C-Green: A computer Vision System for Leaf Identification

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "C-Green: A computer Vision System for Leaf Identification"

Transcription

1 C-Green: A computer Vision System for Leaf Identification Chinmai Basavaraj Indiana State University December 16, 2014 Abstract I describe here a system which uses automatic visual recognition to identify tree species from the picture of their leaves. I mainly describe the Image processing techniques and Computer Vision concepts required to build this system. I have made use of OpenCV an open source computer vision and machine learning software library, to separate the leaf image from a light colored background and to extract features representing the curvature of the leaf s contour over multiple scales. 1 Introduction C Green is a system to automatically identify tree species using computer vision and image processing. Computer vision is the process of modeling and replicating human vision using computer software and hardware. The work described here is closely related to Leafsnap [1] a mobile app, which describes a more advanced and latest version of the current leaf identification system. I have a used a different and simpler approach for Segmentation [Section 2] of the leaf from its background. Apart from that the basic idea is the same. I have made use of OpenCV, an open source computer vision and machine learning software library to implement this system in C++. Our automatic system requires that a single leaf specimen is photographed on a solid lightcolored background (See Figure 1). The recognition process consists of Segmenting the image to obtain a binary image separating the leaf from the background. We do this by estimating a threshold value that separates the background from the foreground and dilating the resulting image to get rid of stem. [Section 2] Extracting curvature features from the binarized image discriminatively representing the shape of the leaf. We compute histograms of curvature over multiple scales using integral measures of curvature. [Section 3] Comparing the features to those from a labeled database of leaf images and returning the species with the closest matches. 1

2 Figure 1: Image of a leaf on a light-colored solid background The current version of the system does not have the comparison module written into it. The segmentation and extraction process are completed within 1 second for an image of size 640x480 pixels. 2 Segmentation Segmentation is the process of separating the leaf from its background to obtain a binary image (Black/White). My program relies solely upon shape of the leaf to identify its species. Other features such as the color of the leaf, its venation pattern are not suitable for various reasons - they are either too highly variable across different leaves of the same species, undetectable or only present at limited time of the year. Reliable leaf segmentation is thus crucial in order to obtain shape descriptions that are sufficiently accurate for recognition. 2.1 Uniform Thresholding I make use of a simple segmentation method called Uniform Thresholding. Here, the matter is straight forward. If pixel value is greater than a threshold value, it is assigned one value (may be white), else it is assigned another value (may be black). I read in the image in greyscale format, since the color information is not required. It makes the computation easier and efficient. I go through every pixel, converting the image to binary. (See Figure 3) Figure 2: Image of leaf in greyscale 2

3 Figure 3: Binary Image of leaf after thresholding 2.2 Dilation - Removing the Stem At this point, the stem of the leaf may or may not be present in the segmentation. The original leaf might not have had a stem to begin with, or it might have been lost during segmentation. To standardize the shape, we have to remove the stems from all segmentations using Dilation. A dilation operation consists of convoluting an image with some kernel, which can have any shape or size, usually a square or circle. The kernel has a defined anchor point, usually being the center of the kernel. The function dilates the image using the specified structuring element that determines the shape of a pixel neighborhood over which the maximum is taken. (See Figure 4) Figure 4: Image of leaf without stem after Dilation 2.3 Resizing We have to resize the image to a standardized pixel value before we begin to extract features. I make use of the opencv resize() function along with bilinear Interpolation to do soft-binning of curvature values. 3 Extraction Leaf shape can be effectively represented using multiscale curvature measures. Curvature is a fundamental property of shape and has thus attracted much attention from the vision community. We make use of integral measures to compute functions of the curvature at a boundary point. 3

4 One such measure in 2D is the area of intersection of a disk centered at a contour point and the inside of the contour (see Fig 5). For straight, concave, and convex boundaries, the fraction of the disk intersected will be equal to or greater than or less than 0.5 respectively. Figure 5: Curvature = (white pixels in circle)/area Integral measures are fast and easy to compute for images on discrete grids, invariant to rotation, insensitive to small segmentation and discretization errors, independent of the topological complexity. 3.1 Edge Detection In order to find the points along the contour of the leaf, I make use of basic edge detection method. I traverse through the Image matrix comparing each pixel Intensity with its immediate neighbors. Any change in the intensity indicates an edge. I mark all these points and measure the curvature at each of these points. Figure 6: Image of points along the contour resulting from edge detection 3.2 Computing Histograms of Curvature over Scale[HoCS] Histograms are simply collected counts of the data organized into a set of predefined bins. Parallel to measuring the curvature along the contour of the leaf, I construct the histogram of curvature for that specified scale. Once we obtain the curvature measure at a particular point add it to the respective histogram bin. In the end we will have Histogram of Curvature for that particular scale. 4

5 Figure 7: Image showing how curvature is measured at each point I repeat this process for multiple scales. Finally, we compute histograms of curvature values at multiple scales and then concatenate these histograms to form the HoCS feature. If you look at Figure 8 and Figure 9, you can observe the big difference in HoCS feature calculated for 2 different leaf Images of vaying shape. Figure 8: Histogram of curvature for Maple Leaf Figure 9: Histogram of curvature for some random leaf 5

6 4 Future Work Comparison First thing I need to do to make the system complete, is to add a comparison module. To promote further research in leaf recognition, Leafsnap [1] has released its extensive dataset consisting of images of leaves taken from two different sources, as well as their automatically generated segmentations. I can make use of this dataset and develop a web based interface, where the user can upload a picture of the leaf and I can use a simple nearest neighbor approach to display top 5 matches. Users can then make the final identification themselves. Classifier Classifying whether the image is of a valid leaf, to decide if it is worth processing further, using a binary classifier applied to gist features [2]. Advanced Thresholding and Segmentation I can make use of more advanced adaptive thresholding and segmentation methods like Otsu s Method. Efficiency Currently the system runtime is O(m*n), where m and n are widht and height of Image in Pixels. Segmentation routine described already makes use of the multi-threaded features. I can incorporate a multi-threaded version of code for Computing Histogram of Curvature over scale. That would improve the speed by a great factor. 5 References Leafsnap : A Computer Vision System for Automatic Plant Species Identification, Neeraj Kumar, Peter N. Belhumeur, Arijit Biswas, David W. Jacobs, W. John Kress, Ida C. Lopez, Joà o V. B. Soares, Proceedings of the 12th European Conference on Computer Vision (ECCV), October 2012 Adrian Kaehler, Gary Bradski Learning OpenCV-Computer Vision in C++ with the OpenCV Library: (2Nd Ed.) O Reilly Media 6

The Delicate Art of Flower Classification

The Delicate Art of Flower Classification The Delicate Art of Flower Classification Paul Vicol Simon Fraser University University Burnaby, BC pvicol@sfu.ca Note: The following is my contribution to a group project for a graduate machine learning

More information

Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition

Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image Pre-Processing - Pixel Brightness Transformation - Geometric Transformation - Image Denoising 1 1. Image Pre-Processing

More information

A Method for Controlling Mouse Movement using a Real- Time Camera

A Method for Controlling Mouse Movement using a Real- Time Camera A Method for Controlling Mouse Movement using a Real- Time Camera Hojoon Park Department of Computer Science Brown University, Providence, RI, USA hojoon@cs.brown.edu Abstract This paper presents a new

More information

Indoor Surveillance System Using Android Platform

Indoor Surveillance System Using Android Platform Indoor Surveillance System Using Android Platform 1 Mandar Bhamare, 2 Sushil Dubey, 3 Praharsh Fulzele, 4 Rupali Deshmukh, 5 Dr. Shashi Dugad 1,2,3,4,5 Department of Computer Engineering, Fr. Conceicao

More information

A Genetic Algorithm-Evolved 3D Point Cloud Descriptor

A Genetic Algorithm-Evolved 3D Point Cloud Descriptor A Genetic Algorithm-Evolved 3D Point Cloud Descriptor Dominik Wȩgrzyn and Luís A. Alexandre IT - Instituto de Telecomunicações Dept. of Computer Science, Univ. Beira Interior, 6200-001 Covilhã, Portugal

More information

A Simple Feature Extraction Technique of a Pattern By Hopfield Network

A Simple Feature Extraction Technique of a Pattern By Hopfield Network A Simple Feature Extraction Technique of a Pattern By Hopfield Network A.Nag!, S. Biswas *, D. Sarkar *, P.P. Sarkar *, B. Gupta **! Academy of Technology, Hoogly - 722 *USIC, University of Kalyani, Kalyani

More information

Fast Matching of Binary Features

Fast Matching of Binary Features Fast Matching of Binary Features Marius Muja and David G. Lowe Laboratory for Computational Intelligence University of British Columbia, Vancouver, Canada {mariusm,lowe}@cs.ubc.ca Abstract There has been

More information

Lecture 4: Thresholding

Lecture 4: Thresholding Lecture 4: Thresholding c Bryan S. Morse, Brigham Young University, 1998 2000 Last modified on Wednesday, January 12, 2000 at 10:00 AM. Reading SH&B, Section 5.1 4.1 Introduction Segmentation involves

More information

MAVIparticle Modular Algorithms for 3D Particle Characterization

MAVIparticle Modular Algorithms for 3D Particle Characterization MAVIparticle Modular Algorithms for 3D Particle Characterization version 1.0 Image Processing Department Fraunhofer ITWM Contents Contents 1 Introduction 2 2 The program 2 2.1 Framework..............................

More information

Signature Region of Interest using Auto cropping

Signature Region of Interest using Auto cropping ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 1 Signature Region of Interest using Auto cropping Bassam Al-Mahadeen 1, Mokhled S. AlTarawneh 2 and Islam H. AlTarawneh 2 1 Math. And Computer Department,

More information

Local features and matching. Image classification & object localization

Local features and matching. Image classification & object localization Overview Instance level search Local features and matching Efficient visual recognition Image classification & object localization Category recognition Image classification: assigning a class label to

More information

Classifying Manipulation Primitives from Visual Data

Classifying Manipulation Primitives from Visual Data Classifying Manipulation Primitives from Visual Data Sandy Huang and Dylan Hadfield-Menell Abstract One approach to learning from demonstrations in robotics is to make use of a classifier to predict if

More information

A New Robust Algorithm for Video Text Extraction

A New Robust Algorithm for Video Text Extraction A New Robust Algorithm for Video Text Extraction Pattern Recognition, vol. 36, no. 6, June 2003 Edward K. Wong and Minya Chen School of Electrical Engineering and Computer Science Kyungpook National Univ.

More information

Image Content-Based Email Spam Image Filtering

Image Content-Based Email Spam Image Filtering Image Content-Based Email Spam Image Filtering Jianyi Wang and Kazuki Katagishi Abstract With the population of Internet around the world, email has become one of the main methods of communication among

More information

Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall

Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin

More information

The Design and Implementation of Traffic Accident Identification System Based on Video

The Design and Implementation of Traffic Accident Identification System Based on Video 3rd International Conference on Multimedia Technology(ICMT 2013) The Design and Implementation of Traffic Accident Identification System Based on Video Chenwei Xiang 1, Tuo Wang 2 Abstract: With the rapid

More information

Automatic License Plate Recognition using Python and OpenCV

Automatic License Plate Recognition using Python and OpenCV Automatic License Plate Recognition using Python and OpenCV K.M. Sajjad Department of Computer Science and Engineering M.E.S. College of Engineering, Kuttippuram, Kerala me@sajjad.in Abstract Automatic

More information

Machine vision systems - 2

Machine vision systems - 2 Machine vision systems Problem definition Image acquisition Image segmentation Connected component analysis Machine vision systems - 1 Problem definition Design a vision system to see a flat world Page

More information

Face Recognition using SIFT Features

Face Recognition using SIFT Features Face Recognition using SIFT Features Mohamed Aly CNS186 Term Project Winter 2006 Abstract Face recognition has many important practical applications, like surveillance and access control.

More information

Designing and Testing an Anonymous Face Recognition System

Designing and Testing an Anonymous Face Recognition System Designing and Testing an Anonymous Face Recognition System Joris Diesvelt University of Twente P.O. Box 217, 7500AE Enschede The Netherlands j.j.diesvelt@student.utwente.nl ABSTRACT This paper contains

More information

Face Recognition in Low-resolution Images by Using Local Zernike Moments

Face Recognition in Low-resolution Images by Using Local Zernike Moments Proceedings of the International Conference on Machine Vision and Machine Learning Prague, Czech Republic, August14-15, 014 Paper No. 15 Face Recognition in Low-resolution Images by Using Local Zernie

More information

LEAF COLOR, AREA AND EDGE FEATURES BASED APPROACH FOR IDENTIFICATION OF INDIAN MEDICINAL PLANTS

LEAF COLOR, AREA AND EDGE FEATURES BASED APPROACH FOR IDENTIFICATION OF INDIAN MEDICINAL PLANTS LEAF COLOR, AREA AND EDGE FEATURES BASED APPROACH FOR IDENTIFICATION OF INDIAN MEDICINAL PLANTS Abstract Sandeep Kumar.E Department of Telecommunication Engineering JNN college of Engineering Affiliated

More information

Topographic Change Detection Using CloudCompare Version 1.0

Topographic Change Detection Using CloudCompare Version 1.0 Topographic Change Detection Using CloudCompare Version 1.0 Emily Kleber, Arizona State University Edwin Nissen, Colorado School of Mines J Ramón Arrowsmith, Arizona State University Introduction CloudCompare

More information

Morphological segmentation of histology cell images

Morphological segmentation of histology cell images Morphological segmentation of histology cell images A.Nedzved, S.Ablameyko, I.Pitas Institute of Engineering Cybernetics of the National Academy of Sciences Surganova, 6, 00 Minsk, Belarus E-mail abl@newman.bas-net.by

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

The Role of Size Normalization on the Recognition Rate of Handwritten Numerals

The Role of Size Normalization on the Recognition Rate of Handwritten Numerals The Role of Size Normalization on the Recognition Rate of Handwritten Numerals Chun Lei He, Ping Zhang, Jianxiong Dong, Ching Y. Suen, Tien D. Bui Centre for Pattern Recognition and Machine Intelligence,

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? A preliminary exploration of the data to better understand its characteristics.

More information

AUTOMATIC CROWD ANALYSIS FROM VERY HIGH RESOLUTION SATELLITE IMAGES

AUTOMATIC CROWD ANALYSIS FROM VERY HIGH RESOLUTION SATELLITE IMAGES In: Stilla U et al (Eds) PIA11. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 38 (3/W22) AUTOMATIC CROWD ANALYSIS FROM VERY HIGH RESOLUTION SATELLITE IMAGES

More information

Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report

Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 269 Class Project Report Automatic 3D Reconstruction via Object Detection and 3D Transformable Model Matching CS 69 Class Project Report Junhua Mao and Lunbo Xu University of California, Los Angeles mjhustc@ucla.edu and lunbo

More information

Character Image Patterns as Big Data

Character Image Patterns as Big Data 22 International Conference on Frontiers in Handwriting Recognition Character Image Patterns as Big Data Seiichi Uchida, Ryosuke Ishida, Akira Yoshida, Wenjie Cai, Yaokai Feng Kyushu University, Fukuoka,

More information

Arrowsmith: Automatic Archery Scorer Chanh Nguyen and Irving Lin

Arrowsmith: Automatic Archery Scorer Chanh Nguyen and Irving Lin Arrowsmith: Automatic Archery Scorer Chanh Nguyen and Irving Lin Department of Computer Science, Stanford University ABSTRACT We present a method for automatically determining the score of a round of arrows

More information

CLOUD CHARACTERIZATION USING LOCAL TEXTURE INFORMATION. Antti Isosalo, Markus Turtinen and Matti Pietikäinen

CLOUD CHARACTERIZATION USING LOCAL TEXTURE INFORMATION. Antti Isosalo, Markus Turtinen and Matti Pietikäinen CLOUD CHARACTERIZATION USING LOCAL TEXTURE INFORMATION Antti Isosalo, Markus Turtinen and Matti Pietikäinen Machine Vision Group Department of Electrical and Information Engineering University of Oulu,

More information

The Scientific Data Mining Process

The Scientific Data Mining Process Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In

More information

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear

More information

Constellation Detection

Constellation Detection Constellation Detection Suyao Ji, Jinzhi Wang, Xiaoge Liu* *To whom correspondence should be addressed. Electronic mail:liuxg@stanford.edu Abstract In the night with clear sky, the beautiful star patterns

More information

Brightness and geometric transformations

Brightness and geometric transformations Brightness and geometric transformations Václav Hlaváč Czech Technical University in Prague Center for Machine Perception (bridging groups of the) Czech Institute of Informatics, Robotics and Cybernetics

More information

Signature Segmentation from Machine Printed Documents using Conditional Random Field

Signature Segmentation from Machine Printed Documents using Conditional Random Field 2011 International Conference on Document Analysis and Recognition Signature Segmentation from Machine Printed Documents using Conditional Random Field Ranju Mandal Computer Vision and Pattern Recognition

More information

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow

A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow , pp.233-237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and Real-Time Tracking Objects Using Optical Flow Giwoo Kim 1, Hye-Youn Lim 1 and Dae-Seong Kang 1, 1 Department of electronices

More information

MVA ENS Cachan. Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos Iasonas.kokkinos@ecp.fr

MVA ENS Cachan. Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Machine Learning for Computer Vision 1 MVA ENS Cachan Lecture 2: Logistic regression & intro to MIL Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Department of Applied Mathematics Ecole Centrale Paris Galen

More information

G E N E R A L A P P R O A CH: LO O K I N G F O R D O M I N A N T O R I E N T A T I O N I N I M A G E P A T C H E S

G E N E R A L A P P R O A CH: LO O K I N G F O R D O M I N A N T O R I E N T A T I O N I N I M A G E P A T C H E S G E N E R A L A P P R O A CH: LO O K I N G F O R D O M I N A N T O R I E N T A T I O N I N I M A G E P A T C H E S In object categorization applications one of the main problems is that objects can appear

More information

A Flexible Suite of Software Tools for Medical Image Analysis

A Flexible Suite of Software Tools for Medical Image Analysis A Flexible Suite of Software Tools for Medical Image Analysis Alexander Nedzved United Institute of Informatics Problems of the National Academy of Sciences of Belarus Minsk, Belarus Nedzveda@tut.by Valery

More information

Appendix A. Comparison. Number Concepts and Operations. Math knowledge learned not matched by chess

Appendix A. Comparison. Number Concepts and Operations. Math knowledge learned not matched by chess Appendix A Comparison Number Concepts and Operations s s K to 1 s 2 to 3 Recognize, describe, and use numbers from 0 to 100 in a variety of familiar settings. Demonstrate and use a variety of methods to

More information

siftservice.com - Turning a Computer Vision algorithm into a World Wide Web Service

siftservice.com - Turning a Computer Vision algorithm into a World Wide Web Service siftservice.com - Turning a Computer Vision algorithm into a World Wide Web Service Ahmad Pahlavan Tafti 1, Hamid Hassannia 2, and Zeyun Yu 1 1 Department of Computer Science, University of Wisconsin -Milwaukee,

More information

QUALITY TESTING OF WATER PUMP PULLEY USING IMAGE PROCESSING

QUALITY TESTING OF WATER PUMP PULLEY USING IMAGE PROCESSING QUALITY TESTING OF WATER PUMP PULLEY USING IMAGE PROCESSING MRS. A H. TIRMARE 1, MS.R.N.KULKARNI 2, MR. A R. BHOSALE 3 MR. C.S. MORE 4 MR.A.G.NIMBALKAR 5 1, 2 Assistant professor Bharati Vidyapeeth s college

More information

Nuclear Science and Technology Division (94) Multigroup Cross Section and Cross Section Covariance Data Visualization with Javapeño

Nuclear Science and Technology Division (94) Multigroup Cross Section and Cross Section Covariance Data Visualization with Javapeño June 21, 2006 Summary Nuclear Science and Technology Division (94) Multigroup Cross Section and Cross Section Covariance Data Visualization with Javapeño Aaron M. Fleckenstein Oak Ridge Institute for Science

More information

Math. Mixed Number Fraction to Improper Fraction. Answers. Name: Convert the mixed number fraction to improper fraction = = 15

Math. Mixed Number Fraction to Improper Fraction. Answers. Name: Convert the mixed number fraction to improper fraction = = 15 Convert the mixed number fraction to = 1 1 + = Get rid of your. 1 41 61. 8 6 1 = 1 10 1 = 41 ) 10 1 = 61. ) 6 = 8 1 = ) 1 = 1 4 1 = 1 = 1 10 4 = 64 64 6 4 = 8 6 = 6 = 6 6 = 6 8 1 = 1 = 9 4 = 8 1 1 = )

More information

Using MATLAB to Measure the Diameter of an Object within an Image

Using MATLAB to Measure the Diameter of an Object within an Image Using MATLAB to Measure the Diameter of an Object within an Image Keywords: MATLAB, Diameter, Image, Measure, Image Processing Toolbox Author: Matthew Wesolowski Date: November 14 th 2014 Executive Summary

More information

Implementation of Canny Edge Detector of color images on CELL/B.E. Architecture.

Implementation of Canny Edge Detector of color images on CELL/B.E. Architecture. Implementation of Canny Edge Detector of color images on CELL/B.E. Architecture. Chirag Gupta,Sumod Mohan K cgupta@clemson.edu, sumodm@clemson.edu Abstract In this project we propose a method to improve

More information

Thresholding technique with adaptive window selection for uneven lighting image

Thresholding technique with adaptive window selection for uneven lighting image Pattern Recognition Letters 26 (2005) 801 808 wwwelseviercom/locate/patrec Thresholding technique with adaptive window selection for uneven lighting image Qingming Huang a, *, Wen Gao a, Wenjian Cai b

More information

A Study on M2M-based AR Multiple Objects Loading Technology using PPHT

A Study on M2M-based AR Multiple Objects Loading Technology using PPHT A Study on M2M-based AR Multiple Objects Loading Technology using PPHT Sungmo Jung, Seoksoo Kim * Department of Multimedia Hannam University 133, Ojeong-dong, Daedeok-gu, Daejeon-city Korea sungmoj@gmail.com,

More information

Module II: Multimedia Data Mining

Module II: Multimedia Data Mining ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA Module II: Multimedia Data Mining Laurea Magistrale in Ingegneria Informatica University of Bologna Multimedia Data Retrieval Home page: http://www-db.disi.unibo.it/courses/dm/

More information

*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles.

*1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Students: 1. Students understand and compute volumes and areas of simple objects. *1. Derive formulas for the area of right triangles and parallelograms by comparing with the area of rectangles. Review

More information

2D GEOMETRIC SHAPE AND COLOR RECOGNITION USING DIGITAL IMAGE PROCESSING

2D GEOMETRIC SHAPE AND COLOR RECOGNITION USING DIGITAL IMAGE PROCESSING 2D GEOMETRIC SHAPE AND COLOR RECOGNITION USING DIGITAL IMAGE PROCESSING Sanket Rege 1, Rajendra Memane 2, Mihir Phatak 3, Parag Agarwal 4 UG Student, Dept. of E&TC Engineering, PVG s COET, Pune, Maharashtra,

More information

jorge s. marques image processing

jorge s. marques image processing image processing images images: what are they? what is shown in this image? What is this? what is an image images describe the evolution of physical variables (intensity, color, reflectance, condutivity)

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

A secure face tracking system

A secure face tracking system International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 10 (2014), pp. 959-964 International Research Publications House http://www. irphouse.com A secure face tracking

More information

Word Spotting in Cursive Handwritten Documents using Modified Character Shape Codes

Word Spotting in Cursive Handwritten Documents using Modified Character Shape Codes Word Spotting in Cursive Handwritten Documents using Modified Character Shape Codes Sayantan Sarkar Department of Electrical Engineering, NIT Rourkela sayantansarkar24@gmail.com Abstract.There is a large

More information

PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM

PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM Apurva Sinha 1, Mukesh kumar 2, A.K. Jaiswal 3, Rohini Saxena 4 Department of Electronics

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Using MATLAB Second Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive Steven L. Eddins The MathWorks, Inc. Gatesmark Publishing A Division

More information

Measuring Length and Area of Objects in Digital Images Using AnalyzingDigitalImages Software. John Pickle, Concord Academy, March 19, 2008

Measuring Length and Area of Objects in Digital Images Using AnalyzingDigitalImages Software. John Pickle, Concord Academy, March 19, 2008 Measuring Length and Area of Objects in Digital Images Using AnalyzingDigitalImages Software John Pickle, Concord Academy, March 19, 2008 The AnalyzingDigitalImages software, available free at the Digital

More information

Defect detection of gold-plated surfaces on PCBs using Entropy measures

Defect detection of gold-plated surfaces on PCBs using Entropy measures Defect detection of gold-plated surfaces on PCBs using ntropy measures D. M. Tsai and B. T. Lin Machine Vision Lab. Department of Industrial ngineering and Management Yuan-Ze University, Chung-Li, Taiwan,

More information

COM CO P 5318 Da t Da a t Explora Explor t a ion and Analysis y Chapte Chapt r e 3

COM CO P 5318 Da t Da a t Explora Explor t a ion and Analysis y Chapte Chapt r e 3 COMP 5318 Data Exploration and Analysis Chapter 3 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping

More information

Image Normalization for Illumination Compensation in Facial Images

Image Normalization for Illumination Compensation in Facial Images Image Normalization for Illumination Compensation in Facial Images by Martin D. Levine, Maulin R. Gandhi, Jisnu Bhattacharyya Department of Electrical & Computer Engineering & Center for Intelligent Machines

More information

Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode Value

Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode Value IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode

More information

Evaluation of the Use of High-Resolution Satellite Imagery in Transportation Applications

Evaluation of the Use of High-Resolution Satellite Imagery in Transportation Applications Evaluation of the Use of High-Resolution Satellite Imagery in Transportation Applications Final Report Prepared by: Rocio Alba-Flores Department of Electrical and Computer Engineering University of Minnesota

More information

Binary Image Analysis

Binary Image Analysis Binary Image Analysis Segmentation produces homogenous regions each region has uniform gray-level each region is a binary image (0: background, 1: object or the reverse) more intensity values for overlapping

More information

An Optical Sudoku Solver

An Optical Sudoku Solver An Optical Sudoku Solver Martin Byröd February 12, 07 Abstract In this report, a vision-based sudoku solver is described. The solver is capable of solving a sudoku directly from a photograph taken with

More information

An Active Head Tracking System for Distance Education and Videoconferencing Applications

An Active Head Tracking System for Distance Education and Videoconferencing Applications An Active Head Tracking System for Distance Education and Videoconferencing Applications Sami Huttunen and Janne Heikkilä Machine Vision Group Infotech Oulu and Department of Electrical and Information

More information

Location tracking: technology, methodology and applications

Location tracking: technology, methodology and applications Location tracking: technology, methodology and applications Marina L. Gavrilova SPARCS Laboratory Co-Director Associate Professor University of Calgary Interests and affiliations SPARCS Lab Co-Founder

More information

Plumbing and Pipe-Fitting Challenges

Plumbing and Pipe-Fitting Challenges Plumbing and Pipe-Fitting Challenges Students often wonder when they will use the math they learn in school. These activities answer that question as it relates to measuring, working with fractions and

More information

Geometric Image Transformations

Geometric Image Transformations Geometric Image Transformations Part One 2D Transformations Spatial Coordinates (x,y) are mapped to new coords (u,v) pixels of source image -> pixels of destination image Types of 2D Transformations Affine

More information

3D POINT CLOUD CONSTRUCTION FROM STEREO IMAGES

3D POINT CLOUD CONSTRUCTION FROM STEREO IMAGES 3D POINT CLOUD CONSTRUCTION FROM STEREO IMAGES Brian Peasley * I propose an algorithm to construct a 3D point cloud from a sequence of stereo image pairs that show a full 360 degree view of an object.

More information

Image Analysis Report

Image Analysis Report Image Analysis Report # 258 Alpha Grain Characterization in Titanium Sample Description Two samples of titanium (Ti-6-4) electro-polished and etched. Purpose of Analysis Demonstrate the ability of the

More information

Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang

Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang Recognizing Cats and Dogs with Shape and Appearance based Models Group Member: Chu Wang, Landu Jiang Abstract Recognizing cats and dogs from images is a challenging competition raised by Kaggle platform

More information

Identification of TV Programs Based on Provider s Logo Analysis

Identification of TV Programs Based on Provider s Logo Analysis AUTOMATYKA 2010 Tom 14 Zeszyt 3/1 Marta Chodyka*, W³odzimierz Mosorow** Identification of TV Programs Based on Provider s Logo Analysis 1. Introduction The problem of an easy access of underage persons

More information

Data Mining and Visualization

Data Mining and Visualization Data Mining and Visualization Jeremy Walton NAG Ltd, Oxford Overview Data mining components Functionality Example application Quality control Visualization Use of 3D Example application Market research

More information

Plotting Data with Microsoft Excel

Plotting Data with Microsoft Excel Plotting Data with Microsoft Excel Here is an example of an attempt to plot parametric data in a scientifically meaningful way, using Microsoft Excel. This example describes an experience using the Office

More information

Recognition Method for Handwritten Digits Based on Improved Chain Code Histogram Feature

Recognition Method for Handwritten Digits Based on Improved Chain Code Histogram Feature 3rd International Conference on Multimedia Technology ICMT 2013) Recognition Method for Handwritten Digits Based on Improved Chain Code Histogram Feature Qian You, Xichang Wang, Huaying Zhang, Zhen Sun

More information

Tutorial 8 Raster Data Analysis

Tutorial 8 Raster Data Analysis Objectives Tutorial 8 Raster Data Analysis This tutorial is designed to introduce you to a basic set of raster-based analyses including: 1. Displaying Digital Elevation Model (DEM) 2. Slope calculations

More information

Visual Structure Analysis of Flow Charts in Patent Images

Visual Structure Analysis of Flow Charts in Patent Images Visual Structure Analysis of Flow Charts in Patent Images Roland Mörzinger, René Schuster, András Horti, and Georg Thallinger JOANNEUM RESEARCH Forschungsgesellschaft mbh DIGITAL - Institute for Information

More information

Adobe Illustrator CS5 Part 1: Introduction to Illustrator

Adobe Illustrator CS5 Part 1: Introduction to Illustrator CALIFORNIA STATE UNIVERSITY, LOS ANGELES INFORMATION TECHNOLOGY SERVICES Adobe Illustrator CS5 Part 1: Introduction to Illustrator Summer 2011, Version 1.0 Table of Contents Introduction...2 Downloading

More information

NIS-Elements: Using Regions of Interest (ROIs) & ROI Statistics

NIS-Elements: Using Regions of Interest (ROIs) & ROI Statistics NIS-Elements: Using Regions of Interest (ROIs) & ROI Statistics Various ROI tools and functions NIS-Elements has several ROI functions designed for data analysis and image quantification. ROIs are a core

More information

WORDOKU SOLVER. Surya Chandra EENG510 December 3,2014

WORDOKU SOLVER. Surya Chandra EENG510 December 3,2014 WORDOKU SOLVER Surya Chandra EENG510 December 3,2014 Outline Background Goal Steps to solve Algorithm used for each step Testing and Results Future work Questions Background A wordoku puzzle is similar

More information

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 8/05/2005 1 What is data exploration? A preliminary

More information

SELF-ORGANISING MAPPING NETWORKS (SOM) WITH SAS E-MINER

SELF-ORGANISING MAPPING NETWORKS (SOM) WITH SAS E-MINER SELF-ORGANISING MAPPING NETWORKS (SOM) WITH SAS E-MINER C.Sarada, K.Alivelu and Lakshmi Prayaga Directorate of Oilseeds Research, Rajendranagar, Hyderabad saradac@yahoo.com Self Organising mapping networks

More information

3D Model based Object Class Detection in An Arbitrary View

3D Model based Object Class Detection in An Arbitrary View 3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/

More information

LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE. indhubatchvsa@gmail.com

LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE. indhubatchvsa@gmail.com LOCAL SURFACE PATCH BASED TIME ATTENDANCE SYSTEM USING FACE 1 S.Manikandan, 2 S.Abirami, 2 R.Indumathi, 2 R.Nandhini, 2 T.Nanthini 1 Assistant Professor, VSA group of institution, Salem. 2 BE(ECE), VSA

More information

Overview. 1. Introduction. 2. Parts of the Project. 3. Conclusion. Motivation. Methods used in the project Results and comparison

Overview. 1. Introduction. 2. Parts of the Project. 3. Conclusion. Motivation. Methods used in the project Results and comparison Institute of Integrated Sensor Systems Dept. of Electrical Engineering and Information Technology An Image Processing Application on QuickCog and Matlab Door-Key Recognition System Lei Yang Oct, 2009 Prof.

More information

Curriculum Map Grade: _7 th Basic Math School: _ Middle Date: Oct. 31/2009

Curriculum Map Grade: _7 th Basic Math School: _ Middle Date: Oct. 31/2009 August/ September Review basic skills of add, subtract, multiply, and divide whole numbers and fractions. (skill with a # assessed locally.) Students will add, subtract, multiply, and divide positive rational

More information

Introduction to SolidWorks Software

Introduction to SolidWorks Software Introduction to SolidWorks Software Marine Advanced Technology Education Design Tools What is SolidWorks? SolidWorks is design automation software. In SolidWorks, you sketch ideas and experiment with different

More information

SIGNATURE VERIFICATION

SIGNATURE VERIFICATION SIGNATURE VERIFICATION Dr. H.B.Kekre, Dr. Dhirendra Mishra, Ms. Shilpa Buddhadev, Ms. Bhagyashree Mall, Mr. Gaurav Jangid, Ms. Nikita Lakhotia Computer engineering Department, MPSTME, NMIMS University

More information

REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING

REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING Ms.PALLAVI CHOUDEKAR Ajay Kumar Garg Engineering College, Department of electrical and electronics Ms.SAYANTI BANERJEE Ajay Kumar Garg Engineering

More information

Signature verification using Kolmogorov-Smirnov. statistic

Signature verification using Kolmogorov-Smirnov. statistic Signature verification using Kolmogorov-Smirnov statistic Harish Srinivasan, Sargur N.Srihari and Matthew J Beal University at Buffalo, the State University of New York, Buffalo USA {srihari,hs32}@cedar.buffalo.edu,mbeal@cse.buffalo.edu

More information

DEVELOPING AN IMAGE RECOGNITION ALGORITHM FOR FACIAL AND DIGIT IDENTIFICATION

DEVELOPING AN IMAGE RECOGNITION ALGORITHM FOR FACIAL AND DIGIT IDENTIFICATION DEVELOPING AN IMAGE RECOGNITION ALGORITHM FOR FACIAL AND DIGIT IDENTIFICATION ABSTRACT Christian Cosgrove, Kelly Li, Rebecca Lin, Shree Nadkarni, Samanvit Vijapur, Priscilla Wong, Yanjun Yang, Kate Yuan,

More information

The Visual Internet of Things System Based on Depth Camera

The Visual Internet of Things System Based on Depth Camera The Visual Internet of Things System Based on Depth Camera Xucong Zhang 1, Xiaoyun Wang and Yingmin Jia Abstract The Visual Internet of Things is an important part of information technology. It is proposed

More information

Galaxy Morphological Classification

Galaxy Morphological Classification Galaxy Morphological Classification Jordan Duprey and James Kolano Abstract To solve the issue of galaxy morphological classification according to a classification scheme modelled off of the Hubble Sequence,

More information

Analecta Vol. 8, No. 2 ISSN 2064-7964

Analecta Vol. 8, No. 2 ISSN 2064-7964 EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,

More information

Designing a Graphical User Interface

Designing a Graphical User Interface Designing a Graphical User Interface 1 Designing a Graphical User Interface James Hunter Michigan State University ECE 480 Design Team 6 5 April 2013 Summary The purpose of this application note is to

More information

Supervised and unsupervised learning - 1

Supervised and unsupervised learning - 1 Chapter 3 Supervised and unsupervised learning - 1 3.1 Introduction The science of learning plays a key role in the field of statistics, data mining, artificial intelligence, intersecting with areas in

More information

Demo: Real-time Tracking of Round Object

Demo: Real-time Tracking of Round Object Page 1 of 1 Demo: Real-time Tracking of Round Object by: Brianna Bikker and David Price, TAMU Course Instructor: Professor Deepa Kundur Introduction Our project is intended to track the motion of a round

More information