pk a Values for Selected Compounds

Size: px
Start display at page:

Download "pk a Values for Selected Compounds"

Transcription

1 Appendix A pk a Values for Selected ompounds ompound pk a ompound pk a I 10 Br 9 2 S S 3 7 Br N l 7 [( 3 ) 2 ] [ 3 2 ] S N2 0.0 F l N l P F l Br I F N N ( 3 ) N N + N S N 7.1 S Br + N A-1

2 Appendix A pk a Values for Selected ompounds A-2 ompound pk a ompound pk a N 9.1 l N N N N S 10.5 [( 3 ) 3 N] Et 10.7 [ 3 N 3 ] N [( 3 ) 2 N 2 ] F N ( 3 ) 3 18 ( 3 ) N 25 l N( 3 ) N N Et Et

3 Appendix B Nomenclature Although the basic principles of nomenclature are presented in the body of this text, additional information is often needed to name many complex organic compounds. Appendix B concentrates on three topics: Naming alkyl substituents that contain branching Naming polyfunctional compounds Naming bicyclic compounds Naming Alkyl Substituents That ontain Branching Alkyl groups that contain any number of carbons and no branches are named as described in Section 4.4A: change the -ane ending of the parent alkane to the suffix -yl. Thus the seven-carbon alkyl group is called heptyl. When an alkyl substituent also contains branching, follow a stepwise procedure: [1] Identify the longest carbon chain of the alkyl group that begins at the point of attachment to the parent. Begin numbering at the point of attachment and use the suffix -yl to indicate an alkyl group Start numbering here. 4 s in the chain butyl group Start numbering here. 5 s in the chain pentyl group [2] Name all branches off the main alkyl chain and use the numbers from Step [1] to designate their location. methyl group at 3 methyl groups at 1 and methylbutyl 1,3-dimethylpentyl A-3

4 Appendix B Nomenclature A-4 [3] Set the entire name of the substituent in parentheses, and alphabetize this substituent name by the first letter of the complete name. 1 of the six-membered ring (3-methylbutyl)cyclohexane 1-(1,3-dimethylpentyl)-2-methylcyclohexane Alphabetize the d of dimethylpentyl before the m of methyl. Number the ring to give the lower number to the first substituent alphabetically: place the dimethylpentyl group at 1. Naming Polyfunctional ompounds Many organic compounds contain more than one functional group. When one of those functional groups is halo (X ) or alkoxy ( ), these groups are named as substituents as described in Sections 7.2 and 9.3B. To name other polyfunctional compounds, we must learn which functional group is assigned a higher priority in the rules of nomenclature. Two steps are usually needed: [1] Name a compound using the suffix of the highest priority group, and name other functional groups as substituents. Table B.1 lists the common functional groups in order of decreasing priority, as well as the prefixes needed when a functional group must be named as a substituent. [2] Number the carbon chain to give the lower number to the highest priority functional group, and then follow all other rules of nomenclature. Examples are shown in Figure B.1. Polyfunctional compounds that contain double and triple bonds have characteristic suffixes to identify them, as shown in Table B.2. The higher priority functional group is assigned the lower number. Table B.1 Summary of Functional Group Nomenclature Functional group Suffix Substituent name (prefix) Increasing priority arboxylic acid -oic acid carboxy Ester -oate alkoxycarbonyl Amide -amide amido Nitrile -nitrile cyano Aldehyde -al oxo ( ) or formyl ( ) Ketone -one oxo Alcohol -ol hydroxy Amine -amine amino Alkene -ene alkenyl Alkyne -yne alkynyl Alkane -ane alkyl Ether alkoxy alide halo

5 A-5 Appendix B Nomenclature Figure B.1 Examples of nomenclature of polyfunctional compounds N highest priority 3-amino-2-hydroxybutanal Name as a derivative of an aldehyde since is the highest priority functional group. N higher priority o-cyanobenzoic acid Name as a derivative of benzoic acid since is the higher priority functional group higher priority methyl 4-oxohexanoate Name as a derivative of an ester since is the higher priority functional group. N 2 highest priority 3 4-formyl-3-methoxycyclohexanecarboxamide Name as a derivative of an amide since N 2 is the highest priority functional group. Table B.2 Naming Polyfunctional ompounds with Double and Triple Bonds Functional groups Suffix Example and enol Start numbering here. 5-methyl-4-hexen-1-ol + (ketone) enone Start numbering here. (4E)-4-hepten-3-one + enyne Start numbering here hexen-5-yne Naming Bicyclic ompounds Bicyclic ring systems compounds that contain two rings that share one or two carbon atoms can be bridged, fused, or spiro. bridged ring fused ring spiro ring A bridged ring system contains two rings that share two non-adjacent carbons. A fused ring system contains two rings that share a common carbon carbon bond. A spiro ring system contains two rings that share one carbon atom.

6 Appendix B Nomenclature A-6 Fused and bridged ring systems are named as bicyclo[x.y.z]alkanes, where the parent alkane corresponds to the total number of carbons in both rings. The numbers x, y, and z refer to the number of carbons that join the shared carbons together, written in order of decreasing size. For a fused ring system, z always equals zero, because the two shared carbons are directly joined together. The shared carbons in a bridged ring system are called the bridgehead carbons. 1 joining the bridgehead s 8 s in the ring system bicyclooctane 3 s joining the bridgehead s 2 s joining the bridgehead s Name: bicyclo[3.2.1]octane 10 s in the ring system bicyclodecane 4 s joining the common s Name: bicyclo[4.4.0]decane 4 s joining the common s No s join the shared s at the ring fusion. ings are numbered beginning at a shared carbon, and continuing around the longest bridge first, then the next longest, and so forth. 6 8 Start numbering here Start numbering here ,3-dimethylbicyclo[3.2.1]octane 7,7-dimethylbicyclo[2.2.1]heptane Spiro ring systems are named as spiro[x.y]alkanes where the parent alkane corresponds to the total number of carbons in both rings, and x and y refer to the number of carbons that join the shared carbon (the spiro carbon), written in order of increasing size. When substituents are present, the rings are numbered beginning with a carbon adjacent to the spiro carbon in the smaller ring Start numbering here s in the ring system 8 s in the ring system Name: spiro[4.5]decane Name: 2-methylspiro[3.4]octane

7 Appendix Bond Dissociation Energies for Some ommon Bonds [A B A + B] Bond o kj/mol (kcal/mol) Z bonds F 569 (136) l 431 (103) Br 368 (88) I 297 (71) 498 (119) Z Z bonds 435 (104) F F 159 (38) l l 242 (58) Br Br 192 (46) I I 151 (36) 213 (51) bonds (104) (98) (98) ( 3 ) (95) ( 3 ) (91) (104) 523 (125) (87) (110) (85) bonds (88) (85) (92) (117) A-7

8 Appendix Bond Dissociation Energies for Some ommon Bonds [A B A + B] A-8 Bond o kj/mol (kcal/mol) X bonds 3 F 456 (109) 3 l 351 (84) 3 Br 293 (70) 3 I 234 (56) 3 2 F 448 (107) 3 2 l 339 (81) 3 2 Br 285 (68) 3 2 I 222 (53) ( 3 ) 2 F 444 (106) ( 3 ) 2 l 335 (80) ( 3 ) 2 Br 285 (68) ( 3 ) 2 I 222 (53) ( 3 ) 3 F 444 (106) ( 3 ) 3 l 331 (79) ( 3 ) 3 Br 272 (65) ( 3 ) 3 I 209 (50) bonds (93) (94) (92) ( 3 ) (96) ( 3 ) (96) ther bonds (152) 837 (200) 535 (128) (119)

9 Appendix D eactions That Form arbon arbon Bonds Section eaction 11.11A S N 2 reaction of an alkyl halide with an acetylide anion, 11.11B pening of an epoxide ring with an acetylide anion, adical polymerization of an alkene Diels Alder reaction 18.5 Friedel rafts alkylation 18.5 Friedel rafts acylation eaction of an aldehyde or ketone with a Grignard or organolithium reagent 20.13A eaction of an acid chloride with a Grignard or organolithium reagent 20.13A eaction of an ester with a Grignard or organolithium reagent 20.13B eaction of an acid chloride with an organocuprate reagent A A eaction of a Grignard reagent with B eaction of an epoxide with an organometallic reagent eaction of an α,β-unsaturated carbonyl compound with an organocuprate reagent 21.9 yanohydrin formation Wittig reaction to form an alkene S N 2 reaction of an alkyl halide with NaN eaction of a nitrile with a Grignard or organolithium reagent 23.8 Direct enolate alkylation using LDA and an alkyl halide 23.9 Malonic ester synthesis to form a carboxylic acid Acetoacetic ester synthesis to form a ketone 24.1 Aldol reaction to form a β-hydroxy carbonyl compound or an α,β-unsaturated carbonyl compound 24.2 rossed aldol reaction 24.3 Directed aldol reaction 24.5 laisen reaction to form a β-keto ester 24.6 rossed laisen reaction to form a β-dicarbonyl compound 24.7 Dieckmann reaction to form a five- or six-membered ring 24.8 Michael reaction to form a 1,5-dicarbonyl compound 24.9 obinson annulation to form a 2-cyclohexenone eaction of a diazonium salt with un 26.1 oupling of an organocuprate reagent ( 2 uli) with an organic halide ('X) 26.2 The palladium-catalyzed Suzuki reaction of an organic halide with an organoborane 26.3 The palladium-catalyzed eck reaction of a vinyl or aryl halide with an alkene 26.4 Addition of a dihalocarbene to an alkene to form a cyclopropane 26.5 Simmons Smith reaction of an alkene with 2 I 2 and Zn(u) to form a cyclopropane 26.6 lefin metathesis 27.10B Kiliani Fischer synthesis of an aldose 28.2B Alkylation of diethyl acetamidomalonate to form an amino acid 28.2 Strecker synthesis of an amino acid 30.2 hain-growth polymerization 30.4 Polymerization using Ziegler Natta catalysts

10 Alkene 1650 medium haracteristic I Absorption Frequencies Appendix E Bond Functional group Wavenumber (cm 1 ) omment N broad, strong very broad, strong N two peaks 2 N one peak N 2, N one or two peaks; N bending also observed at 1640 cm 1 sp 3300 sharp, often strong sp medium sp strong sp 2 of one or two peaks 2250 medium N 2250 medium strong l 1800 () , 1760 two peaks increasing ν ~ with decreasing ring size increasing ν ~ with decreasing ring size 2, conjugated N 2, N, increasing ν ~ with decreasing N 2 ring size Arene 1600, 1500 medium N 1650 medium A-10

11 Appendix F haracteristic NM Absorptions 1 NM Absorptions ompound type hemical shift (ppm) Alcohol Aldehyde 9 10 Alkane ~ ~1.3 3 ~1.7 Alkene sp allylic sp Alkyl halide F l Br I A-11 Alkyne ~2.5

12 ompound type hemical shift (ppm) Amide N Amine N N Aromatic compound sp benzylic sp arbonyl compound sp 3 on the α carbon arboxylic acid Ether NM Absorptions arbon type Structure hemical shift (ppm) Alkyl, sp 3 hybridized 5 45 Alkyl, sp 3 hybridized bonded to N,, or X Alkynyl, sp hybridized Z Z = N,, X Alkenyl, sp 2 hybridized Aryl, sp 2 hybridized arbonyl A-12

13 Appendix G General Types of rganic eactions Substitution eactions [1] Nucleophilic substitution at an sp 3 hybridized carbon atom a. Alkyl halides (hapter 7) X + Nu nucleophile Nu + X b. Alcohols (Section 9.11) + X X + 2 c. Ethers (Section 9.14) ' + X X + ' X + 2 X = Br or I [1] Nu [2] 2 d. Epoxides (Section 9.15) or Z Nu Nu or Z = nucleophile (Z) [2] Nucleophilic acyl substitution at an sp 2 hybridized carbon atom arboxylic acids and their derivatives (hapter 22) Z + Nu nucleophile Nu + Z Z =, l,, ', N' 2 [3] adical substitution at an sp 3 hybridized bond Alkanes (Section 15.3) + X 2 hν or X + X [4] Electrophilic aromatic substitution Aromatic compounds (hapter 18) + E + electrophile E + + A-13

14 Elimination eactions a Elimination at an sp 3 hybridized carbon atom Appendix G General Types of rganic eactions A-14 a. Alkyl halides (hapter 8) X + B base new π bond + + X B + b. Alcohols (Section 9.8) A new π bond + 2 Addition eactions [1] Electrophilic addition to carbon carbon multiple bonds a. Alkenes (hapter 10) b. Alkynes (Section 11.6) + X Y X Y X Y + X Y X Y [2] Nucleophilic addition to carbon oxygen multiple bonds Aldehydes and ketones (hapter 21) (') + Nu nucleophile 2 (') Nu

15 Appendix ow to Synthesize Particular Functional Groups Acetals eaction of an aldehyde or ketone with two equivalents of an alcohol (21.14) Acid chlorides eaction of a carboxylic acid with thionyl chloride (22.10) Alcohols Nucleophilic substitution of an alkyl halide with or 2 (9.6) ydration of an alkene (10.12) ydroboration oxidation of an alkene (10.16) eduction of an epoxide with LiAl 4 (12.6) eduction of an aldehyde or ketone (20.4) ydrogenation of an α,β-unsaturated carbonyl compound with 2 + Pd- (20.4) Enantioselective reduction of an aldehyde or ketone with the chiral BS reagent (20.6) eduction of an acid chloride with LiAl 4 (20.7) eduction of an ester with LiAl 4 (20.7) eduction of a carboxylic acid with LiAl 4 (20.7) eaction of an aldehyde or ketone with a Grignard or organolithium reagent (20.10) eaction of an acid chloride with a Grignard or organolithium reagent (20.13) eaction of an ester with a Grignard or organolithium reagent (20.13) eaction of an organometallic reagent with an epoxide (20.14B) Aldehydes ydroboration oxidation of a terminal alkyne (11.10) xidative cleavage of an alkene with 3 followed by Zn or ( 3 ) 2 S (12.10) xidation of a 1 alcohol with P (12.12) xidation of a 1 alcohol with r 4, Amberlyst A-26 resin (12.13) eduction of an acid chloride with LiAl[( 3 ) 3 ] 3 (20.7) eduction of an ester with DIBAL- (20.7) ydrolysis of an acetal (21.14B) ydrolysis of an imine or enamine (21.12B) eduction of a nitrile (22.18B) Alkanes atalytic hydrogenation of an alkene with 2 + Pd- (12.3) atalytic hydrogenation of an alkyne with two equivalents of 2 + Pd- (12.5A) eduction of an alkyl halide with LiAl 4 (12.6) A-15

16 Appendix ow to Synthesize Particular Functional Groups A-16 eduction of a ketone to a methylene group ( 2 ) the Wolff Kishner or lemmensen reaction (18.14B) Protonation of an organometallic reagent with 2,, or acid (20.9) oupling of an organocuprate reagent ( 2 uli) with an alkyl halide, 'X (26.1) Simmons Smith reaction of an alkene with 2 I 2 and Zn(u) to form a cyclopropane (26.5) Alkenes Dehydrohalogenation of an alkyl halide with base (8.3) Dehydration of an alcohol with acid (9.8) Dehydration of an alcohol using Pl 3 and pyridine (9.10) β Elimination of an alkyl tosylate with base (9.13) atalytic hydrogenation of an alkyne with 2 + Lindlar catalyst to form a cis alkene (12.5B) Dissolving metal reduction of an alkyne with Na, N 3 to form a trans alkene (12.5) Wittig reaction (21.10) β Elimination of an α-halo carbonyl compound with Li 2 3, LiBr, and DMF (23.7) ofmann elimination of an amine (25.12) oupling of an organocuprate reagent ( 2 uli) with an organic halide, 'X (26.1) The palladium-catalyzed Suzuki reaction of a vinyl or aryl halide with a vinyl- or arylborane (26.2) The palladium-catalyzed eck reaction of a vinyl or aryl halide with an alkene (26.3) lefin metathesis (26.6) Alkyl halides eaction of an alcohol with X (9.11) eaction of an alcohol with Sl 2 or PBr 3 (9.12) leavage of an ether with Br or I (9.14) ydrohalogenation of an alkene with X (10.9) alogenation of an alkene with X 2 (10.13) ydrohalogenation of an alkyne with two equivalents of X (11.7) alogenation of an alkyne with two equivalents of X 2 (11.8) adical halogenation of an alkane (15.3) adical halogenation at an allylic carbon (15.10) adical addition of Br to an alkene (15.13) Electrophilic addition of X to a 1,3-diene (16.10) adical halogenation of an alkyl benzene (18.13) alogenation α to a carbonyl group (23.7) Addition of a dihalocarbene to an alkene to form a dihalocyclopropane (26.4) Alkynes Dehydrohalogenation of an alkyl dihalide with base (11.5) S N 2 reaction of an alkyl halide with an acetylide anion, (11.11) Amides eaction of an acid chloride with N 3 or an amine (22.8) eaction of an anhydride with N 3 or an amine (22.9) eaction of a carboxylic acid with N 3 or an amine and D (22.10) eaction of an ester with N 3 or an amine (22.11)

17 A-17 Appendix ow to Synthesize Particular Functional Groups Amines eduction of a nitro group (18.14) eduction of an amide with LiAl 4 (20.7B) eduction of a nitrile (22.18B) S N 2 reaction using N 3 or an amine (25.7A) Gabriel synthesis (25.7A) eductive amination of an aldehyde or ketone (25.7) Amino acids S N 2 reaction of an α-halo carboxylic acid with excess N 3 (28.2A) Alkylation of diethyl acetamidomalonate (28.2B) Strecker synthesis (28.2) Enantioselective hydrogenation using a chiral catalyst (28.4) Anhydrides eaction of an acid chloride with a carboxylate anion (22.8) Dehydration of a dicarboxylic acid (22.10) Aryl halides alogenation of benzene with X 2 + FeX 3 (18.3) eaction of a diazonium salt with ul, ubr, BF 4, NaI, or KI (25.14A) arboxylic acids xidative cleavage of an alkyne with ozone (12.11) xidation of a 1 alcohol with r 3 (or a similar r 6+ reagent), 2, 2 S 4 (12.12B) xidation of an alkyl benzene with KMn 4 (18.14A) xidation of an aldehyde (20.8) eaction of a Grignard reagent with 2 (20.14A) ydrolysis of a cyanohydrin (21.9) ydrolysis of an acid chloride (22.8) ydrolysis of an anhydride (22.9) ydrolysis of an ester (22.11) ydrolysis of an amide (22.13) ydrolysis of a nitrile (22.18A) Malonic ester synthesis (23.9) yanohydrins Addition of N to an aldehyde or ketone (21.9) 1,2-Diols Anti dihydroxylation of an alkene with a peroxyacid, followed by ring opening with or 2 (12.9A) Syn dihydroxylation of an alkene with KMn 4 or s 4 (12.9B) Enamines eaction of an aldehyde or ketone with a 2 amine (21.12) Epoxides Intramolecular S N 2 reaction of a halohydrin using base (9.6) Epoxidation of an alkene with mpba (12.8) Enantioselective epoxidation of an allylic alcohol with the Sharpless reagent (12.15)

18 Appendix ow to Synthesize Particular Functional Groups A-18 Esters S N 2 reaction of an alkyl halide with a carboxylate anion, (7.19) eaction of an acid chloride with an alcohol (22.8) eaction of an anhydride with an alcohol (22.9) Fischer esterification of a carboxylic acid with an alcohol (22.10) Ethers Williamson ether synthesis S N 2 reaction of an alkyl halide with an alkoxide, (9.6) eaction of an alkyl tosylate with an alkoxide, (9.13) Addition of an alcohol to an alkene in the presence of acid (10.12) Anionic polymerization of epoxides to form polyethers (30.3) alohydrins eaction of an epoxide with X (9.15) Addition of X and to an alkene (10.15) Imine eaction of an aldehyde or ketone with a 1 amine (21.11) Ketones ydration of an alkyne with 2, 2 S 4, and gs 4 (11.9) xidative cleavage of an alkene with 3 followed by Zn or ( 3 ) 2 S (12.10) xidation of a 2 alcohol with any r 6+ reagent (12.12, 12.13) Friedel rafts acylation (18.5) eaction of an acid chloride with an organocuprate reagent (20.13) ydrolysis of an imine or enamine (21.12B) ydrolysis of an acetal (21.14B) eaction of a nitrile with a Grignard or organolithium reagent (22.18) Acetoacetic ester synthesis (23.10) Nitriles S N 2 reaction of an alkyl halide with NaN (7.19, 22.18) eaction of an aryl diazonium salt with un (25.14A) Phenols eaction of an aryl diazonium salt with 2 (25.14A)

CHEMISTRY 263 Module7. Hydrogenation of Alkenes Text Sections: Homework Chapter7: Module8. Alkenes and Alkynes II: Addition reactions

CHEMISTRY 263 Module7. Hydrogenation of Alkenes Text Sections: Homework Chapter7: Module8. Alkenes and Alkynes II: Addition reactions 1 CHEMISTRY 263 Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes - Anti addition of

More information

ALCOHOLS: Properties & Preparation

ALCOHOLS: Properties & Preparation ALLS: Properties & Preparation General formula: R-, where R is alkyl or substitued alkyl. Ar-: phenol - different properties. Nomenclature 1. ommon names: Name of alkyl group, followed by word alcohol.

More information

very strong bases very strong nucleophiles

very strong bases very strong nucleophiles hapter 14: rganometallic ompounds - eagents with carbon-metal bonds 14.1: rganometallic Nomenclature (please read) 3 -Li Butyllithium Mg vinylmagnesium bromide ( 3 ) u - Li Dimethylcopper lithium 14.:

More information

Identifying an Unknown Substance using Infrared Spectroscopy (IR), Carbon-13 Nuclear Magnetic Resonance ( 13 C NMR), and Proton Nuclear Magnetic

Identifying an Unknown Substance using Infrared Spectroscopy (IR), Carbon-13 Nuclear Magnetic Resonance ( 13 C NMR), and Proton Nuclear Magnetic Identifying an Unknown Substance using Infrared Spectroscopy (I), arbon-13 Nuclear Magnetic esonance ( 13 NM), and Proton Nuclear Magnetic esonance ( 1 NM) Identifying an Unknown Substance using Infrared

More information

Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids.

Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids. Carboxylic Acids When a carbonyl carbon also bears a hydroxyl group, then these compounds are appreciably acidic, and are called carboxylic acids. R Carboxylic acids are classified according to the substituent

More information

Chapter 8: Chemistry of Alkynes (C n H 2n-2 )

Chapter 8: Chemistry of Alkynes (C n H 2n-2 ) hapter 8: hemistry of Alkynes ( n 2n-2 ) Bonding & hybridization Both are sp-hybridized Bond angles = 180 o 1 σ + 2 π bonds Linear around lassification R R R' σ bond energy: 88 kcal/mol π bond energy:

More information

Organic Chemistry II / CHEM 252 Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Organic Chemistry II / CHEM 252 Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Organic Chemistry II / CHEM 252 Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA 1 Nomenclature

More information

Organic Chemistry II with Dr Roche

Organic Chemistry II with Dr Roche Organic Chemistry II with Dr Roche Lecture Notes Email http://roche.camden.rutgers.edu alroche@camden.rutgers.edu Office SCI-311 Labs SCI 328/309/319 Office Phone 856-225-6166 Text (a) Organic Chemistry

More information

Look for absorption bands in decreasing order of importance:

Look for absorption bands in decreasing order of importance: Infrared spectra: It is important to remember that the absence of an absorption band can often provide more information about the structure of a compound than the presence of a band. Be careful to avoid

More information

Cape Cod Community College

Cape Cod Community College Cape Cod Community College Departmental Syllabus Prepared by the Department of Natural Sciences & Applied Technology Date of Departmental Approval: October 6, 2008 Date approved by Curriculum and Programs:

More information

(b) (1S,2S)-2-methylcyclohexanecarboxylic acid. (b) CH 3 CH 2 CHCN CH 2 CH 3. (d) 2-ethylbutanenitrile

(b) (1S,2S)-2-methylcyclohexanecarboxylic acid. (b) CH 3 CH 2 CHCN CH 2 CH 3. (d) 2-ethylbutanenitrile hem 226 Problem Set #10 Fundamentals of rganic hemistry, 4 th edition, John McMurry. hapter 10 1. Give IUPA names for compounds - (e). (c) 3 3 2 3-methylbutanoic acid Br 3 2 2 4-bromopentanoic acid 3 2

More information

Chapter 17 Alcohols and Phenols

Chapter 17 Alcohols and Phenols John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 17 Alcohols and Phenols Alcohols and Phenols Alcohols contain an OH group connected to a saturated C (sp 3 ) They are important solvents

More information

An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of

An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of Alkynes An alkyne is a hydrocarbon that contain a Carbon carbon triple bond. Acetylene, the simplest alkyne, widely used in industry for the synthesis of acetaldehyde, acetic acid, vinyl chloride O O H

More information

Carboxylic Acid Derivatives and Nitriles

Carboxylic Acid Derivatives and Nitriles Carboxylic Acid Derivatives and itriles Carboxylic Acid Derivatives: There are really only four things to worry about under this heading; acid chlorides, anhydrides, esters and amides. We ll start with

More information

Stability of vinyl C+ is about the same as H 3 C+. NOT ASSISTED!

Stability of vinyl C+ is about the same as H 3 C+. NOT ASSISTED! rganic hemistry Interactive Notes hapter 8: Alkynes Naming Alkynes Structure ommon Name IUPA Acetylene ethyne methyl acetylene propyne dimethyl acetylene -butyne ethyl acetylene -butyne =- as substituent

More information

Chapter 3: Structure and Nomenclature of Organic Compounds Focus on Alkanes

Chapter 3: Structure and Nomenclature of Organic Compounds Focus on Alkanes hapter 3: Structure and Nomenclature of rganic ompounds Focus on Alkanes rganic molecules are composed of one or more functional groups attached to one or more hydrocarbon groups (alkyl or groups) I. Functional

More information

Friedel Crafts Acylation

Friedel Crafts Acylation Friedel Crafts Acylation An acyl chloride or an acid anhydride is the source of the acyl group. A Lewis acid (AlCl 3 ) is required. The Mechanism for Friedel Crafts Acylation The electrophile adds to the

More information

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY MLEULAR REPRESENTATINS AND INFRARED SPETRSPY A STUDENT SULD BE ABLE T: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give examples

More information

Nomenclature. IUPAC nomenclature for organic chemistry

Nomenclature. IUPAC nomenclature for organic chemistry Nomenclature IUPAC nomenclature for organic chemistry What is IUPAC nomenclature? A systematic method of naming organic chemical compounds as recommended by the International Union of Pure and Applied

More information

Alkynes and Their Reactions

Alkynes and Their Reactions Alkynes and Their Reactions Naming Alkynes Alkynes are named in the same general way that alkenes are named. In the IUPAC system, change the ane ending of the parent alkane name to the suffix yne. Choose

More information

Chapter 18. Reactions of Aldehydes and Ketones

Chapter 18. Reactions of Aldehydes and Ketones hapter 18. Reactions of 1 Aldehydes and Ketones Reaction of a nucleophile with an aldehyde or ketone gives an alkoxide, and subsequent hydrolysis leads to an alcohol. This chapter will define differences

More information

Carbonyl Chemistry (12 Lectures)

Carbonyl Chemistry (12 Lectures) arbonyl hemistry (12 Lectures) Aim of ourse Professor Donna G. Blackmond d.blackmond@imperial.ac.uk tel. 41193 oom 639 1 To build upon elements of Dr E.. Smith s and Dr. D.. Braddocks s course. To introduce

More information

Under acidic conditions, carbonyl compounds are protonated on O first, then weak base deprotonates at the α-c to give enol.

Under acidic conditions, carbonyl compounds are protonated on O first, then weak base deprotonates at the α-c to give enol. Substitution reactions of carbonyl compounds at the α-position Carbonyl compounds are acidic at α-c (e.g. C 2 C ); this is because of the electrophilic nature of carbonyl C= bond. The pka values of simple

More information

Substituted Alkanes. Alcohol Amine Ether Thiol

Substituted Alkanes. Alcohol Amine Ether Thiol Substituted Alkanes While alkanes have very few reactions that occur, combustion and some radical reactions, substituted alkanes display a variety of reactions and properties X ften the amount of information

More information

Lecture Notes Chem 51B S. King. Chapter 18 Electrophilic Aromatic Substitution

Lecture Notes Chem 51B S. King. Chapter 18 Electrophilic Aromatic Substitution Lecture otes Chem 51B S. King Chapter 18 Electrophilic Aromatic Substitution I. Electrophilic Aromatic Substitution The most characteristic reaction of aromatic compounds is electrophilic aromatic substitution,

More information

Short Summary of IUPAC Nomenclature of Organic Compounds

Short Summary of IUPAC Nomenclature of Organic Compounds Short Summary of IUPA Nomenclature of rganic ompounds Introduction The purpose of the IUPA system of nomenclature is to establish an international standard of naming compounds to facilitate communication.

More information

Chapter 23 Organic Chemistry

Chapter 23 Organic Chemistry hapter 3 rganic hemistry 3.1-3.3, 3.5, 3.8-3.10 ydrocarbons, Alkanes: ecognizing rganic Structures ydrocarbons: Alkanes, Alkenes and Alkynes: ecognizing Isomers and Basic Naming of ydrocarbons Identifying

More information

Protonation. favored H 3 O + R O O H

Protonation. favored H 3 O + R O O H arboxylic Acids arboxylic acids have one property that distinguishes them from most other organic compounds they re acidic. Now not as acidic as fuming sulfuric acid, but still pretty darned acidic. The

More information

Chem 401 Lab Exercise #5 Nomenclature Worksheet for Alkanes and Cycloalkanes

Chem 401 Lab Exercise #5 Nomenclature Worksheet for Alkanes and Cycloalkanes hem 401 Lab Exercise #5 Nomenclature Worksheet for Alkanes and ycloalkanes Structure and Nomenclature of Alkanes Alkanes are saturated hydrocarbons; that is, they contain only and which are bonded solely

More information

Chapter 10 Introduction to Organic Chemistry: Alkanes. Chemistry: An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition

Chapter 10 Introduction to Organic Chemistry: Alkanes. Chemistry: An Introduction to General, Organic, and Biological Chemistry, Eleventh Edition 1 hapter 10 Introduction to Organic hemistry: Alkanes Organic hemistry and Organic ompounds 2 An organic compound is a compound made from carbon atoms has one or more atoms has many atoms may also contain

More information

Chapter 25 The Chemistry of Life: Organic Chemistry. 25.1 Some General Characteristics of Organic Molecules

Chapter 25 The Chemistry of Life: Organic Chemistry. 25.1 Some General Characteristics of Organic Molecules Chapter 25 The Chemistry of Life: Organic Chemistry general characteristics of organic molecules introduction to hydrocarbons alkanes unsaturated hydrocarbons functional groups: alcohols and ethers compounds

More information

CHEM 4113 ORGANIC CHEMISTRY II LECTURE NOTES CHAPTER 17

CHEM 4113 ORGANIC CHEMISTRY II LECTURE NOTES CHAPTER 17 EM 4113 GANI EMISTY II LETUE NTES 1 APTE 17 Alcohols and Thiols I. Introduction Alcohols are compounds that have hydroxyl groups (-) bonded to saturated, SP 3 - hybridized carbon atoms. This definition

More information

IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1

IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1 Spectroscopy Data Tables Infrared Tables (short summary of common absorption frequencies) The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers,

More information

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration ! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency

More information

Cover Page 22TCHM 242. Dean s Review: Dean s Signature: Date Reviewed: / /

Cover Page 22TCHM 242. Dean s Review: Dean s Signature: Date Reviewed: / / Cover Page 22TCHM 242 22TOrganic Chemistry II Faculty Name: Lanette Upshaw Program Head: Lanette Upshaw Dean s Review: Dean s Signature: Date Reviewed: / / Lecture Revised: Fall 2015 22TCHM 242 22TOrganic

More information

Chapter 10. Structure and Synthesis of Alcohols

Chapter 10. Structure and Synthesis of Alcohols KOT 222 Organic Chemistry II Chapter 10 Structure and Synthesis of Alcohols 1 What are alcohols?? Organic compounds containing hydroxyl group, -OH. Examples: CH 3 -OH methanol CH 3 CH 2 -OH ethanol H 3

More information

AP Chemistry Chapter 22 - Organic and Biological Molecules

AP Chemistry Chapter 22 - Organic and Biological Molecules AP Chemistry Chapter - Organic and Biological Molecules.1 Alkanes: Saturated Hydrocarbons A. Straight-chain Hydrocarbons 1. Straight-chain alkanes have the formula C n H n+. Carbons are sp hybridized The

More information

O O HO, H 2 O. OR (2) One of the pair must form an enol MUCH more easily than the other

O O HO, H 2 O. OR (2) One of the pair must form an enol MUCH more easily than the other Carbonyl Condensation Reactions (Conjugate Addition) If we look at resonance structures for conjugated carbonyl compounds (often called α,β-unsaturated compounds), we ll see that there are TW sites for

More information

Chem 2425 Review Test 2

Chem 2425 Review Test 2 Name: Class: Date: Chem 2425 Review Test 2 Draw structures corresponding to each of the given names. 1. 2-phenyl-2-propanol 2. 2, 4, 6-trinitrophenol 3. tetrahydrofuran 4. allyl benzyl ether 5. diethyl

More information

IUPAC System of Nomenclature

IUPAC System of Nomenclature IUPAC System of Nomenclature The IUPAC (International Union of Pure and Applied Chemistry) is composed of chemists representing the national chemical societies of several countries. ne committee of the

More information

Learning Guide for Chapter 11 - Alkynes

Learning Guide for Chapter 11 - Alkynes Learning Guide for Chapter 11 - Alkynes Introduction to s - p 1 ybridization and geometry, Reactivity, Types of s, Cyclic s, Physical properties, Spectroscopy, Acidity, Natural occurrence and uses Nomenclature

More information

Chapter 10 Introduction to Organic Chemistry: Alkanes

Chapter 10 Introduction to Organic Chemistry: Alkanes hapter 10 Introduction to Organic hemistry: Alkanes 1 Organic hemistry An organic compound is a compound made from carbon atoms has one or more atoms has many atoms may also contain O, S, N, and halogens

More information

Double Bonds. Hydration Rxns. Hydrogenation Rxns. Halogenation. Formation of epoxides. Syn addition of 2 OH. Ozonolysis

Double Bonds. Hydration Rxns. Hydrogenation Rxns. Halogenation. Formation of epoxides. Syn addition of 2 OH. Ozonolysis Double Bonds What do we do with double bonds? We do addition reactions. In an addition reaction, something is added to both carbons involved in a double bond (or not involved in the double bond, in the

More information

Introduction to Organic Chemistry Syllabus Day 1: Session 1 (evening session):

Introduction to Organic Chemistry Syllabus Day 1: Session 1 (evening session): Introduction to Organic Chemistry Syllabus Day 1: Session 1 (evening session): 1. Introduction to Organic Chemistry: 2. General discussion about what is chemistry? 3. What is organic chemistry? 4. What

More information

Reactions of Aromatic Compounds

Reactions of Aromatic Compounds Reactions of Aromatic Compounds Aromatic compounds are stabilized by this aromatic stabilization energy Due to this stabilization, normal S N 2 reactions observed with alkanes do not occur with aromatic

More information

Alkynes: An Introduction to Organic Synthesis

Alkynes: An Introduction to Organic Synthesis Alkynes: An Introduction to Organic Synthesis Alkynes Hydrocarbons that contain carbon-carbon triple bonds Acetylene, the simplest alkyne is produced industrially from methane and steam at high temperature

More information

Reaction 2. Radical addition of hydrogen bromide (HBr) to alkenes. (NOT COVERED THIS TIME)

Reaction 2. Radical addition of hydrogen bromide (HBr) to alkenes. (NOT COVERED THIS TIME) http://courses.chem.psu.edu/chem38/reactions/reactions.html Reaction 1. Electrophilic addition of hydrogen halides (HX) to alkenes. HCl, HBr in ether KI + H 3 PO 4 room temperature electrophilic addition

More information

Contents INTRODUCTION AND REVIEW 1 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES 42. About the Author. Preface xxv

Contents INTRODUCTION AND REVIEW 1 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES 42. About the Author. Preface xxv Contents About the Author iii Preface xxv INTRODUCTION AND REVIEW 1 1-1 The Origins of Organic Chemistry 1 1-2 Principles of Atomic Structure 3 1-3 Bond Formation: The Octet Rule 6 1-4 Lewis Structures

More information

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde Unit Vocabulary: Addition rxn Esterification Polymer Alcohol Ether Polymerization Aldehyde Fermentation Primary Alkane Functional group Saponification Alkene Halide (halocarbon) Saturated hydrocarbon Alkyne

More information

Aromaticity and Reactions of Benzene

Aromaticity and Reactions of Benzene Aromaticity and eactions of Benzene ark College Benzene is a unique molecule it is highly unsaturated with 6 carbons and 6 hydrogens, it is planar, and has a high degree of symmetry. These features explain

More information

Chapter 2: Carbon-Carbon Bond Formation 11

Chapter 2: Carbon-Carbon Bond Formation 11 Contents Chapter 1: Introduction 1 1.1 What is Green 1 Principles of Green Chemistry 1 Planning a Green Synthesis 3 1.4 Introduction to Organic Synthesis 9 Chapter 2: Carbon-Carbon Bond Formation 11 2.1

More information

Alcohols (R-OH) and Alkyl halides R-X (X = F, Cl, Br, I) Alcohols. Suffix:

Alcohols (R-OH) and Alkyl halides R-X (X = F, Cl, Br, I) Alcohols. Suffix: Alcohols (R-O) and Alkyl halides R-X (X = F, Cl,, I) Alcohols Alcohols contain a R-O functional group. Primary, secondary or tertiary? O O O Nomenclature: Suffix: numbering scheme: The number locating

More information

Vibrational Spectroscopy Functional Groups

Vibrational Spectroscopy Functional Groups hem 325 Vibrational Spectroscopy Functional roups Bonds to - single N- single - single egions of the I Spectrum The I spectrum normally spans the 4000 cm -1 to 400 cm -1 range (2500 nm to 25000 nm). This

More information

12. Alcohols and Phenols. Based on McMurry s Organic Chemistry, 6 th edition

12. Alcohols and Phenols. Based on McMurry s Organic Chemistry, 6 th edition 12. Alcohols and Phenols Based on McMurry s Organic Chemistry, 6 th edition Alcohols and Phenols Alcohols contain an OH group connected to a saturated C (sp 3 ) They are important solvents and synthesis

More information

Name. Department of Chemistry and Biochemistry SUNY/Oneonta. Chem 322 - Organic Chemistry II Examination #2 - March 14, 2005 ANSWERS

Name. Department of Chemistry and Biochemistry SUNY/Oneonta. Chem 322 - Organic Chemistry II Examination #2 - March 14, 2005 ANSWERS Name INSTRUTINS --- Department of hemistry and Biochemistry SUNY/neonta hem 322 - rganic hemistry II Examination #2 - March 14, 2005 ANSWERS This examination has two parts. Part I is in multiple choice

More information

CHEM 341: Organic Chemistry I

CHEM 341: Organic Chemistry I EM 341: rganic hemistry I at North Dakota tate University Final Exam - tudy Guide Reactions to know ubstitution of Alcohols R X R X N 1 ubstitution - N 2 ubstitution 3 carbocation best 2 carbocation ok

More information

Chapter 13 Alkenes and Alkynes

Chapter 13 Alkenes and Alkynes hapter 13 Alkenes and Alkynes Types of Bonds Alkanes and haloalkanes consist of atoms held together by bonds. These can also be called sigma bonds (σ bonds) which means that the orbitals of each atom overlap

More information

Alkynes: An Introduction to Organic Synthesis. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8

Alkynes: An Introduction to Organic Synthesis. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8 Alkynes: An Introduction to Organic Synthesis Based on McMurry s Organic Chemistry, 6 th edition, Chapter 8 Alkynes! Hydrocarbons that contain carbon-carbon triple bonds! Acetylene, the simplest alkyne

More information

Alkynes contain a C C triple bond

Alkynes contain a C C triple bond Chapter 8: Alkynes: an introduction to organic synthesis Alkynes contain a C C triple bond Acetylene: H-C C-H is the common name for ethyne, used as a torch fuel Alkyne nomenclature follows normal hydrocarbon

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

ammonium salt (acidic)

ammonium salt (acidic) Chem 360 Jasperse Ch. 19 otes. Amines 1 eactions of Amines 1. eaction as a proton base (Section 19-5 and 19-6) amine base -X (proton acid) a X ammonium salt (acidic) Mechanism: equired (protonation) everse

More information

Chapter 10 Introduction to Organic Chemistry: Alkanes. Organic Chemistry. 10.1 Organic Compounds. Organic vs. Inorganic.

Chapter 10 Introduction to Organic Chemistry: Alkanes. Organic Chemistry. 10.1 Organic Compounds. Organic vs. Inorganic. Chapter 10 Introduction to Organic Chemistry: Alkanes 10.1 Organic Compounds Organic Chemistry An organic compound is a compound made from carbon atoms. has one or more C atoms. has many H atoms. may also

More information

Chapter 22 Carbonyl Alpha-Substitution Reactions

Chapter 22 Carbonyl Alpha-Substitution Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 22 Carbonyl Alpha-Substitution Reactions The α Position The carbon next to the carbonyl group is designated as being in the α position Electrophilic

More information

NOMENCLATURE VI BASICS

NOMENCLATURE VI BASICS NMENLATURE VI This exercise covers the basics of organic nomenclature. It is primarily based upon the IUPA system (the names under IUPA rules are called systematic names). In a few cases there are special

More information

Lecture 16 November 10, 2011. Metal-catalyzed cross-coupling reactions:

Lecture 16 November 10, 2011. Metal-catalyzed cross-coupling reactions: Metal-catalyzed cross-coupling reactions: Lecture 16 November 10, 2011 Let s move on now to talk about other metal-catalyzed cross-coupling reactions. All of these reactions involve the formation of a

More information

Amines H 3 C H. CH 2 CH 3 ethylmethylamine. Nomenclature. 1 o : RNH 2, 2 o : RR'NH, 3 o : RR'R"N, 4 o (salt) RR'R"R'"N + R = alkyl or aryl

Amines H 3 C H. CH 2 CH 3 ethylmethylamine. Nomenclature. 1 o : RNH 2, 2 o : RR'NH, 3 o : RR'RN, 4 o (salt) RR'RR'N + R = alkyl or aryl Amines omenclature 1 o :, 2 o : 'H, 3 o : '", 4 o (salt) '"'" + = alkyl or aryl ommon names For simple amines name groups attached to alphabetically; use suffix -amine. H 3 H H 2 ethylmethylamine In complicated

More information

What is an alcohol? An alcohol is a hydroxyl group attached to carbon the only exception being when that carbon is a carbonyl group: OH R 3 R

What is an alcohol? An alcohol is a hydroxyl group attached to carbon the only exception being when that carbon is a carbonyl group: OH R 3 R Alcohols and Thiols Alcohols are one of the most important functional groups in rganic chemistry alcohols can be easily converted to almost any other group by the application of the appropriate reagent(s).

More information

Naming organic Chemistry A2

Naming organic Chemistry A2 Naming organic hemistry A2 N Goalby hemrevise.org DIFFERENT FRMULAE General represents any member of a homologous series n 2n+2 for an alkane; n 2n for an alkene Molecular shows the exact number of atoms

More information

13.1 Alcohols and Phenols. Nomenclature. Nomenclature. Nomenclature. Alcohols possess a hydroxyl group ( OH). Hydroxyl groups in natural compounds.

13.1 Alcohols and Phenols. Nomenclature. Nomenclature. Nomenclature. Alcohols possess a hydroxyl group ( OH). Hydroxyl groups in natural compounds. 13.1 Alcohols and Phenols Alcohols possess a hydroxyl group ( OH). 13.1 Alcohols and Phenols Hydroxyl groups in natural compounds. Hydroxyl groups are extremely common in natural compounds. 13-1 13-2 13.1

More information

AROMATICITY. Chapter 8 REACTIONS OF BENZENE ORGANIC CHEMISTRY, 2 ND EDITION PAULA YURKANIS BRUICE

AROMATICITY. Chapter 8 REACTIONS OF BENZENE ORGANIC CHEMISTRY, 2 ND EDITION PAULA YURKANIS BRUICE ORGANIC CHEMISTRY, 2 ND EDITION PAULA YURKANIS BRUICE Chapter 8 AROMATICITY REACTIONS OF BENZENE RAED M. AL-ZOUBI, ASSISTANT PROFESSOR OF CHEMISTRY DEPARTMENT OF CHEMISTRY - N 4 L 0 JORDAN UNIVERSITY OF

More information

passing through (Y-axis). The peaks are those shown at frequencies when less than

passing through (Y-axis). The peaks are those shown at frequencies when less than Infrared Spectroscopy used to analyze the presence of functional groups (bond types) in organic molecules The process for this analysis is two-fold: 1. Accurate analysis of infrared spectra to determine

More information

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone: HMEWRK PRBLEMS: IR SPECTRSCPY AND 13C NMR 1. You find a bottle on the shelf only labeled C 3 H 6. You take an IR spectrum of the compound and find major peaks at 2950, 1720, and 1400 cm -1. Draw a molecule

More information

Homework Chapter 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions mandatory problems are highlighted (up to page 16)

Homework Chapter 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions mandatory problems are highlighted (up to page 16) Homework Chapter 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions mandatory problems are highlighted (up to page 16) SHORT ANSWER IUPAC Naming Instructions: Provide proper IUPAC

More information

ORGANIC AND BIOLOGICAL MOLECULES

ORGANIC AND BIOLOGICAL MOLECULES APTER TWENTY-TW RGANI AND BILGIAL MLEULES For Review 1. A hydrocarbon is a compound composed of only carbon and hydrogen. A saturated hydrocarbon has only carbon-carbon single bonds in the molecule. An

More information

Functional Groups and Chemical Families

Functional Groups and Chemical Families Functional Groups and Chemical Families Although there are a wide variety of organic compounds, most of them are composed of the elements from the upper right hand portion of the periodic chart: C, H,

More information

Organic Chemistry Specific Name Reactions

Organic Chemistry Specific Name Reactions Organic Chemistry Specific Name Reactions Sandmeyer Reaction Class XII The Cl, Br and CN nucleophiles can easily be introduced in the benzene ring of benzene diazonium salt in the presence of Cu(I) ion.

More information

Chemistry 52 Final Exam. This exam has six questions, two cover pages, ten exam pages, and three scratch pages.

Chemistry 52 Final Exam. This exam has six questions, two cover pages, ten exam pages, and three scratch pages. Chemistry 52 Final Exam Name: 10 March 2003 This exam has six questions, two cover pages, ten exam pages, and three scratch pages. Please check before beginning to make sure no questions or pages are missing.

More information

Chemistry 1110 Organic Chemistry IUPAC Nomenclature

Chemistry 1110 Organic Chemistry IUPAC Nomenclature hemistry 1110 rganic hemistry IUPA Nomenclature 1 f the approximately 32 million unique chemical compounds presently known, over 95% of them can be classified as organic; i.e., containing carbon. The IUPA

More information

KOT 222 ORGANIC CHEMISTRY II CHAPTER 17. REACTIONS of AROMATIC COMPOUNDS

KOT 222 ORGANIC CHEMISTRY II CHAPTER 17. REACTIONS of AROMATIC COMPOUNDS KOT 222 ORGANIC CEMISTRY II CAPTER 17 REACTIONS of AROMATIC COMPOUNDS 1 Electrophilic Aromatic Substitution Substitution of an electrophile for a proton on the aromatic ring. benzene s pi electrons are

More information

BASIC NOMENCLATURE. The names of the groups you must be able to recognize and draw are:

BASIC NOMENCLATURE. The names of the groups you must be able to recognize and draw are: A STUDENT SHOULD BE ABLE TO: BASI NOMENLATURE 1. Give examples of, and recognize when given the structure, representatives of the following classes of compounds. Alkyl halides (1, 2, 3 ) Alcohols (1, 2,

More information

Alkanes. Hydrocarbons. Structural Isomers. Butane Isomers. Contain only carbon and hydrogen

Alkanes. Hydrocarbons. Structural Isomers. Butane Isomers. Contain only carbon and hydrogen ydrocarbons Alkanes ontain only carbon and hydrogen ydrocarbons Alkanes Alkenes Alkynes Aromatics General formula n 2n+2 Each carbon is sp 3 hybridized Bond angles are 109.5 o Methane Ethane Propane Butane

More information

Reactions of Aromatic Compounds

Reactions of Aromatic Compounds 2-1 Reactions of Aromatic Compounds 15.1 2-2 lectrophilic Aromatic Substitution Reactions Aromatic hydrocarbons (= arenes) undergo a substitution reaction with electrophiles: + catalyst + xample: omination

More information

Guide to Solving Sophomore Organic Synthesis Problems

Guide to Solving Sophomore Organic Synthesis Problems Paul Bracher Chem 30 Synthesis eview Guide to Solving Sophomore rganic Synthesis Problems Disclaimer mission of a topic on this handout does not preclude that material from appearing on the final exam.

More information

NOMENCLATURE OF ORGANIC COMPOUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved.

NOMENCLATURE OF ORGANIC COMPOUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved. NMENCLATURE F RGANIC CMPUNDS 2010, 2003, 1980, by David A. Katz. All rights reserved. rganic chemistry is the chemistry of carbon compounds. Carbon has the ability to bond with itself to form long chains

More information

Chemistry 222--Spring Third Problem Set Due 5/1/02 H H HO OH. H Ether C H

Chemistry 222--Spring Third Problem Set Due 5/1/02 H H HO OH. H Ether C H hemistry 222--Spring 2002--Third Problem Set Due 5/1/02 nswers Part. For the following reactions, give the predominant product. learly show stereochemistry when appropriate (that is, draw a structure that

More information

Q.1 Draw structures for all amines of molecular formula C 4 H 11 N. Classify them as primary, secondary or tertiary amines.

Q.1 Draw structures for all amines of molecular formula C 4 H 11 N. Classify them as primary, secondary or tertiary amines. 1 AMIES Structure lassification ontain the 2 group. primary (1 ) amines secondary (2 ) amines tertiary (3 ) amines quarternary (4 ) ammonium salts. 1 2 3 4 Aliphatic Aromatic methylamine, ethylamine, dimethylamine

More information

Mr. Kent s Organic Chemistry Unit Notes I Basic Concepts

Mr. Kent s Organic Chemistry Unit Notes I Basic Concepts Mr. Kent s Organic Chemistry Unit Notes I Basic Concepts A. Organic Chemistry-The study of containing compounds. 1. They occur extensively in nature because all living things are made of containing compounds.

More information

20.1 Organic Chemistry

20.1 Organic Chemistry 20.1 rganic hemistry An Introduction to nomenclatures, structures and reactions Dr. Fred mega Garces hemistry 201 Miramar ollege 1 rganic hemistry utline rganic hem and the arbon atom Atoms in rganic ompounds;

More information

Nomenclature of organic compounds

Nomenclature of organic compounds P.1 Nomenclature of organic compounds A. Alkanes (C n H 2n+2 ) i. The following table give the names of some root names different number of carbon atoms of hydrocarbon. CH 4 methane C 6 H 14 hexane C 2

More information

Principles of Drug Action 1, Spring 2005, Alkynes, Jack DeRuiter HYDROCARBON STRUCTURE AND CHEMISTRY: ALKYNES

Principles of Drug Action 1, Spring 2005, Alkynes, Jack DeRuiter HYDROCARBON STRUCTURE AND CHEMISTRY: ALKYNES YDRARB STRUTURE AD EMISTRY: ALKYES I. Introduction ydrocarbons are organic compounds consisting of - and - bonds. arbon has a valence of four and thus requires four electrons or bonds to complete its octet

More information

Principles Of Drug Action 1, Spring 2005, Halogenated Hydrocarbons HALOGENATED HYDROCARBON STRUCTURE AND CHEMISTRY.

Principles Of Drug Action 1, Spring 2005, Halogenated Hydrocarbons HALOGENATED HYDROCARBON STRUCTURE AND CHEMISTRY. Principles f Drug Action 1, Spring 2005, alogenated ydrocarbons ALGENATED YDRCARBN STRUCTURE AND CEMISTRY I. Introduction Jack DeRuiter alogenated hydrocarbons are organic compounds consisting of C-C,

More information

Nomenclature International Union of Pure and Applied Chemistry (IUPAC)

Nomenclature International Union of Pure and Applied Chemistry (IUPAC) Nomenclature International Union of Pure and Applied Chemistry (IUPAC) I. Alkanes A. Alkanes: Simple-Chain Alkanes consist of only hydrogen and carbon molecules and are known to be the simplest type of

More information

Class XII Chemistry Chapter: Alcohols, Phenols And Ethers

Class XII Chemistry Chapter: Alcohols, Phenols And Ethers 1 Class XII Chemistry Chapter: Alcohols, Phenols And Ethers Top concepts: 1. Structure of alcohols, phenols and ethers: 2. Preparation of alcohols: 3. Preparation of phenols: 2 4. Physical properties of

More information

Chemistry B11 Chapter Alcohols, Ethers, Thiols and Chirality

Chemistry B11 Chapter Alcohols, Ethers, Thiols and Chirality hemistry B11 hapter 14-15 Alcohols, Ethers, Thiols and hirality Alcohols: the functional group of an alcohol is an hydroxyl group -O. 3 O 3 2 2 O Naming alcohols: 1. Select the longest chain that contains

More information

CORE ORGANIC CHEMISTRY

CORE ORGANIC CHEMISTRY MODULE 4 CORE ORGANIC CHEMISTRY CHEMISTRY NOTES I have designed and compiled these beautiful notes to provide a detailed but concise summary of this module. I have spent a lot of time perfecting the content

More information

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 14 Alcohols, Ethers and Thiols

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 14 Alcohols, Ethers and Thiols Chemistry 110 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, rganic and Biochemistry Chapter 14 Alcohols, Ethers and Thiols Alcohols have a ydroxyl Group, -, bonded to tetrahedral

More information

Naming Rules for Organic Compounds

Naming Rules for Organic Compounds Naming Rules for rganic ompounds The names of organic molecules are divided into three parts; 1. the root name, indicative of the number of carbon atoms in the longest continuous chain, which includes

More information

Benzene benzene aromatic hydrocarbons aromatic not not

Benzene benzene aromatic hydrocarbons aromatic not not Benzene 1 NT 87 90 ompound 87 has the formula 6 6, is known as benzene, and it is a hydrocarbon derived from petroleum distillates. Benzene is the parent compound for a class of compounds known as aromatic

More information

It does not react N.R.

It does not react N.R. Benzene versus yclohexene versus yclohexadiene 1 l l cyclohexene l l cyclohexadiene l Expect this to react similarly "cyclohexatriene" It does not react l N.R. benzene Benzene is resonance stabilized,

More information

Ozonolysis of Alkenes

Ozonolysis of Alkenes zonolysis of Alkenes 1 When 2-methyl-2-pentene reacts with ozone, the initial 1,2,3-trioxolane product is 144, but this rearranges to ozonide 145. If 145 is treated with hydrogen peroxide as above, one

More information