Predictive Analytics with Storm, Hadoop, R on AWS
|
|
|
- Lawrence Elliott
- 10 years ago
- Views:
Transcription
1 Douglas Moore Principal Consultant & Architect February 2013 Predictive Analytics with Storm, Hadoop, R on AWS
2 Leading Provider Data Science and Engineering Services Accelerating Your Time to Value using Big Data IMAGINE Strategy and Roadmap ILLUMINATE Training and Education IMPLEMENT Hands-On Data Science and Data Engineering CONFIDENTIAL 2
3 Boston Storm Meetup Agenda Intro Agenda Project Information Predictive Analytics Storm Overview Architecture & Design Deployment Lessons Best Practices Future Bonus: - Storm & Big Data Patterns CONFIDENTIAL 3
4 Project Definition AdGlue: Solving biggest problem for local advertisers Where s my ad? Their Needs: Scale up for new business deals More lively site Better predictions Recommendations. Use Cases - Scale batch analysis pipeline; Generate timely stats - Recommendations - Predictions How many page views in the next 30 days? Environment - AWS - Version 1 of site & analytics in production Project Plan weeks - Combined Data Engineering + Data Science Engagement - Staff 1 Arch + 1 PM 1 Data Engineer 2 Data Scientists 3 Client Engineers CONFIDENTIAL 4
5 Predictive Analytics Process Model Design & Build - Listening & Learning - Discovery (Digging through the data) - Creating a Research Agenda - Testing & Learning Production Predictive Model Development - Data Cleansing, Aggregations, Conditioning - Predictive Model Training Process - Predictive Model Execution Process Challenges: - What functional forms predict future impression counts given counts up to time T? - Robust estimators, like medians rather than means, to cope with outliers - How do we distinguish between new articles, versus old articles we're seeing for the first time? - How well do impression counts correspond to real humans? CONFIDENTIAL 5
6 Solution based on this approach theory Analyze Massive Historical Data Set Analyze Recent Past Near Realtime Prediction Massive Historical Set = S3 Analyze = Hadoop + Pig + R Recent Past = Storm + NoSQL Analyze = R + Web Service CONFIDENTIAL 6
7 Storm Overview DAG Processing of never ending streams of data - Open Sourced: - Used at Twitter plus > 24 other companies - Reliable - At Least Once semantics - Think MapReduce for data streams - Java / Clojure based - Bolts in Java and Shell Bolts - Not a queue, but usually reads from a queue. Related: - S4, CEP Compromises - Static topologies & cluster sizing Avoid messy dynamic rebalancing - Nimbus SPOF Strong Community Support, No commercial support CONFIDENTIAL 7
8 Storm Concepts Review Cluster - Supervisor - Worker Topology Streams Spout Bolt Tuple Stream Groupings - Shuffle, Field Trident DRPC CONFIDENTIAL 8
9 Why Storm? Why Realtime? Needed better way to manage queue readers and logic pipeline Much better than roll your own Reliable (Message guarantees, fault tolerant) Multi-node scaling (1MM messages / 10 nodes) It works For more reasons: Better end-user experience - View an ad, see the counter move. Need to catch fast moving events - Content half life measured in hours Path to additional real-time capabilities - Trend analysis to recommend hot articles for example. - Ability to bolt on additional analytics CONFIDENTIAL 9
10 Overall Architecture CloudWatch, SNS (Metrics, Alarms, Notifications) Ad Serving Impression View Ad LB Edge Edge Interactions SQS ElasticCache (Tuple state tracking) Storm - Queue Management - Simple Bot Filtering - Real-time Bucketization - Performance Counters - Event Logging Archive Logs S3 S3S3S3 Management Server Edge DynamoDB EMR (Hadoop) Ad Management Ad Selling LB Edge Performance Counters Impression Buckets Cleansing Model Training Recommendations R Model RDS (MySQL) getprediction R Model Model Parameters CONFIDENTIAL 10
11 Analytics Architecture EMR (Hadoop) Impression Bucketization Train Model Parameters R Model Impressions Impression Buckets (Batch) Predictive Model Parameters Impression Buckets (Realtime) Storm S3 Adapter Impression Spout Simple Bot Annotator BucketBolt Web Request Impression Prediction R Model CONFIDENTIAL 11
12 Storm Topology (Greatly Simplified) SQS Event Spout S3 Adapter<T> S3 S3S3S3 SQS SimpleBotFilter Command Spout Performance Counters<T> DynamoDB Adapter<T> Performance CONFIDENTIAL 12
13 Storm Deployment Storm-deploy project Uses pallet & jclouds project to deploy cluster Configured through conf/clusters.yaml & ~/.pallet/config.clj files Pros: - Quick and easy AWS deployment Tip: Use Puppet/Chef for production deployment Cons: - Requires Leinigen v1.x, no warning - Project not kept up to date - Changes & debugging in Clojure - Recovering a node is possible but slow CONFIDENTIAL 13
14 Lessons Easy to develop, hard to debug - Timeouts Storm Infinite loop of failures - Use Memcached to count # tuple failures At Least Once processing - Hadoop based read-repair job Performance Counters not getting flushed - Tick Tuples Always ACK Batching to S3 - Run a compaction & event de-duplication job in Hadoop CONFIDENTIAL 14
15 Lessons Understand your timescales - Frequency at which you emit running totals/ averages / stats - Frequency at which you write logs to S3 - Frequency at which you commit to DynamoDB / RDS / Painful tuning procedures when your topology carries lots of tuples - TOPOLOGY_MESSAGE_TIMEOUT_SECS - TOPOLOGY_MAX_SPOUT_PENDING CONFIDENTIAL 15
16 Storm Best Practices Debug and unit test topology application logic in local mode. - Mock testing - Multiple environments - Exception Handling & Logging When running distributed - Start with small number of workers and slots, with fewer log files to dig through. - Automated deployment Use Metrics - Instrument your spouts and bolts. - Needed when scaling in order to optimize performance. - Helps diagnosis problems. Latest WIP versions of storm add specialized metrics, also improve nimbus reporting. Use test data that is similar to production data. Distribution across topology is data dependent. CONFIDENTIAL 16
17 Future Improvements Only once semantics - Trident S3 small file sizes - Segment topology just for S3 persistence - Incremental S3 uploads (faster too) DynamoDB costs - Use DRPC to access Time series and metric Deploy using Chef/Puppet - AWS OpsWorks? Revisit analytical models - Compare performance - Compare with other models, do they perform better? - Feature Analysis CONFIDENTIAL 17
18 Bonus
19 Storm & Big Data Patterns Transactional Transactional Transactional Source Transactional Source Systems Source Systems Source Systems Systems CRUD Event Edge Edge Server Edge Server Servers Event Event Edge Edge Server Server Devices STORM Parse, Map, Enrich, Filter, Distribute Log Aggregation ETL Dimensional Counts Indexer Analytics Subscription Services DFS System of Record OLAP Fuzzy Search Dashboard Partners CONFIDENTIAL 19
20 Questions?
Real-time Big Data Analytics with Storm
Ron Bodkin Founder & CEO, Think Big June 2013 Real-time Big Data Analytics with Storm Leading Provider of Data Science and Engineering Services Accelerating Your Time to Value IMAGINE Strategy and Roadmap
Introducing Storm 1 Core Storm concepts Topology design
Storm Applied brief contents 1 Introducing Storm 1 2 Core Storm concepts 12 3 Topology design 33 4 Creating robust topologies 76 5 Moving from local to remote topologies 102 6 Tuning in Storm 130 7 Resource
Real Time Big Data Processing
Real Time Big Data Processing Cloud Expo 2014 Ian Meyers Amazon Web Services Global Infrastructure Deployment & Administration App Services Analytics Compute Storage Database Networking AWS Global Infrastructure
Lambda Architecture for Batch and Real- Time Processing on AWS with Spark Streaming and Spark SQL. May 2015
Lambda Architecture for Batch and Real- Time Processing on AWS with Spark Streaming and Spark SQL May 2015 2015, Amazon Web Services, Inc. or its affiliates. All rights reserved. Notices This document
Simplifying Big Data Analytics: Unifying Batch and Stream Processing. John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!!
Simplifying Big Data Analytics: Unifying Batch and Stream Processing John Fanelli,! VP Product! In-Memory Compute Summit! June 30, 2015!! Streaming Analy.cs S S S Scale- up Database Data And Compute Grid
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015
Pulsar Realtime Analytics At Scale Tony Ng April 14, 2015 Big Data Trends Bigger data volumes More data sources DBs, logs, behavioral & business event streams, sensors Faster analysis Next day to hours
Building Scalable Big Data Infrastructure Using Open Source Software. Sam William sampd@stumbleupon.
Building Scalable Big Data Infrastructure Using Open Source Software Sam William sampd@stumbleupon. What is StumbleUpon? Help users find content they did not expect to find The best way to discover new
www.boost ur skills.com
www.boost ur skills.com AWS CLOUD COMPUTING WORKSHOP Write us at [email protected] BOOSTURSKILLS No 1736 1st Amrutha College Road Kasavanhalli,Off Sarjapur Road,Bangalore-35 1) Introduction &
SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON
SQLstream Blaze and Apache Storm A BENCHMARK COMPARISON 2 The V of Big Data Velocity means both how fast data is being produced and how fast the data must be processed to meet demand. Gartner The emergence
HADOOP BIG DATA DEVELOPER TRAINING AGENDA
HADOOP BIG DATA DEVELOPER TRAINING AGENDA About the Course This course is the most advanced course available to Software professionals This has been suitably designed to help Big Data Developers and experts
Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce
Analytics in the Cloud Peter Sirota, GM Elastic MapReduce Data-Driven Decision Making Data is the new raw material for any business on par with capital, people, and labor. What is Big Data? Terabytes of
BIG DATA. Using the Lambda Architecture on a Big Data Platform to Improve Mobile Campaign Management. Author: Sandesh Deshmane
BIG DATA Using the Lambda Architecture on a Big Data Platform to Improve Mobile Campaign Management Author: Sandesh Deshmane Executive Summary Growing data volumes and real time decision making requirements
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
3 Reasons Enterprises Struggle with Storm & Spark Streaming and Adopt DataTorrent RTS
. 3 Reasons Enterprises Struggle with Storm & Spark Streaming and Adopt DataTorrent RTS Deliver fast actionable business insights for data scientists, rapid application creation for developers and enterprise-grade
Thing Big: How to Scale Your Own Internet of Things. Walter'Pernstecher'-'[email protected]' Dr.'Markus'Schmidberger'-'schmidbe@amazon.
Thing Big: How to Scale Your Own Internet of Things Walter'Pernstecher'-'[email protected]' Dr.'Markus'Schmidberger'-'[email protected]' Internet of Things is the network of physical objects or "things"
BigData. An Overview of Several Approaches. David Mera 16/12/2013. Masaryk University Brno, Czech Republic
BigData An Overview of Several Approaches David Mera Masaryk University Brno, Czech Republic 16/12/2013 Table of Contents 1 Introduction 2 Terminology 3 Approaches focused on batch data processing MapReduce-Hadoop
CAPTURING & PROCESSING REAL-TIME DATA ON AWS
CAPTURING & PROCESSING REAL-TIME DATA ON AWS @ 2015 Amazon.com, Inc. and Its affiliates. All rights reserved. May not be copied, modified, or distributed in whole or in part without the express consent
Big Data Pipeline and Analytics Platform
Big Data Pipeline and Analytics Platform Using NetflixOSS and Other Open Source Software Sudhir Tonse (@stonse) Danny Yuan (@g9yuayon) Netflix is a log generating company that also happens to stream movies
Data Stream Algorithms in Storm and R. Radek Maciaszek
Data Stream Algorithms in Storm and R Radek Maciaszek Who Am I? l Radek Maciaszek l l l l l l Consul9ng at DataMine Lab (www.dataminelab.com) - Data mining, business intelligence and data warehouse consultancy.
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
Big data blue print for cloud architecture
Big data blue print for cloud architecture -COGNIZANT Image Area Prabhu Inbarajan Srinivasan Thiruvengadathan Muralicharan Gurumoorthy Praveen Codur 2012, Cognizant Next 30 minutes Big Data / Cloud challenges
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University
Architectures for massive data management
Architectures for massive data management Apache Kafka, Samza, Storm Albert Bifet [email protected] October 20, 2015 Stream Engine Motivation Digital Universe EMC Digital Universe with
HADOOP. Revised 10/19/2015
HADOOP Revised 10/19/2015 This Page Intentionally Left Blank Table of Contents Hortonworks HDP Developer: Java... 1 Hortonworks HDP Developer: Apache Pig and Hive... 2 Hortonworks HDP Developer: Windows...
Big Data JAMES WARREN. Principles and best practices of NATHAN MARZ MANNING. scalable real-time data systems. Shelter Island
Big Data Principles and best practices of scalable real-time data systems NATHAN MARZ JAMES WARREN II MANNING Shelter Island contents preface xiii acknowledgments xv about this book xviii ~1 Anew paradigm
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
Big Data Analytics Platform @ Nokia
Big Data Analytics Platform @ Nokia 1 Selecting the Right Tool for the Right Workload Yekesa Kosuru Nokia Location & Commerce Strata + Hadoop World NY - Oct 25, 2012 Agenda Big Data Analytics Platform
Openbus Documentation
Openbus Documentation Release 1 Produban February 17, 2014 Contents i ii An open source architecture able to process the massive amount of events that occur in a banking IT Infraestructure. Contents:
What's New in SAS Data Management
Paper SAS034-2014 What's New in SAS Data Management Nancy Rausch, SAS Institute Inc., Cary, NC; Mike Frost, SAS Institute Inc., Cary, NC, Mike Ames, SAS Institute Inc., Cary ABSTRACT The latest releases
Automated Data Ingestion. Bernhard Disselhoff Enterprise Sales Engineer
Automated Data Ingestion Bernhard Disselhoff Enterprise Sales Engineer Agenda Pentaho Overview Templated dynamic ETL workflows Pentaho Data Integration (PDI) Use Cases Pentaho Overview Overview What we
TRAINING PROGRAM ON BIGDATA/HADOOP
Course: Training on Bigdata/Hadoop with Hands-on Course Duration / Dates / Time: 4 Days / 24th - 27th June 2015 / 9:30-17:30 Hrs Venue: Eagle Photonics Pvt Ltd First Floor, Plot No 31, Sector 19C, Vashi,
End to End Solution to Accelerate Data Warehouse Optimization. Franco Flore Alliance Sales Director - APJ
End to End Solution to Accelerate Data Warehouse Optimization Franco Flore Alliance Sales Director - APJ Big Data Is Driving Key Business Initiatives Increase profitability, innovation, customer satisfaction,
http://glennengstrand.info/analytics/fp
Functional Programming and Big Data by Glenn Engstrand (September 2014) http://glennengstrand.info/analytics/fp What is Functional Programming? It is a style of programming that emphasizes immutable state,
TECHNOLOGY WHITE PAPER Jun 2012
TECHNOLOGY WHITE PAPER Jun 2012 Technology Stack C# Windows Server 2008 PHP Amazon Web Services (AWS) Route 53 Elastic Load Balancing (ELB) Elastic Compute Cloud (EC2) Amazon RDS Amazon S3 Elasticache
The Top 10 7 Hadoop Patterns and Anti-patterns. Alex Holmes @
The Top 10 7 Hadoop Patterns and Anti-patterns Alex Holmes @ whoami Alex Holmes Software engineer Working on distributed systems for many years Hadoop since 2008 @grep_alex grepalex.com what s hadoop...
the missing log collector Treasure Data, Inc. Muga Nishizawa
the missing log collector Treasure Data, Inc. Muga Nishizawa Muga Nishizawa (@muga_nishizawa) Chief Software Architect, Treasure Data Treasure Data Overview Founded to deliver big data analytics in days
The Big Data Ecosystem at LinkedIn Roshan Sumbaly, Jay Kreps, and Sam Shah LinkedIn
The Big Data Ecosystem at LinkedIn Roshan Sumbaly, Jay Kreps, and Sam Shah LinkedIn Presented by :- Ishank Kumar Aakash Patel Vishnu Dev Yadav CONTENT Abstract Introduction Related work The Ecosystem Ingress
Real-time Streaming Analysis for Hadoop and Flume. Aaron Kimball odiago, inc. OSCON Data 2011
Real-time Streaming Analysis for Hadoop and Flume Aaron Kimball odiago, inc. OSCON Data 2011 The plan Background: Flume introduction The need for online analytics Introducing FlumeBase Demo! FlumeBase
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
Apache Storm vs. Spark Streaming Two Stream Processing Platforms compared
Apache Storm vs. Spark Streaming Two Stream Platforms compared DBTA Workshop on Stream Berne, 3.1.014 Guido Schmutz BASEL BERN BRUGG LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MUNICH
Unified Batch & Stream Processing Platform
Unified Batch & Stream Processing Platform Himanshu Bari Director Product Management Most Big Data Use Cases Are About Improving/Re-write EXISTING solutions To KNOWN problems Current Solutions Were Built
Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges
Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges James Campbell Corporate Systems Engineer HP Vertica [email protected] Big
BIG DATA HADOOP TRAINING
BIG DATA HADOOP TRAINING DURATION 40hrs AVAILABLE BATCHES WEEKDAYS (7.00AM TO 8.30AM) & WEEKENDS (10AM TO 1PM) MODE OF TRAINING AVAILABLE ONLINE INSTRUCTOR LED CLASSROOM TRAINING (MARATHAHALLI, BANGALORE)
Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes
Capitalize on Big Data for Competitive Advantage with Bedrock TM, an integrated Management Platform for Hadoop Data Lakes Highly competitive enterprises are increasingly finding ways to maximize and accelerate
Apache Ignite TM (Incubating) - In- Memory Data Fabric Fast Data Meets Open Source
Apache Ignite TM (Incubating) - In- Memory Data Fabric Fast Data Meets Open Source DMITRIY SETRAKYAN Founder, PPMC http://www.ignite.incubator.apache.org @apacheignite @dsetrakyan Agenda About In- Memory
Real World Big Data Architecture - Splunk, Hadoop, RDBMS
Copyright 2015 Splunk Inc. Real World Big Data Architecture - Splunk, Hadoop, RDBMS Raanan Dagan, Big Data Specialist, Splunk Disclaimer During the course of this presentagon, we may make forward looking
Online Courses. Version 9 Comprehensive Series. What's New Series
Version 9 Comprehensive Series MicroStrategy Distribution Services Online Key Features Distribution Services for End Users Administering Subscriptions in Web Configuring Distribution Services Monitoring
Big Data Course Highlights
Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like
Scalable Architecture on Amazon AWS Cloud
Scalable Architecture on Amazon AWS Cloud Kalpak Shah Founder & CEO, Clogeny Technologies [email protected] 1 * http://www.rightscale.com/products/cloud-computing-uses/scalable-website.php 2 Architect
Background on Elastic Compute Cloud (EC2) AMI s to choose from including servers hosted on different Linux distros
David Moses January 2014 Paper on Cloud Computing I Background on Tools and Technologies in Amazon Web Services (AWS) In this paper I will highlight the technologies from the AWS cloud which enable you
A Comparison of Clouds: Amazon Web Services, Windows Azure, Google Cloud Platform, VMWare and Others (Fall 2012)
1. Computation Amazon Web Services Amazon Elastic Compute Cloud (Amazon EC2) provides basic computation service in AWS. It presents a virtual computing environment and enables resizable compute capacity.
Integrating a Big Data Platform into Government:
Integrating a Big Data Platform into Government: Drive Better Decisions for Policy and Program Outcomes John Haddad, Senior Director Product Marketing, Informatica Digital Government Institute s Government
Getting Started with Hadoop with Amazon s Elastic MapReduce
Getting Started with Hadoop with Amazon s Elastic MapReduce Scott Hendrickson [email protected] http://drskippy.net/projects/emr-hadoopmeetup.pdf Boulder/Denver Hadoop Meetup 8 July 2010 Scott Hendrickson
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager
Big Data Are You Ready? Jorge Plascencia Solution Architect Manager Big Data: The Datafication Of Everything Thoughts Devices Processes Thoughts Things Processes Run the Business Organize data to do something
Next-Generation Cloud Analytics with Amazon Redshift
Next-Generation Cloud Analytics with Amazon Redshift What s inside Introduction Why Amazon Redshift is Great for Analytics Cloud Data Warehousing Strategies for Relational Databases Analyzing Fast, Transactional
Logentries Insights: The State of Log Management & Analytics for AWS
Logentries Insights: The State of Log Management & Analytics for AWS Trevor Parsons Ph.D Co-founder & Chief Scientist Logentries 1 1. Introduction The Log Management industry was traditionally driven by
Big Data Analytics Roadmap Energy Industry
Douglas Moore, Principal Consultant, Architect June 2013 Big Data Analytics Energy Industry Agenda Why Big Data in Energy? Imagine Overview - Use Cases - Readiness Analysis - Architecture - Development
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Wayne W. Eckerson Director of Research, TechTarget Founder, BI Leadership Forum Business Analytics
BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES
BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES Relational vs. Non-Relational Architecture Relational Non-Relational Rational Predictable Traditional Agile Flexible Modern 2 Agenda Big Data
Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks
MySQL Enterprise Monitor
MySQL Enterprise Monitor Lynn Ferrante Principal Sales Consultant 1 Program Agenda MySQL Enterprise Monitor Overview Architecture Roles Demo 2 Overview 3 MySQL Enterprise Edition Highest Levels of Security,
TECHNOLOGY WHITE PAPER Jan 2016
TECHNOLOGY WHITE PAPER Jan 2016 Technology Stack C# PHP Amazon Web Services (AWS) Route 53 Elastic Load Balancing (ELB) Elastic Compute Cloud (EC2) Amazon RDS Amazon S3 Elasticache CloudWatch Paypal Overview
SAP HANA SPS 09 - What s New? HANA IM Services: SDI and SDQ
SAP HANA SPS 09 - What s New? HANA IM Services: SDI and SDQ (Delta from SPS 08 to SPS 09) SAP HANA Product Management November, 2014 2014 SAP SE or an SAP affiliate company. All rights reserved. 1 Agenda
Big Data Analytics - Accelerated. stream-horizon.com
Big Data Analytics - Accelerated stream-horizon.com StreamHorizon & Big Data Integrates into your Data Processing Pipeline Seamlessly integrates at any point of your your data processing pipeline Implements
Streaming Big Data Performance Benchmark for Real-time Log Analytics in an Industry Environment
Streaming Big Data Performance Benchmark for Real-time Log Analytics in an Industry Environment SQLstream s-server The Streaming Big Data Engine for Machine Data Intelligence 2 SQLstream proves 15x faster
Towards Smart and Intelligent SDN Controller
Towards Smart and Intelligent SDN Controller - Through the Generic, Extensible, and Elastic Time Series Data Repository (TSDR) YuLing Chen, Dell Inc. Rajesh Narayanan, Dell Inc. Sharon Aicler, Cisco Systems
Evolving Data Warehouse Architectures
Evolving Data Warehouse Architectures In the Age of Big Data Philip Russom April 15, 2014 TDWI would like to thank the following companies for sponsoring the 2014 TDWI Best Practices research report: Evolving
The Inside Scoop on Hadoop
The Inside Scoop on Hadoop Orion Gebremedhin National Solutions Director BI & Big Data, Neudesic LLC. VTSP Microsoft Corp. [email protected] [email protected] @OrionGM The Inside Scoop
Big Data Technology ดร.ช ชาต หฤไชยะศ กด. Choochart Haruechaiyasak, Ph.D.
Big Data Technology ดร.ช ชาต หฤไชยะศ กด Choochart Haruechaiyasak, Ph.D. Speech and Audio Technology Laboratory (SPT) National Electronics and Computer Technology Center (NECTEC) National Science and Technology
Big Data and Analytics in Government
Big Data and Analytics in Government Nov 29, 2012 Mark Johnson Director, Engineered Systems Program 2 Agenda What Big Data Is Government Big Data Use Cases Building a Complete Information Solution Conclusion
Streaming Big Data Performance Benchmark. for
Streaming Big Data Performance Benchmark for 2 The V of Big Data Velocity means both how fast data is being produced and how fast the data must be processed to meet demand. Gartner Static Big Data is a
Fault-Tolerant Computer System Design ECE 695/CS 590. Putting it All Together
Fault-Tolerant Computer System Design ECE 695/CS 590 Putting it All Together Saurabh Bagchi ECE/CS Purdue University ECE 695/CS 590 1 Outline Looking at some practical systems that integrate multiple techniques
Agile Business Intelligence Data Lake Architecture
Agile Business Intelligence Data Lake Architecture TABLE OF CONTENTS Introduction... 2 Data Lake Architecture... 2 Step 1 Extract From Source Data... 5 Step 2 Register And Catalogue Data Sets... 5 Step
Integrating VoltDB with Hadoop
The NewSQL database you ll never outgrow Integrating with Hadoop Hadoop is an open source framework for managing and manipulating massive volumes of data. is an database for handling high velocity data.
Big Data on AWS. Services Overview. Bernie Nallamotu Principle Solutions Architect
on AWS Services Overview Bernie Nallamotu Principle Solutions Architect \ So what is it? When your data sets become so large that you have to start innovating around how to collect, store, organize, analyze
Cost Optimization with AWS
Cost Optimization with AWS Architecture, Tools, and Best Practices February 2016 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved. Notices This document is provided for informational
Luncheon Webinar Series May 13, 2013
Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration
Analytics on Spark & Shark @Yahoo
Analytics on Spark & Shark @Yahoo PRESENTED BY Tim Tully December 3, 2013 Overview Legacy / Current Hadoop Architecture Reflection / Pain Points Why the movement towards Spark / Shark New Hybrid Environment
YARN, the Apache Hadoop Platform for Streaming, Realtime and Batch Processing
YARN, the Apache Hadoop Platform for Streaming, Realtime and Batch Processing Eric Charles [http://echarles.net] @echarles Datalayer [http://datalayer.io] @datalayerio FOSDEM 02 Feb 2014 NoSQL DevRoom
Amazon Web Services. Lawrence Berkeley LabTech Conference 9/10/15. Jamie Baker Federal Scientific Account Manager AWS WWPS bakjames@amazon.
Web Services Lawrence Berkeley LabTech Conference 9/10/15 Jamie Baker Federal Scientific Account Manager AWS WWPS [email protected] 2015, Web Services, Inc. or its Affiliates. All rights reserved. AWS
So What s the Big Deal?
So What s the Big Deal? Presentation Agenda Introduction What is Big Data? So What is the Big Deal? Big Data Technologies Identifying Big Data Opportunities Conducting a Big Data Proof of Concept Big Data
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
BIG DATA FOR MEDIA SIGMA DATA SCIENCE GROUP MARCH 2ND, OSLO
BIG DATA FOR MEDIA SIGMA DATA SCIENCE GROUP MARCH 2ND, OSLO ANTHONY A. KALINDE SIGMA DATA SCIENCE GROUP ASSOCIATE "REALTIME BEHAVIOURAL DATA COLLECTION CLICKSTREAM EXAMPLE" WHAT IS CLICKSTREAM ANALYTICS?
Hybrid Software Architectures for Big Data. [email protected] @hurence http://www.hurence.com
Hybrid Software Architectures for Big Data [email protected] @hurence http://www.hurence.com Headquarters : Grenoble Pure player Expert level consulting Training R&D Big Data X-data hot-line
Using distributed technologies to analyze Big Data
Using distributed technologies to analyze Big Data Abhijit Sharma Innovation Lab BMC Software 1 Data Explosion in Data Center Performance / Time Series Data Incoming data rates ~Millions of data points/
Hadoop Evolution In Organizations. Mark Vervuurt Cluster Data Science & Analytics
In Organizations Mark Vervuurt Cluster Data Science & Analytics AGENDA 1. Yellow Elephant 2. Data Ingestion & Complex Event Processing 3. SQL on Hadoop 4. NoSQL 5. InMemory 6. Data Science & Machine Learning
SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES
SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES AWS GLOBAL INFRASTRUCTURE 10 Regions 25 Availability Zones 51 Edge locations WHAT
Performance and Scalability Overview
Performance and Scalability Overview This guide provides an overview of some of the performance and scalability capabilities of the Pentaho Business Analytics platform. PENTAHO PERFORMANCE ENGINEERING
Complete Java Classes Hadoop Syllabus Contact No: 8888022204
1) Introduction to BigData & Hadoop What is Big Data? Why all industries are talking about Big Data? What are the issues in Big Data? Storage What are the challenges for storing big data? Processing What
Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack
Elasticsearch on Cisco Unified Computing System: Optimizing your UCS infrastructure for Elasticsearch s analytics software stack HIGHLIGHTS Real-Time Results Elasticsearch on Cisco UCS enables a deeper
Three Open Blueprints For Big Data Success
White Paper: Three Open Blueprints For Big Data Success Featuring Pentaho s Open Data Integration Platform Inside: Leverage open framework and open source Kickstart your efforts with repeatable blueprints
The Flink Big Data Analytics Platform. Marton Balassi, Gyula Fora" {mbalassi, gyfora}@apache.org
The Flink Big Data Analytics Platform Marton Balassi, Gyula Fora" {mbalassi, gyfora}@apache.org What is Apache Flink? Open Source Started in 2009 by the Berlin-based database research groups In the Apache
Innovative Geschäftsmodelle Ermöglicht durch die AWS Cloud
Innovative Geschäftsmodelle Ermöglicht durch die AWS Cloud Rolf Kersten Business Development Manager Amazon Web Services Germany GmbH 2. Juli 2014 2014 Software AG. All rights reserved. Sechs Dinge, die
Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.
Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in
