch. 4 1) Write an equation to describe the initiation step in the chlorination of methane. 2) Reaction intermediates that have unpaired electrons are called. 3) When

More information

Amines H 3 C H. CH 2 CH 3 ethylmethylamine. Nomenclature. 1 o : RNH 2, 2 o : RR'NH, 3 o : RR'R"N, 4 o (salt) RR'R"R'"N + R = alkyl or aryl

Amines H 3 C H. CH 2 CH 3 ethylmethylamine. Nomenclature. 1 o : RNH 2, 2 o : RR'NH, 3 o : RR'RN, 4 o (salt) RR'RR'N + R = alkyl or aryl Amines omenclature 1 o :, 2 o : 'H, 3 o : '", 4 o (salt) '"'" + = alkyl or aryl ommon names For simple amines name groups attached to alphabetically; use suffix -amine. H 3 H H 2 ethylmethylamine In complicated

More information

The dipolar nature of acids

The dipolar nature of acids I. Introduction arboxylic Acid Structure and hemistry: Part 1 Jack Deuiter arboxylic acids are hydrocarbon derivatives containing a carboxyl () moiety. ecall that carbon has four valence electrons and

More information

Survival Organic Chemistry Part I: Molecular Models

Survival Organic Chemistry Part I: Molecular Models Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,

More information

Carboxylic Acid Derivatives and Nitriles

Carboxylic Acid Derivatives and Nitriles Carboxylic Acid Derivatives and itriles Carboxylic Acid Derivatives: There are really only four things to worry about under this heading; acid chlorides, anhydrides, esters and amides. We ll start with

More information

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY RGANIC CHEMISTRY I PRACTICE PRBLEMS FR BRNSTED-LWRY ACID-BASE CHEMISTRY 1. For each of the species below, identify the most acidic proton and provide the structure of the corresponding conjugate base.

More information

2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+

2. Which one of the ions below possesses a noble gas configuration? A) Fe 3+ B) Sn 2+ C) Ni 2+ D) Ti 4+ E) Cr 3+ Chapter 9 Tro 1. Bromine tends to form simple ions which have the electronic configuration of a noble gas. What is the electronic configuration of the noble gas which the bromide ion mimics? A) 1s 2 2s

More information

Self Assessment_Ochem I

Self Assessment_Ochem I UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.

More information

Boston University Dresden Science Program ORGANIC CHEMISTRY CAS CH 203 Lecture

Boston University Dresden Science Program ORGANIC CHEMISTRY CAS CH 203 Lecture Boston University Dresden Science Program ORGANIC CHEMISTRY CAS CH 203 Lecture Instructor: Professor Wolf D. Habicher, Professor Claus Rüger Meeting Times Lectures: twice a week at 90 minutes each Discussions:

More information

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon*

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* CHM220 Nucleophilic Substitution Lab Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* Purpose: To convert a primary alcohol to an alkyl bromide using an S N 2 reaction

More information

SUBSTITUTION REACTION CHARACTERISTICS. Sn1: Substitution Nucleophilic, Unimolecular: Characteristics

SUBSTITUTION REACTION CHARACTERISTICS. Sn1: Substitution Nucleophilic, Unimolecular: Characteristics SUBSTITUTION EATION AATEISTIS Sn2: Substitution cleophilic, Bimolecular: haracteristics 1) The 2 means Bimolecular (or 2 nd order) in the rate-determining (slow) step: rate = k [: - ] [-X] or rate = k

More information

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle

Saturated NaCl solution rubber tubing (2) Glass adaptor (2) thermometer adaptor heating mantle EXPERIMENT 5 (Organic Chemistry II) Pahlavan/Cherif Dehydration of Alcohols - Dehydration of Cyclohexanol Purpose - The purpose of this lab is to produce cyclohexene through the acid catalyzed elimination

More information

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde Unit Vocabulary: Addition rxn Esterification Polymer Alcohol Ether Polymerization Aldehyde Fermentation Primary Alkane Functional group Saponification Alkene Halide (halocarbon) Saturated hydrocarbon Alkyne

More information

NOMENCLATURE OF ORGANIC COMPOUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved.

NOMENCLATURE OF ORGANIC COMPOUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved. NMENCLATURE F RGANIC CMPUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved. rganic chemistry is the chemistry of carbon compounds. Carbon has the ability to bond with itself to form long chains

More information

CH 3 CH 2 ONa + H 2 O. CH 3 CH 2 NH 2 + CH 3 OLi

CH 3 CH 2 ONa + H 2 O. CH 3 CH 2 NH 2 + CH 3 OLi rganic Chemistry Jasperse Acid- Practice Problems A. Identify each chemical as either an acid or a base in the following reactions, and identify conjugate relationships. -You should have one acid and one

More information

Molecular Models in Biology

Molecular Models in Biology Molecular Models in Biology Objectives: After this lab a student will be able to: 1) Understand the properties of atoms that give rise to bonds. 2) Understand how and why atoms form ions. 3) Model covalent,

More information

CH 3 Addition to an alkene with Br 2. No reaction when an aromatic molecule is mixed with Br 2. No Reaction. + H Br

CH 3 Addition to an alkene with Br 2. No reaction when an aromatic molecule is mixed with Br 2. No Reaction. + H Br RADIALS Reactions with 2 : 2 3 Addition to an alkene with 2 2 No reaction when an aromatic molecule is mixed with 2 2 (in the dark) No Reaction 2 h (in the light) During a demonstration by Dr., the reactants

More information

Carboxylic Acid Structure and Chemistry: Part 2

Carboxylic Acid Structure and Chemistry: Part 2 Principles of Drug Action 1, pring 2005, Carboxylic Acids Part 2 Carboxylic Acid tructure and Chemistry: Part 2 Jack Deuiter IV. eactions of the Carboxylic Acid eactions Depending on their overall structure,

More information

RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS

RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS A STUDENT SHOULD BE ABLE TO: 1. Properly use curved arrows to draw resonance structures: the tail and the head of every arrow must be drawn in exactly

More information

IUPAC System of Nomenclature

IUPAC System of Nomenclature IUPAC System of Nomenclature The IUPAC (International Union of Pure and Applied Chemistry) is composed of chemists representing the national chemical societies of several countries. ne committee of the

More information

Chapter 10 Conjugation in Alkadienes and Allylic Systems

Chapter 10 Conjugation in Alkadienes and Allylic Systems . 0 onjugated Systems hapter 0 onjugation in Alkadienes and Allylic Systems onjugated systems are those in which a π-bond is connected or conjugated (from the Latin conjugare which means to link r yoke

More information

Principles of Drug Action 1, Spring 2005, Aromatics HYDROCARBON STRUCTURE AND CHEMISTRY: AROMATICS. Jack DeRuiter

Principles of Drug Action 1, Spring 2005, Aromatics HYDROCARBON STRUCTURE AND CHEMISTRY: AROMATICS. Jack DeRuiter I. Introduction YDOABON STUTUE AND EMISTY: AOMATIS Jack Deuiter ydrocarbons are organic compounds consisting of - and - bonds. arbon has a valence of four and thus requires four electrons or bonds to complete

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line-bond (Lewis) structure. 2. Understand and construct condensed structural

More information

Name. Department of Chemistry and Biochemistry SUNY/Oneonta. Chem 322 - Organic Chemistry II Examination #2 - March 14, 2005 ANSWERS

Name. Department of Chemistry and Biochemistry SUNY/Oneonta. Chem 322 - Organic Chemistry II Examination #2 - March 14, 2005 ANSWERS Name INSTRUTINS --- Department of hemistry and Biochemistry SUNY/neonta hem 322 - rganic hemistry II Examination #2 - March 14, 2005 ANSWERS This examination has two parts. Part I is in multiple choice

More information

Chapter 11. Free Radical Reactions

Chapter 11. Free Radical Reactions hapter 11 Free Radical Reactions A free radical is a species containing one or more unpaired electrons Free radicals are electron-deficient species, but they are usually uncharged, so their chemistry is

More information

21.9 REDUCTION OF CARBOXYLIC ACID DERIVATIVES

21.9 REDUCTION OF CARBOXYLIC ACID DERIVATIVES 10 APTER 1 TE EMITRY F ARBXYLI AID DERIVATIVE TUDY GUIDE LIK 1.5 Esters and ucleophiles 1.17 Give the structure of the product in the reaction of each of the following esters with isotopically labeled

More information

ORGANIC CHEMISTRY I PRACTICE EXERCISE Sn1 and Sn2 Reactions

ORGANIC CHEMISTRY I PRACTICE EXERCISE Sn1 and Sn2 Reactions ORGANIC CEMISTRY I PRACTICE EXERCISE Sn1 and Sn2 Reactions 1) Which of the following best represents the carbon-chlorine bond of methyl chloride? d d - d - d d d d - d - I II III IV V 2) Provide a detailed,

More information

Nucleophilic Substitution and Elimination

Nucleophilic Substitution and Elimination Nucleophilic Substitution and Elimination What does the term "nucleophilic substitution" imply? A nucleophile is an the electron rich species that will react with an electron poor species A substitution

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution

Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington Lecture 22 The Acid-Base Character of Oxides and Hydroxides in Aqueous Solution Oxides; acidic, basic, amphoteric Classification of oxides - oxide

More information

Identification of Unknown Organic Compounds

Identification of Unknown Organic Compounds Identification of Unknown Organic Compounds Introduction The identification and characterization of the structures of unknown substances are an important part of organic chemistry. Although it is often

More information

17.5 ALLYLIC AND BENZYLIC OXIDATION

17.5 ALLYLIC AND BENZYLIC OXIDATION 17.5 ALLYLI AND BENZYLI XIDATIN 803 Nuc d d Nuc d 2 3 2 overlap of 2p orbitals X d no p-orbital overlap X d (a) (b) Figure 17.2 Transition states for N 2 reactions at (a) an allylic carbon and (b) a nonallylic

More information

Suggested solutions for Chapter 3

Suggested solutions for Chapter 3 s for Chapter PRBLEM Assuming that the molecular ion is the base peak (00% abundance) what peaks would appear in the mass spectrum of each of these molecules: (a) C5Br (b) C60 (c) C64Br In cases (a) and

More information

Chapter 6. Alkenes: Structure and Stability

Chapter 6. Alkenes: Structure and Stability hapter 6. Alkenes: Structure and Stability Steric Acid (saturated fatty acid) Linoleic Acid (unsaturated fatty acid) Degrees of unsaturation saturated hydrocarbon n 2n2 cycloalkane (1 ring) n 2n alkene

More information

14 Friedel-Crafts Alkylation

14 Friedel-Crafts Alkylation 14 Friedel-Crafts Alkylation 14.1 Introduction Friedel-Crafts alkylation and acylation reactions are a special class of electrophilic aromatic substitution (EAS) reactions in which the electrophile is

More information

Reminder: These notes are meant to supplement, not replace the laboratory manual. SN1 Reaction Notes

Reminder: These notes are meant to supplement, not replace the laboratory manual. SN1 Reaction Notes Reminder: These notes are meant to supplement, not replace the laboratory manual. SN1 Reaction Notes Background and Application Substitution Nucleophilic First Order (SN1) reactions are one of the most

More information

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

More information

Unit 2 Review: Answers: Review for Organic Chemistry Unit Test

Unit 2 Review: Answers: Review for Organic Chemistry Unit Test Unit 2 Review: Answers: Review for Organic Chemistry Unit Test 2. Write the IUPAC names for the following organic molecules: a) acetone: propanone d) acetylene: ethyne b) acetic acid: ethanoic acid e)

More information

pk a Values for Selected Compounds

pk a Values for Selected Compounds Appendix A pk a Values for Selected ompounds ompound pk a ompound pk a I 10 Br 9 2 S 4 9 + 3 3 7.3 3 S 3 7 Br 4.0 4.2 3 4.3 2 N l 7 [( 3 ) 2 ] + 3.8 [ 3 2 ] + 2.5 3 + 1.7 3 S 3 1.2 + 3 N2 0.0 F 3 0.2 l

More information

Chemistry 5.12 Spring 2003 Lectures #1 & 2, 2/5,7/03. Outline

Chemistry 5.12 Spring 2003 Lectures #1 & 2, 2/5,7/03. Outline hemistry 5.12 Spring 2003 Lectures #1 & 2, 2/5,7/03 utline Discuss General lass Information (Professor Imperiali) General Introduction to rganic hemistry I. Review of Lewis Bonding Theory (Read hapter

More information

SN2 Ionic Substitution Reactions

SN2 Ionic Substitution Reactions SN2 Ionic Substitution Reactions Chem 14D Winter 2005 SN2 Ionic Substitution Reactions Substitution can occur in organic compounds that have an electronegative atom or group bonded to an sp 3 hybridized

More information

Chapter 2 Polar Covalent Bond Covalent bond in which the electron pairs are not shared equally.

Chapter 2 Polar Covalent Bond Covalent bond in which the electron pairs are not shared equally. hapter 2 Polar ovalent Bond ovalent bond in which the electron pairs are not shared equally. Pure ovalent Bond (non-polar) increasing bond polarity Ionic Bond X X X Y X + Y - Electronegativity, c ability

More information

Synthesis of Isopentyl Acetate

Synthesis of Isopentyl Acetate Experiment 8 Synthesis of Isopentyl Acetate Objectives To prepare isopentyl acetate from isopentyl alcohol and acetic acid by the Fischer esterification reaction. Introduction Esters are derivatives of

More information

Chapter 5 Classification of Organic Compounds by Solubility

Chapter 5 Classification of Organic Compounds by Solubility Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and

More information