Influence of Fly Ash on the Corrosion of Steel Reinforcement in Concrete A Review. by Theodore (Ted) Bremner University of New Brunswick, Canada

Size: px
Start display at page:

Download "Influence of Fly Ash on the Corrosion of Steel Reinforcement in Concrete A Review. by Theodore (Ted) Bremner University of New Brunswick, Canada"

Transcription

1 Influence of Fly Ash on the Corrosion of Steel Reinforcement in Concrete A Review by Theodore (Ted) Bremner University of New Brunswick, Canada

2 Corrosion occurs when two different metals, or metals in different environments, are electrically connected in a moist or damp concrete. Rust forms with a volume larger than the metal consumed and in reinforced concrete the concrete cover spalls off, exposing the metal directly to the aggressive environment.

3 This will occur when: 1. Steel reinforcement is in contact with an aluminium conduit. 2. Concrete pore water composition varies between adjacent or along reinforcing bars. 3. Where there is a variation in alloy composition between or along reinforcing bars. 4. Where there is a variation in residual or applied stress along or between reinforcing bars. 5. Where there are imposed stray electrical currents.

4 Corrosion in Reinforced Concrete O 2 H 2 O secondary reaction Fe 2 O 3 H 2 O (rust) O 2 2Fe(OH) 2 anodic reaction 4(OH - ) cathodic reaction H 2 O 2Fe ++ 4e - - electron transfer anodic dissolution of iron cathodic region O 2 H 2 O

5 Can corrosion be avoided in reinforced concrete? Yes if: (a) Concrete is always dry, then there is no H 2 O to form rust. Also aggressive agents cannot easily diffuse into dry concrete. (b) Concrete is always wet, then there is no oxygen to form rust. (c) Cathodic protection is used to convert all the reinforcement into a cathode using a battery. This is not easy to implement because anodic mesh is expensive, and this technology is not easy to install and maintain.

6 (d) A polymeric coating is applied to the concrete member to keep out aggressive agents. These are expensive and not easy to apply and maintain. (e) A polymeric coating is applied to the reinforcing bars to protect them from moisture and aggressive agents. This is expensive and there is some debate as to its long- term effectiveness. (f) Stainless steel or cladded stainless steel is used in lieu of conventional black bars. This is much more expensive than black bars.

7 Can we avoid corrosion? No, not entirely: Concrete is not usually under water or continuously dry. Aggressive agents such as carbon dioxide, de-icing agents and/or sea water can diffuse into the best of moist concrete, and corrosion will eventually result.

8 If corrosion cannot always be avoided and economical solutions are required, the effects of corrosion can be minimized by making a better concrete. As will be shown later, Fly Ash added to a low w/c concrete produces a much enhanced corrosion resisting structure with no significant increase in cost.

9 The intrinsic nature of concrete is to be very protective of embedded steel. As soon as steel is placed in the high ph concrete (>12), a thin dense passive layer forms that is virtually continuous and the subsequent rate of attack is so low as to be insignificant.

10 Unfortunately when the carbonation front reaches the steel or when chlorides diffuse into the steel and reach a threshold level, this coherent protective layer is replaced by a porous incoherent expansive coating. The formerly protective oxide layer becomes an expansive porous oxide layer which causes cracking and eventually spalling of the concrete cover layer.

11 The Economical Solution: We must make concrete more protective of the steel reinforcement so that it will protect the passivating oxide layer. Making better concrete, using only Portland cement, will not make a substantial improvement. Fortunately Fly Ash added to a properly designed and cured concrete mixture will.

12 The key to protecting the protective passive layer is to make a much more impermeable concrete than we have made in the past. This can be done using a Fly Ash concrete with very low permeability, which will delay the arrival of carbonation and chlorides at the level of the steel reinforcement.

13 Fly Ash makes concrete almost impermeable Fly Ash is a finely divided silica rich powder that, in itself, gives no benefit when added to a concrete mixture, unless it can react with the calcium hydroxide formed in the first few days of hydration. Together they form a calcium silica hydrate (CSH) compound that over time effectively reduces concrete diffusivity to oxygen, carbon dioxide, water and chloride ions. By reducing ion diffusion, the electrical resistance of the concrete also increases as Datta, Garg and Rehsi have shown (1).

14 How does Fly Ash reacting with Ca(OH) 2 reduce permeability? The CSH compound formed in the presence of moisture in the void space within the hydration products effectively reduces the number and continuity of the capillary pores. This reaction, because it entails diffusion, takes place in a moist environment at a decreasing rate that can take a decade or more to reach completion.

15 The Role of Water in Concrete Water in concrete exhibits a Dr. Jekyll and Mr. Hyde behaviour. Water is essential for the proper hydration of a Portland cement pozzolan combination such as one containing Fly Ash. Also fully saturated cement paste is almost impermeable to both the oxygen needed for corrosion, and to carbon dioxide that destroys the passivating layer.

16 On the other hand, too much water leaves the concrete highly permeable. Also the excess water in the pores contributes to the corrosion process. In addition, it provides a medium whereby chloride ions can diffuse easily toward the reinforcement and destroy the passive layer.

17 An antidote for excess water in concrete is usually in the form of a superplasticizer.

18 Factors other than permeability influencing corrosion (i) A portion of the chloride ions diffusing through the concrete can be sequestered in the concrete by combining them with the tricalcium aluminate to form a calcium chloro-aluminate (Friedel s salt). Dass and Rajj (2) have shown that this can be a significant effect in reducing the amount of available chlorides thereby reducing corrosion.

19 (ii) In low-strength concrete and in hot dry climates, carbon dioxide can diffuse into the concrete, react with calcium, sodium and potassium to form carbonates and in the process lower the ph to a level where the passivating oxide layer is no longer stable. (iii) The chloride levels needed to initiate corrosion decrease as the level of cement replacement increases (3).

20 Fortunately increased impermeability of concrete made with Fly Ash more than compensates for the above three negative effects when Fly Ash is used to replace cement as the following experiments will show.

21 Test #1 - Uncracked Concrete Malhotra et al. (4) carried out tests on a series of slabs 150-mm thick made with 20 mm maximum size aggregates and with reinforcing bars 20, 40, 60 and 80 mm from the top surface. After moist curing for seven days and air drying for 21 days, the slabs were continuously ponded for eight years with a 4% calcium chloride solution.

22 Test # 1 Uncracked Concrete (cont d) The effect of fly ash in reducing chloride ions ingress measured at 8 years at 18 mm (and 30 mm) below the surface. Mixture w/(c + fa) fa/(c + fa) % Cl, % by mass of concrete Cl, % by mass of cementitious materials (-) 0.06 (-) (.02) 1.07 (0.12) (-) 0.14 (-) (0.12) 1.19 (0.84) (0.01) 2.43 (0.08) (0.24) 2.60 (2.02) The very low Cl levels in Mixtures 1 and 3 clearly indicate the very long service life that can be expected with high volume fly ash concrete.

23 Test # 1 Uncracked Concrete (cont d) The steel reinforcing bars in concrete incorporating moderate (25%) and high (~55%) volumes of fly ash and ponded with 4% calcium chloride solution for 8 years showed superior performance in regard to the corrosion activity compared with those in the corresponding control Portland cement concrete.

24 Test # 1 Uncracked Concrete (cont d) Of the various mixtures tested, only the W/C = 0.57 concretes showed evidence of corrosion of the embedded reinforcement when the slabs were broken open at eight years. The reinforcement embedded in the concrete with 25% replacement of cement with fly ash that had a cover of 20 mm showed signs of corrosion whereas the control specimens with only Portland cement showed signs of corrosion with both 20 and 40 mm of cover.

25 Test #2 Uncracked Concrete Gu et al. (5) in 1999 and Quian (6) in 2003 reported on a series of concrete slabs 153 mm thick made with 19 mm maximum size aggregates that had been moist cured for 7 days followed by exposure to laboratory air for approximately 50 days. The top surface was ponded with 3.4% sodium chloride solution in the laboratory.

26 Test # 2 Uncracked Concrete (cont d) After 5.3 years the following results were obtained for bars with 25 mm cover. Min. No. Type of SCM SCM % W/C Corrosion Rate μa cm 2 N1 N2 N7 N8 N3 N5 N6 Fly Ash Type F Fly Ash Type C Silica Fume Slag Where <0.1 is passive condition and >1.0 is high corrosion. <<0.1 <<0.1 <<0.1 <0.1 < to >1.0 >1.0 These tests clearly show the advantage of using supplementary cementing material (SCM) such as fly ash in low w/c concrete.

27 Test # 3 Uncracked Concrete Thomas et al. (3) in 1986 installed a series of steel-reinforced concrete prisms at Shoeburyness in the Thames estuary, England and after ten years the prisms were evaluated. The reinforcement steel mass loss in % is given below for reinforcement with 20 mm cover. Mass Loss Fly Ash % W/C + Fly Ash

28 Test # 3 Uncracked Concrete Conclusions: Fly Ash concretes showed substantial increased resistance to the penetration of chlorides which resulted in reduced corrosion of steel bars embedded in the concrete. Chloride ion threshold levels were 0.70, 0.65, 0.50 and 0.2 (% by mass of cement and Fly Ash) for Fly Ash contents of 0, 15, 30 and 50% respectively.

29 Uncracked Concrete Conclusion Aggressive agents diffuse into the concrete and when they reach the embedded reinforcement at a threshold level, corrosion takes place. Eventually this results in cracking in the plane of the bar leading to spalling of the concrete cover. Fly Ash, when used properly in a concrete mixture, will substantially delay this distress

30 Like Death and Taxes Concrete will crack Beeby (7) quotes results from exposure tests done mainly in Germany to arrive at the conclusion that the crack width has no significant influence on the amounts of corrosion that will occur during the life of the structures. Beeby goes on to state: a crack perpendicular to the line of the bar does not constitute a corrosion risk in practice, while the existence of longitudinal crack may.

31 Cracking of reinforced concrete members Step 1. Flexural cracks form in properly designed members. Step 2. Cracks act as portals for aggressive agents to reach the reinforcement. Step 3. Micro corrosion takes place on the exposed steel at the crack and more damagingly along the steel/concrete interface adjacent to the crack faces. Step 4. Corrosion products that form on this interface cause cracking to form in the plane of the reinforcing bars and spalling ensues.

32 Francois and Aaliguie (8) mapped the progressive carbonation and chloride ingress in a simply supported beam subjected to a load at mid-span. The aggressive agents can be seen to move along the crack and along the reinforcement where the crack intersected a bar. The following figures show the appearance of the carbonated area and the area contaminated with chlorides that is at right angles to the crack with carbonation spreading in the concrete adjacent to the steel from the point of convergence of the crack and along the longitudinal reinforcement under stress.

33 Carbonated concrete zone in front of a crack (Ref. 8)

34 Shape of the chloride contaminated concrete zone in front of crack (Ref. 8)

35 Francois and Aaliguie (8) also showed that there is about a 30% increase in chloride content on the tensile surface as compared to the compressive surface of a beam and this increases to 100% at a depth of 35 mm from the surface of a flexural member. Carbonation depth is influenced in a similar manner, as can be seen in the following figure.

36 Extent of carbonation at support (end of beam section) and at mid-span (middle section (Ref. 8)

37 Test # 1 Cracked Concrete Montes (9) tested a series of 27 slabs that were cast with and without fly ash and with two 15ø x 260- mm long reinforcing bars intersecting either a construction joint or preformed cracks that were 0.25 and 0.50 mm wide. The reinforcing bars had a cover of 20 mm, and a 12.5 mm maximum size coarse aggregate was used. The cement was Type I normal portland with 8% silica fume.

38 Test # 1 Cracked Concrete (cont d) After 7 days moist curing and 21 days drying in laboratory air the concrete was subjected to two cycles per day at 26ºC in the wet cycle and 55ºC in the dry cycles. Also a series of 54 slabs were cast and placed slightly below high tide level at Treat Island, Maine. The results are as follows:

39 Corrosion current density at 12 months in μa/cm 2 - Laboratory Tests (averaged over the bar) Fly Ash Replacement % w/c + Fly Ash With 0.0 mm Preformed Crack Construction Joint With 0.25 mm Preformed crack * With 0.50 mm Preformed crack * * * Improperly Consolidated Concrete

40 Corrosion current density at 2 years at Treat Island μa/cm 2 Fly Ash Replacement % w/c + Fly Ash With 0.0 mm Preformed Crack Construction Joint With 0.25 mm Preformed Crack With 0.50 mm Preformed Crack

41 Number of bars with longitudinal cracks caused by corrosion at transverse cracks in 0.45 W/C + Fly Ash specimens Laboratory testing Fly Ash % Months Accelerated Testing Note: Specimens with w/c + Fly Ash of 0.29 and 0.37 had no longitudinal cracks

42 At 12 months, all of the specimens subjected to accelerated testing were broken open to measure areas of corrosion and amount and depth of corrosion pitting. Fly Ash appears to have no influence on these parameters. Pitting depths ranged from 0.2 to 1.7 mm and areas of corrosion ranged from 0.4 to 91.1 cm 2.

43 Specimens with deep pitting had generally smaller areas of corrosion. Testing of specimens at Treat Island Marine Exposure Site will continue, and in time should provide more specific information.

44 Corrosion spreading along the reinforcing bar at either side of the crack appears to be caused by crevice corrosion. Corrosion occurs at crevices where oxygen and chlorine ion concentration is lowest. Perhaps this type of concentration cell arises because the mobility of iron (ionic radius of 0.74 Å) is greater than that of the oxygen (1.40 Å) and chlorine (1.81 Å). Fly Ash is very effective in closing the coarser pores but may not be as effective in closing the finer pores that provide a conduit for iron in ionic form.

45 Conclusion Fly Ash concrete, if properly proportioned, placed and cured, makes a substantial improvement in enhancing the protection of embedded reinforcing steel from corrosive agents. It is also effective in reducing the longitudinal cracks that form as a result of crevice corrosion that develops at transvers flexural cracks.

46 Crevice Corrosion Oxygen in the liquid which is deep in the crevice is consumed by reaction with the metal. Oxygen content of liquid at the mouth of the crevice which is exposed to the air is greater, so a local cell develops in which the anode, or area being attacked, is the surface in contact with the oxygendepleted liquid (from Corrosion Basics NACE).

47 Crevice Corrosion of Rebar Has Some Similarities with Filiform Corrosion The head of the advancing filament becomes anodic, with a low ph and a lack of oxygen, as compared with the cathodic area immediately behind the head where oxygen is available through the semipermeable film. Corrosion proceeds as the cathode follows behind the anodic head (from Corrosion Basics NACE).

48

49

50

51

52

53

54

55

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT vii TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS iii xvii xix xxvii 1 INTRODUCTION 1 1.1 GENERAL 1 1.2 OBJECTIVES AND SCOPE OF

More information

Durability of reinforced concrete pipe the hard facts!

Durability of reinforced concrete pipe the hard facts! Durability of reinforced concrete pipe the hard facts! David Millar, Executive Director, Concrete Pipe Association of Australasia CPAA Seminar Stormwater Drainage Pipe - The Long Life Asset, February 2006

More information

Dissimilar Metal Corrosion

Dissimilar Metal Corrosion PDHonline Course S118 (1 PDH) Dissimilar Metal Corrosion Instructor: D. Matthew Stuart, P.E., S.E., F.ASCE, F.SEI, SECB, MgtEng 2013 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658

More information

SULPHATE ATTACK AND CHLORIDE ION PENETRATION: THEIR ROLE IN CONCRETE DURABILITY

SULPHATE ATTACK AND CHLORIDE ION PENETRATION: THEIR ROLE IN CONCRETE DURABILITY SULPHATE ATTACK AND CHLORIDE ION PENETRATION: THEIR ROLE IN CONCRETE DURABILITY Concrete durability continues to be a subject of controversy among design professionals, specifiers, Government instrumentalities,

More information

EFFECT OF NANO-SILICA ON CONCRETE CONTAINING METAKAOLIN

EFFECT OF NANO-SILICA ON CONCRETE CONTAINING METAKAOLIN International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 104-112, Article ID: IJCIET_07_01_009 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

PROPERTIES AND MIX DESIGNATIONS 5-694.200

PROPERTIES AND MIX DESIGNATIONS 5-694.200 September 1, 2003 CONCRETE MANUAL 5-694.200 5-694.210 PROPERTIES OF CONCRETE PROPERTIES AND MIX DESIGNATIONS 5-694.200 Inspectors should familiarize themselves with the most important properties of concrete:

More information

Strength of Concrete

Strength of Concrete Strength of Concrete In concrete design and quality control, strength is the property generally specified. This is because, compared to most other properties, testing strength is relatively easy. Furthermore,

More information

Assessment of corrosion-damaged concrete bridge decks - a case study investigation. Amleh, L.; Lounis, Z.; Mirza, M.S.

Assessment of corrosion-damaged concrete bridge decks - a case study investigation. Amleh, L.; Lounis, Z.; Mirza, M.S. Assessment of corrosion-damaged concrete bridge decks - a case study investigation Amleh, L.; Lounis, Z.; Mirza, M.S. NRCC-45402 A version of this document is published in / Une version de ce document

More information

Rapid Chloride Permeability Testing

Rapid Chloride Permeability Testing Rapid Chloride Permeability Testing A test that can be used for a wide range of applications and quality control purposes if the inherent limitations are understood By Prakash Joshi and Cesar Chan C orrosion

More information

Chapter 2 Basis of design and materials

Chapter 2 Basis of design and materials Chapter 2 Basis of design and materials 2.1 Structural action It is necessary to start a design by deciding on the type and layout of structure to be used. Tentative sizes must be allocated to each structural

More information

Chapter Two Types of Cement The properties of cement during hydration vary according to:

Chapter Two Types of Cement The properties of cement during hydration vary according to: Chapter Two Types of Cement The properties of cement during hydration vary according to: Chemical composition Degree of fineness It is possible to manufacture different types of cement by changing the

More information

EXPERIMENTAL INVESTIGATION ON BEHAVIOUR OF NANO CONCRETE

EXPERIMENTAL INVESTIGATION ON BEHAVIOUR OF NANO CONCRETE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 315 320, Article ID: IJCIET_07_02_027 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

DURABILITY OF MORTAR LININGS IN DUCTILE IRON PIPES Durability of mortar linings

DURABILITY OF MORTAR LININGS IN DUCTILE IRON PIPES Durability of mortar linings DURABILITY OF MORTAR LININGS IN DUCTILE IRON PIPES Durability of mortar linings I. S. MELAND SINTEF Civil and Environmental Engineering, Cement and Concrete, Trondheim, Norway Durability of Building Materials

More information

Sika FerroGard -903 + The Unique Multi-Functional Surface Applied Corrosion Inhibitor for Reinforced Concrete. Innovation & Consistency.

Sika FerroGard -903 + The Unique Multi-Functional Surface Applied Corrosion Inhibitor for Reinforced Concrete. Innovation & Consistency. FerroGard -903 + The Unique Multi-Functional Surface Applied Corrosion Inhibitor for Reinforced Concrete Innovation & Consistency since 1910 Corrosion in Reinforced Concrete Structures Aggressive Influences

More information

1.5 Concrete (Part I)

1.5 Concrete (Part I) 1.5 Concrete (Part I) This section covers the following topics. Constituents of Concrete Properties of Hardened Concrete (Part I) 1.5.1 Constituents of Concrete Introduction Concrete is a composite material

More information

CATHODIC PROTECTION OF REINFORCED CONCRETE STRUCTURES

CATHODIC PROTECTION OF REINFORCED CONCRETE STRUCTURES CATHODIC PROTECTION OF REINFORCED CONCRETE STRUCTURES AN OVERVIEW CLEARLY THE BEST PROTECTION FOR YOUR INVESTMENT Introduction Cathodic protection is applied to reinforced concrete structures to either

More information

Example Specification for Concrete using Current Building Code Requirements

Example Specification for Concrete using Current Building Code Requirements Example Specification for Concrete using Current Building Code Requirements DISCLAIMER: This specification is an example that accompanies a seminar titled The P2P Initiative: Performance-based Specs for

More information

Optimum Curing Cycles for Precast Concrete

Optimum Curing Cycles for Precast Concrete Optimum Curing Cycles for Precast Concrete Dr Norwood Harrison, Technical Support Manager, Humes Mr Tom Howie, Manager Engineered Structures, Humes Prepared for the Concrete Pipe Association of Australasia,

More information

EVALUATION OF THE PERFORMANCE OF THE PROTECTIVE SURFACE COATINGS FOR CONCRETE

EVALUATION OF THE PERFORMANCE OF THE PROTECTIVE SURFACE COATINGS FOR CONCRETE EVALUATION OF THE PERFORMANCE OF THE PROTECTIVE SFE COATINGS FOR CONCRETE Haimoon CHEONG * Hwangu YU *2 Taesong AHN *3 Byunghwan OH *4 ABSTRT: Chloride penetration into concrete is the main cause of the

More information

SPECIAL COMPOUND FOR RHEOPLASTIC AND ANTI-CORROSION SUPERCONCRETE WITH VERY HIGH DURABILITY

SPECIAL COMPOUND FOR RHEOPLASTIC AND ANTI-CORROSION SUPERCONCRETE WITH VERY HIGH DURABILITY BS 40 M6 MuCis mono SPECIAL COMPOUND FOR RHEOPLASTIC AND ANTI-CORROSION SUPERCONCRETE WITH VERY HIGH DURABILITY LE CE LE type: "expansive binder which allows the production of extremely fluid concrete

More information

CATHODIC PROTECTION SYSTEM DESIGN

CATHODIC PROTECTION SYSTEM DESIGN CATHODIC PROTECTION SYSTEM DESIGN Presented By DENIS L ROSSI P.E. CORROSION ENGINEER New England C P Inc. Corrosion Fundamentals What is corrosion? It is defined as the degradation or deterioration of

More information

CGA Standard Practices Series. Article 600 Standard for Pozzolan Enhanced Grouts Used in Annular Seals & Well Destruction

CGA Standard Practices Series. Article 600 Standard for Pozzolan Enhanced Grouts Used in Annular Seals & Well Destruction California Groundwater Association An NGWA Affiliate State PO Box 14369 Santa Rosa CA 95402 707-578-4408 fax: 707-546-4906 email: cga@groundh2o.org website: www.groundh2o.org CGA Standard Practices Series

More information

Mass Concrete. Robert Moser CEE8813A Material Science of Concrete. Definitions & Standards, Thermal Cracking, and Temperature Rise

Mass Concrete. Robert Moser CEE8813A Material Science of Concrete. Definitions & Standards, Thermal Cracking, and Temperature Rise Mass Concrete Robert Moser CEE8813A Material Science of Concrete Lecture Overview General Overview Definitions & Standards, Thermal Cracking, and Temperature Rise Temperature & Stress Prediction Factors

More information

A SHORT INTRODUCTION TO CORROSION AND ITS CONTROL

A SHORT INTRODUCTION TO CORROSION AND ITS CONTROL A SHORT INTRODUCTION TO CORROSION AND ITS CONTROL CORROSION OF METALS AND ITS PREVENTION WHAT IS CORROSION Corrosion is the deterioration of materials by chemical interaction with their environment. The

More information

Shotcrete Quality Control and Testing for an Underground Mine in Canada

Shotcrete Quality Control and Testing for an Underground Mine in Canada Shotcrete Quality Control and Testing for an Underground Mine in Canada By Dudley R. (Rusty) Morgan and Mazin Ezzet AMEC Earth & Environmental, a division of AMEC Americas Limited SHOTCRETE FOR AFRICA

More information

CORROSION PROTECTION METHODS OF STRUCTURAL STEEL AGAINST ATMOSPHERIC CORROSION

CORROSION PROTECTION METHODS OF STRUCTURAL STEEL AGAINST ATMOSPHERIC CORROSION CORROSION PROTECTION METHODS OF STRUCTURAL STEEL AGAINST ATMOSPHERIC CORROSION E. Daflou a, E. Rakanta b, *G. Batis c a Chemical Engineer, Chemical Engineering School, Section of Materials Science and

More information

Causes and Repair Method

Causes and Repair Method Point Shilshole Condominium Building Concrete Deterioration Causes and Repair Method KAMRAN M. NEMATI, PH.D., P.E. CONSULTING CIVIL ENGINEER Copyright (2006) P.O. Box 95233 Seattle, Washington 98145-2233

More information

EXPERIMENT #9 CORROSION OF METALS

EXPERIMENT #9 CORROSION OF METALS EXPERIMENT #9 CORROSION OF METALS Objective The objective of this experiment is to measure the corrosion rate of two different metals and to show the effectiveness of the use of inhibitors to protect metals

More information

Ultra-High Strength Concrete Mixtures Using Local Materials

Ultra-High Strength Concrete Mixtures Using Local Materials UltraHigh Strength Concrete Mixtures Using Local Materials Srinivas Allena 1 and Craig M. Newtson 2 1 New Mexico State University, Civil Engineering Department, P.O. Box 30001, MSC 3CE, Las Cruces, NM

More information

To go into depth on fly ash would be beyond the scope of this paper. Nevertheless, believe us ASH IS CASH.

To go into depth on fly ash would be beyond the scope of this paper. Nevertheless, believe us ASH IS CASH. COAL (FLY) ASH To go into depth on fly ash would be beyond the scope of this paper. Nevertheless, believe us ASH IS CASH. During the course of the research on my blended cement, I realized that the research

More information

Life-365 Service Life Prediction Model Version 2.0

Life-365 Service Life Prediction Model Version 2.0 Originally printed in Concrete International and posted with permission from the American Concrete Institute (www.concrete.org). Life-365 Service Life Prediction Model Version 2.0 Widely used software

More information

RELIABLE, SIMPLE AND CHEAP PERFORMANCE FIELD TESTS FOR PREDICTING LONG TERM DURABILITY OF CONCRETE STRUCTURES

RELIABLE, SIMPLE AND CHEAP PERFORMANCE FIELD TESTS FOR PREDICTING LONG TERM DURABILITY OF CONCRETE STRUCTURES RELIABLE, SIMPLE AND CHEAP PERFORMANCE FIELD TESTS FOR PREDICTING LONG TERM DURABILITY OF CONCRETE STRUCTURES ABSTRACT by Ir. Dr. Kribanandan GURUSAMY NAIDU. BSc, Phd, CEng, MICE, PEng, MIEM MANAGING DIRECTOR

More information

Use of UV-Spectroscopy for Detection of MCI Migration Depth in Concrete

Use of UV-Spectroscopy for Detection of MCI Migration Depth in Concrete Use of UV-Spectroscopy for Detection of MCI Migration Depth in Concrete Ming Shen, Josh Hicks Cortec Corporation. St Paul, MN Abstract Migrating Corrosion Inhibitors (MCI) are organic inhibitors based

More information

Corrosion Protection Provided by Mortar Lining in Large Diameter Water Pipelines After Many Years of Service. Sylvia C. Hall, P.E., M.

Corrosion Protection Provided by Mortar Lining in Large Diameter Water Pipelines After Many Years of Service. Sylvia C. Hall, P.E., M. 100 Corrosion Protection Provided by Mortar Lining in Large Diameter Water Pipelines After Many Years of Service Sylvia C. Hall, P.E., M.ASCE 1 Abstract More than 95% of large diameter steel (AWWA C200/C205),

More information

MCI QUESTIONS & ANSWERS

MCI QUESTIONS & ANSWERS MCI QUESTIONS & ANSWERS Q. Are Migrating Corrosion Inhibitors (MCI) similar to Vapor phase Corrosion Inhibitors (VpCI)? A. MCI technologies are chemically similar to VpCI. The protection mechanism is identical.

More information

Waterproofing System for Wastewater Tanks in Petrochemical Industries and Refineries

Waterproofing System for Wastewater Tanks in Petrochemical Industries and Refineries Waterproofing System for Wastewater Tanks in Petrochemical Industries and Refineries Introduction Wastewater of petrochemical industries and refineries contains high amounts of emulsified aliphatic or

More information

Corrosion, corrosion inhibitor, concrete repair, historic buildings, carbonation, chloride ingress.

Corrosion, corrosion inhibitor, concrete repair, historic buildings, carbonation, chloride ingress. Use of Vapour Phase Corrosion Inhibitor Capsules for Long Term Protection of Repaired Reinforced Concrete Structures by Mr. Brian Davies (XQ International, Bristol UK) Key Words Corrosion, corrosion inhibitor,

More information

2. PREPARATION OF TEST SPECIMENS

2. PREPARATION OF TEST SPECIMENS Leaching of Cement Lining in Newly-Laid Water Mains (Part II) Ong Tuan Chin and Dr. Wong Sook Fun School of Civil and Environmental Engineering, Nanyang Technological University, 5 Nanyang Avenue, Singapore

More information

Chloride threshold values

Chloride threshold values Chloride threshold values Meeting with the reference group 12 October 2011 Test methods Potentiostatic method (fixed potential) Free potential method (open circuit) RRT with RILEM TC 235 CTC method 1 Potentiostatic

More information

CAUSES, EVALUATION AND REPAIR OF CRACKS IN CONCRETE

CAUSES, EVALUATION AND REPAIR OF CRACKS IN CONCRETE 3.0 Causes and control of cracking: 3.1 Plastic Shrinkage Cracking: It occurs within 1 to 8 hours after placing, when subjected to a very rapid loss of moisture caused by a combination of factors, which

More information

AGREGADOS RECICLADOS MITOS Y REALIDADES

AGREGADOS RECICLADOS MITOS Y REALIDADES The Production and Use of Recycled Concrete in the USA Thomas Van Dam, Ph.D., P.E., FACI Principal Engineer CTL Group Introduction In the United States, concrete is the most commonly used recycled material

More information

EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C

EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C Chapter 16 1. Burn sulfur in air to give sulfur dioxide. S(s) + O 2 (g) ----> SO 2 (g) Pass this with more air over

More information

Crevice Corrosion on Stainless Steel Propeller Shafts

Crevice Corrosion on Stainless Steel Propeller Shafts Crevice Corrosion on Stainless Steel Propeller Shafts A Quick Summary: What is it? How to Prevent it. How to Repair it. Stainless steel propeller shafts and running gear are subject to pitting & crevice

More information

Client ICS/Penetron International Ltd., 45 Research Way, Suite 203, East Setauket, NY 11733 Project Information of Client Subject Laboratory Testing of Penetron Waterproofing System Report No.: 95-387

More information

Pavement Thickness. esign and RCC-Pave Software. Roller-Compacted Concrete Pavement: Design and Construction. October 24, 2006 Atlanta, Georgia

Pavement Thickness. esign and RCC-Pave Software. Roller-Compacted Concrete Pavement: Design and Construction. October 24, 2006 Atlanta, Georgia Roller-Compacted Concrete Pavement: Design and Construction Pavement Thickness esign and RCC-Pave Software Gregory E. Halsted, P.E. Pavements Engineer Portland Cement Association October 24, 2006 Atlanta,

More information

Material and methods. Värmeforsk report 1212 2012 Niklas Hansson DIANAS utilization of waste inciniration bottom ash in bound construction materials

Material and methods. Värmeforsk report 1212 2012 Niklas Hansson DIANAS utilization of waste inciniration bottom ash in bound construction materials Värmeforsk report 1212 2012 Niklas Hansson DIANAS utilization of waste inciniration bottom ash in bound construction materials Executive Summary Introduction In an international perspective waste incineration

More information

CEMENT CHEMISTRY & TYPES OF CEMENT

CEMENT CHEMISTRY & TYPES OF CEMENT CEMENT CHEMISTRY & TYPES OF CEMENT Cement is a hydraulic binder, i.e., an inorganic, non-metallic, finely ground substance which, after mixing with water, sets and hardens independently as a result of

More information

XYPEX AUSTRALIA CHLORIDE PENETRATION TESTS ON XYPEX ADMIX C-1000NF MODIFIED COMMERCIAL CONCRETES. By Gary Kao B.Mat.E, MSc, UNSW Research Engineer

XYPEX AUSTRALIA CHLORIDE PENETRATION TESTS ON XYPEX ADMIX C-1000NF MODIFIED COMMERCIAL CONCRETES. By Gary Kao B.Mat.E, MSc, UNSW Research Engineer XYPEX AUSTRALIA CHLORIDE PENETRATION TESTS ON XYPEX ADMIX C-1NF MODIFIED COMMERCIAL CONCRETES AUSINDUSTRY START RESEARCH PROJECT By Gary Kao B.Mat.E, MSc, UNSW Research Engineer 27-3-23 Issued for Information

More information

North American Stainless

North American Stainless North American Stainless Long Products Stainless Steel Grade Sheet 2205 UNS S2205 EN 1.4462 2304 UNS S2304 EN 1.4362 INTRODUCTION Types 2205 and 2304 are duplex stainless steel grades with a microstructure,

More information

Corrosion Inhibition of AISI/SAE Steel in a Marine Environment

Corrosion Inhibition of AISI/SAE Steel in a Marine Environment Leonardo Journal of Sciences ISSN 1583-0233 Issue 15, Month-Month 2009 p. 47-52 Corrosion Inhibition of AISI/SAE Steel in a Marine Environment Metallurgical and Materials Engineering Dept., Federal University

More information

Performance-based Service Life Design of Reinforced Concrete Structures Exposed to Chloride Environments

Performance-based Service Life Design of Reinforced Concrete Structures Exposed to Chloride Environments The New Boundaries of Structural Concrete Session A Performance and Life-Cycle Costs of New Concrete Structures Keynote Lecture Performance-based Service Life Design of Reinforced Concrete Structures Exposed

More information

The Development of a Rapid Test for Determining the Transport Properties of Concrete

The Development of a Rapid Test for Determining the Transport Properties of Concrete PCA R&D SN2821 The Development of a Rapid Test for Determining the Transport Properties of Concrete by David Smith University of New Brunswick David Smith, Master s Thesis 2006 All rights reserved The

More information

Phosphoric Acid Anodized Aluminum Honeycomb

Phosphoric Acid Anodized Aluminum Honeycomb Phosphoric Acid Anodized Aluminum Honeycomb Description 02 and 06 expanded aerospace grade aluminum honeycomb materials are available in a wide selection of cell sizes and foil gauges. The HexWeb CR-PAA

More information

NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT.

NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT. September 1, 2003 CONCRETE MANUAL 5-694.300 MIX DESIGN 5-694.300 NOTE: FOR PROJECTS REQUIRING CONTRACTOR MIX DESIGN, THE DESIGN PROCEDURES ARE SPECIFIED IN THE SPECIAL PROVISIONS OF THE CONTRACT. 5-694.301

More information

Seminarium Vatten i anläggningsprojekt Göteborg 2013-11-27 Beständighet av cement och betong i tunnelmiljö

Seminarium Vatten i anläggningsprojekt Göteborg 2013-11-27 Beständighet av cement och betong i tunnelmiljö Seminarium Vatten i anläggningsprojekt Göteborg 2013-11- Beständighet av cement och betong i tunnelmiljö Elisabeth Helsing, Urs Mueller CBI Betonginstitutet AB, Borås Introduction Types of cementitious

More information

Electrochemical and in-situ

Electrochemical and in-situ Electrochemical and in-situ SERS study of passive film characteristics and corrosion performance of microcomposite steel in simulated concrete pore solutions M. Mancio, G. Kusinski, T.M. Devine, P.J.M.

More information

TIME DEPENDENT CHLORIDE DIFFUSION COEFFICIENT FIELD STUDIES OF CONCRETE EXPOSED TO MARINE ENVIRONMENT IN NORWAY

TIME DEPENDENT CHLORIDE DIFFUSION COEFFICIENT FIELD STUDIES OF CONCRETE EXPOSED TO MARINE ENVIRONMENT IN NORWAY TIME DEPENDENT CHLORIDE DIFFUSION COEFFICIENT FIELD STUDIES OF CONCRETE EXPOSED TO MARINE ENVIRONMENT IN NORWAY Gro Markeset (1,2) and Ola Skjølsvold (1) (1) SINTEF Building and Infrastructure, Norway

More information

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution. Stress-Strain Behavior in Concrete Overview of Topics EARLY AGE CONCRETE Plastic shrinkage shrinkage strain associated with early moisture loss Thermal shrinkage shrinkage strain associated with cooling

More information

CORROSION PROTECTION SERVICE LIFE OF EPOXY COATED REINFORCING STEEL IN VIRGINIA BRIDGE DECKS. Michael Carey Brown

CORROSION PROTECTION SERVICE LIFE OF EPOXY COATED REINFORCING STEEL IN VIRGINIA BRIDGE DECKS. Michael Carey Brown CORROSION PROTECTION SERVICE LIFE OF EPOXY COATED REINFORCING STEEL IN VIRGINIA BRIDGE DECKS by Michael Carey Brown Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State

More information

STUDY ON THE CHLORIDE DIFFUSION COEFFICIENT CALCULATED FROM A SIMPLE ACCELERATED CHLORIDE PENETRATION TEST USING ELECTRICITY

STUDY ON THE CHLORIDE DIFFUSION COEFFICIENT CALCULATED FROM A SIMPLE ACCELERATED CHLORIDE PENETRATION TEST USING ELECTRICITY STUDY ON THE CHLORIDE DIFFUSION COEFFICIENT CALCULATED FROM A SIMPLE ACCELERATED CHLORIDE PENETRATION TEST USING ELECTRICITY T. IYODA 1*, Y. HARASAWA 2, and Y. HOSOKAWA 3 1 Depertment of Civil Engineering,

More information

Salt Weathering of Masonry Walls The Venice Experience. By M. Collepardi, S. Collepardi and R. Troli

Salt Weathering of Masonry Walls The Venice Experience. By M. Collepardi, S. Collepardi and R. Troli Salt Weathering of Masonry Walls The Venice Experience By M. Collepardi, S. Collepardi and R. Troli Synopsis: All the buildings in Venice insist on foundation immersed in sea water and then are permanently

More information

Effect of basalt aggregates and plasticizer on the compressive strength of concrete

Effect of basalt aggregates and plasticizer on the compressive strength of concrete International Journal of Engineering & Technology, 4 (4) (2015) 520-525 www.sciencepubco.com/index.php/ijet Science Publishing Corporation doi: 10.14419/ijet.v4i4.4932 Research Paper Effect of basalt aggregates

More information

Chapter 21a Electrochemistry: The Electrolytic Cell

Chapter 21a Electrochemistry: The Electrolytic Cell Electrochemistry Chapter 21a Electrochemistry: The Electrolytic Cell Electrochemical reactions are oxidation-reduction reactions. The two parts of the reaction are physically separated. The oxidation reaction

More information

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *0123456789* CHEMISTRY 0620/03 Paper 3 Theory (Core) For Examination from 2016 SPECIMEN PAPER 1 hour

More information

Weld Cracking. An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction. The James F. Lincoln Arc Welding Foundation

Weld Cracking. An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction. The James F. Lincoln Arc Welding Foundation Weld Cracking An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction The James F. Lincoln Arc Welding Foundation Weld Cracking Several types of discontinuities may occur in welds

More information

SETSCO SERVICES PTE LTD TEST REPORT MICROSCOPIC ANALYSIS ON THE CONCRETE CORES FROM RETAINING WALL AT CHANGI AIRPORT TERMINAL 3 REVERTON ENGINEERING(S) PTE LTD 1. INTRODUCTION 2. MICROSCOPIC ANALYSIS 3.

More information

Forensic Investigation of Hardened Concrete: Water-Cement Ratio

Forensic Investigation of Hardened Concrete: Water-Cement Ratio Forensic Investigation of Hardened Concrete: Water-Cement Ratio Julius Bonini, PE - M+P Labs, Schenectady, NY boninij@mandplabs.com Andrew Smith, PhD - CERAM Research, Stoke-on- Trent, UK andrew.smith@ceram.com

More information

16. Beam-and-Slab Design

16. Beam-and-Slab Design ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

More information

Concrete Repair and Protection

Concrete Repair and Protection Concrete Repair and Protection with Remmers Systems Cleaning Equipment Cleaning Chemicals Corrosion Inhibitors Repair and Re-profiling Mortars Protective Impregnations and Coatings Repair and Protection

More information

Atomic Structure. Atoms consist of: Nucleus: Electrons Atom is electrically balanced equal electrons and protons. Protons Neutrons

Atomic Structure. Atoms consist of: Nucleus: Electrons Atom is electrically balanced equal electrons and protons. Protons Neutrons Basics of Corrosion Performance Metals Sacrificial anode manufacturer Specialize in aluminum alloy anodes All products made in the USA (Berks county, PA) ISO9001/2001 Certified Quality System Also traditional

More information

Rajesh Swaminathan. March 13, 2005

Rajesh Swaminathan. March 13, 2005 Chemistry 12 IB Corrosion of Iron Rajesh Swaminathan March 13, 2005 1 Planning A 1.1 Aim The aim of the experiment is to investigate factors that affect the rate of corrosion of iron. More specifically,

More information

(T indicates a Tropicalised version with extended workability. No change has been made to the formulation)

(T indicates a Tropicalised version with extended workability. No change has been made to the formulation) 928 T (T indicates a Tropicalised version with extended workability. No change has been made to the formulation) High strength, non-shrink cementitious grout Description 928 T is a ready to use product

More information

Cementitious Materials Update The effect of ggbs, fly ash, silica fume. concrete.

Cementitious Materials Update The effect of ggbs, fly ash, silica fume. concrete. Cementitious Materials Update The effect of ggbs, fly ash, silica fume and limestone on the properties of concrete. Richard Barnes Concrete Society Technical Report: Cementitious Materials - The effect

More information

CEMENT AND CONCRETE IN AFRICA PRESENTATION OF UNIVERSITY OF THE WITWATERSRAND SOUTH AFRICA AKINDAHUNSI A. A

CEMENT AND CONCRETE IN AFRICA PRESENTATION OF UNIVERSITY OF THE WITWATERSRAND SOUTH AFRICA AKINDAHUNSI A. A CEMENT AND CONCRETE IN AFRICA PRESENTATION OF UNIVERSITY OF THE WITWATERSRAND SOUTH AFRICA BY AKINDAHUNSI A. A INTRODUCTION Concrete: Most widely used material About a ton of concrete produced per person

More information

Lab 1 Concrete Proportioning, Mixing, and Testing

Lab 1 Concrete Proportioning, Mixing, and Testing Lab 1 Concrete Proportioning, Mixing, and Testing Supplemental Lab manual Objectives Concepts Background Experimental Procedure Report Requirements Discussion Prepared By Mutlu Ozer Objectives Students

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

Influence of Nano-SiO 2 and Microsilica on Concrete Performance

Influence of Nano-SiO 2 and Microsilica on Concrete Performance Influence of Nano-SiO 2 and Microsilica on Concrete Performance M. Nili *a, A. Ehsani a, and K. Shabani b a Civil Eng., Dept., Bu-Ali Sina University, Hamedan, I.R. Iran b Eng., Research Institute of Jahad-Agriculture

More information

Service Life of Chloride-Contaminated Concrete Structures

Service Life of Chloride-Contaminated Concrete Structures Service Life of Chloride-Contaminated Concrete Structures Conor Evans, Mark G. Richardson Abstract Corrosion of reinforcement is the most significant cause of premature deterioration of reinforced concrete

More information

Construction Specification for Concrete Curb and Concrete Curb and Gutter

Construction Specification for Concrete Curb and Concrete Curb and Gutter Engineering & Construction Services Division Standard Specifications for Road Works TS 3.50 April 2015 for Concrete Curb and Table of Contents TS 3.50.01 SCOPE... 3 TS 3.50.02 REFERENCES... 3 TS 3.50.03

More information

Acceptance Criteria for Durability Tests

Acceptance Criteria for Durability Tests Acceptance Criteria for Durability Tests Minimizing the risks of accepting defective concrete or rejecting acceptable concrete By Karthik H. Obla and Colin L. Lobo For the industry to shift toward performance-based

More information

North American Stainless

North American Stainless Introduction: North American Stainless Flat Products Stainless Steel Grade Sheet 309S (S30908)/ EN1.4833 SS309 is a highly alloyed austenitic stainless steel used for its excellent oxidation resistance,

More information

North American Stainless

North American Stainless North American Stainless Long Products Stainless Steel Grade Sheet AISI 316 UNS S31600 EN 1.4401 AISI 316L UNS S31630 EN 1.4404 INTRODUCTION NAS provides 316 and 316L SS, which are molybdenum-bearing austenitic

More information

Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete

Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete Ming-Gin Lee 1,a, Yi-Shuo Huang 1,b 1 Department of Construction Engineering, Chaoyang University of Technology,Taichung

More information

GENERAL PROPERTIES //////////////////////////////////////////////////////

GENERAL PROPERTIES ////////////////////////////////////////////////////// ALLOY 625 DATA SHEET //// Alloy 625 (UNS designation N06625) is a nickel-chromium-molybdenum alloy possessing excellent resistance to oxidation and corrosion over a broad range of corrosive conditions,

More information

WJM Technologies excellence in material joining

WJM Technologies excellence in material joining Girish P. Kelkar, Ph.D. (562) 743-7576 girish@welding-consultant.com www.welding-consultant.com Weld Cracks An Engineer s Worst Nightmare There are a variety of physical defects such as undercut, insufficient

More information

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

Study of durability of sprayed concrete

Study of durability of sprayed concrete Study of durability of sprayed concrete ADAM HUBÁČEK, RUDOLF HELA Department of Technology of Building Materials and Components Brno University of Technology, Faculty of Civil Engineering Veveří 95, 602

More information

STADIUM Software Overview. Durability and Service Life of Concrete Structures

STADIUM Software Overview. Durability and Service Life of Concrete Structures STADIUM Software Overview Durability and Service Life of Concrete Structures Eric Samson Cementitious Barriers Partnership SIMCO Technologies Inc. August 2014 Who we are SIMCO is a specialized engineering

More information

STUDY OF STRENGTH OF CONCRETE WITH PALM OIL FUEL ASH AS CEMENT REPLACEMENT

STUDY OF STRENGTH OF CONCRETE WITH PALM OIL FUEL ASH AS CEMENT REPLACEMENT International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 337 341, Article ID: IJCIET_07_03_033 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

Repair and Rehabilitation of Bridge Components Containing Epoxy-Coated Reinforcement

Repair and Rehabilitation of Bridge Components Containing Epoxy-Coated Reinforcement NCHRP Web Document 50 (Project D10-37C): Contractor s Final Report Repair and Rehabilitation of Bridge Components Containing Epoxy-Coated Reinforcement Prepared for: National Cooperative Highway Research

More information

Guidelines for Durable Driveways, Carports Patios, Walks, Garage Floors

Guidelines for Durable Driveways, Carports Patios, Walks, Garage Floors Guidelines for Durable Driveways, Carports Patios, Walks, Garage Floors The Right Concrete Mix Placing and Finishing Joints Correctly Spaced Curing for Durability "Concrete durability is the ability to

More information

Treatment of a surface or structure to resist the passage of water in the absence of hydrostatic pressure. presence of hydrostatic pressure.

Treatment of a surface or structure to resist the passage of water in the absence of hydrostatic pressure. presence of hydrostatic pressure. Recommend Approval: Team Leader Date Division Chief Date Approved: Director Date Maryland Department of Transportation State Highway Administration Office of Materials Technology MARYLAND STANDARD METHOD

More information

North American Stainless

North American Stainless North American Stainless Flat Products Stainless Steel Grade Sheet 310S (S31008)/ EN 1.4845 Introduction: SS310 is a highly alloyed austenitic stainless steel designed for elevated-temperature service.

More information

Choosing the Right Mortar for the Job

Choosing the Right Mortar for the Job Choosing the Right Mortar for the Job by Michael Schuller, P.E. President, Atkinson-Noland & Associates 2619 Spruce St. Boulder, CO 80302 www.ana-usa.com Modern material technology has given us strong

More information

AN EXPERIMENTAL RESEARCH ON STRENGTH PROPERETIES OF CONCRETE BY THE INFLUENCE OF FLYASH AND NANOSILICA AS A PARTIAL REPLACEMENT OF CEMENT

AN EXPERIMENTAL RESEARCH ON STRENGTH PROPERETIES OF CONCRETE BY THE INFLUENCE OF FLYASH AND NANOSILICA AS A PARTIAL REPLACEMENT OF CEMENT International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 306 315, Article ID: IJCIET_07_03_030 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

North American Stainless

North American Stainless North American Stainless Flat Product Stainless Steel Grade Sheet 316 (S31600)/EN 1.4401 316L (S31603)/ EN 1.4404 INTRODUCTION NAS provides 316 and 316L SS, which are molybdenum-bearing austenitic stainless

More information

A Study on the Flexural and Split Tensile Strengths of Steel Fibre Reinforced Concrete at High Temperatures

A Study on the Flexural and Split Tensile Strengths of Steel Fibre Reinforced Concrete at High Temperatures A Study on the Flexural and Split Tensile Strengths of Steel Fibre Reinforced Concrete at High Temperatures 1 P. Jyotsna Devi, 2 Dr. K. Srinivasa Rao 1,2 Dept. of Civil Engg, Andhra University, Visakhapatnam,

More information

Recycled Concrete Pavement and Other Recycled Materials in Concrete Pavements

Recycled Concrete Pavement and Other Recycled Materials in Concrete Pavements Recycled Concrete Pavement and Other Recycled Materials in Concrete Pavements Infrastructure Applications Utilizing Recycled Materials in South Carolina What/Who is NRMCA? National Ready-Mixed Concrete

More information

The Concrete Life Cycle: Maintain to Sustain. Fred Goodwin BASF Construction Chemicals (EB-N) Beachwood OH

The Concrete Life Cycle: Maintain to Sustain. Fred Goodwin BASF Construction Chemicals (EB-N) Beachwood OH The Concrete Life Cycle: Maintain to Sustain Fred Goodwin BASF Construction Chemicals (EB-N) Beachwood OH What is Concrete? Concrete: Instant rock -just add water to make a hard wet sponge. A composite

More information