# 3x3 Linear Systems of Equations

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Math Objectives Students will be able to describe the effects of the coefficients of a linear function in three variables on the graph of the function. Students will be able to identify the number of solutions to a system of linear equations in three variables by analyzing the graphs of the equations. Students will be able to describe the conditions under which a system of linear equations in three variables will have 0, 1, or infinitely many solutions. Students will construct viable arguments and critique the reasoning of others (CCSS Mathematical Practice). Students will look for and make use of structure (CCSS Mathematical Practice). Vocabulary system of equations plane solution to a system of equations About the Lesson This lesson involves connecting graphical representations of systems of linear equations in three variables to the number of solutions of those systems. As a result, students will: Manipulate a plane to observe the effect of the coefficients on the graph of the plane. Plot systems of two linear functions in three variables to investigate the graphical representations of solutions of a system. Plot systems of three linear functions in three variables to investigate the graphical representations of solutions of a system. Determine the number of solutions a system of linear equations in three variables can have. TI-Nspire Technology Skills: Download a TI-Nspire document Open a document Move between pages Grab and drag a point Tech Tips: Make sure the font size on your TI-Nspire handhelds is set to Medium. You can hide the function entry line by pressing / G. Lesson Files: Student Activity 3x3_Linear_Systems_of_Equati ons_student.pdf 3x3_Linear_Systems_of_Equati ons_student.doc TI-Nspire document 3x3_Linear_Systems_of_Equati ons.tns Visit for lesson updates and tech tip videos. TI-Nspire Navigator System Transfer a File. Use Screen Capture to examine patterns that emerge. Use Quick Poll to assess students understanding Texas Instruments Incorporated 1 education.ti.com

2 Discussion Points and Possible Answers 1. When solving a system of two linear equations with two variables, what do you look for graphically to indicate the solution? Explain. Sample Answers: One looks for the intersection point of the lines to indicate the solution of the system. The intersection indicates a point that satisfies both equations simultaneously. The intersection point lies on the graph of both functions, and therefore the coordinates of the point satisfy the system. Moreover, if two lines do not intersect, that indicates that the system has no solutions. 2. A linear equation in three variables is an equation of the standard form ax + by + cz = d. What do you think the graph of such a function might look like? Why? Sample Answers: Student predictions will vary. Some students might suggest that it is still a line, others might be familiar with planes, and others might predict that it is a more complicated function in 2-space because of the added variable. Move to page This page shows a graph of a linear function, z = ax + by + d. The graph is called a plane. a. What is the equation in standard form of the plane shown on the page? Sample Answers: 2x + 10y z = 0 b. Use the clicker to change the value of a. What happens to the plane as a changes? What attribute of the plane does a affect? Sample Answers: As a changes, the angle that the plane makes with the horizontal plane changes. The value of a is the slope of the plane in the x-direction. That is, if the other coefficients are held constant, a gives the rate of change of z with respect to x Texas Instruments Incorporated 2 education.ti.com

3 c. Use the clicker to change the value of b. What happens to the plane as b changes? What attribute of the plane does b affect? Sample Answers: The value of b is the slope of the function in the y direction. That is, if the other coefficients are held constant, b is the rate of change of z with respect to y. Teacher Tip: Note that the directional rate of change interpretations for a and b might be subtle for students to observe. Teachers can help expose this idea by leading students through fixing one independent variable and observing the resulting change in the dependent variable given change in the other independent variable. d. Use the clicker to change the value of d. What happens to the plane as d changes? What attribute of the plane does d affect? Sample Answers: The value of d changes the vertical intercept of the plane. This also changes the two horizontal intercepts of the plane. Teacher Tip: Students might notice that the plane appears to rotate about the vertical axis when a and b are changed. In order to help students make the connection between the coefficient and directional slope, the teacher can suggest that students set the other coefficients to 0, and/or experiment with different viewing perspectives for the graph. Students might also notice that changing c appears to shift the graph horizontally. Teachers might want to remind students of a similar phenomenon with linear functions in two variables, and that a horizontal shift and vertical shift are analogous due to the fact that lines and planes are unbounded. Tech Tip: Use the up, down, left, and right arrows in the software or on the handheld s touchpad to rotate the graph for a different perspective. TI-Nspire Navigator Opportunity: Quick Poll See Note 1 at the end of this lesson Texas Instruments Incorporated 3 education.ti.com

4 Move to page Without graphing, how many solutions do you think the following system will have? Explain your reasoning. Sample Answers: The system will have 0 solutions. Both are equations of horizontal planes, and so they will not intersect. 5. If any functions are plotted, clear them, and then plot the two functions from Question 4. How many solutions does the system have? How do the graphs help you see this? Sample Answers: The system does not have any solutions. The graphs show that the planes do not intersect, and therefore share no points in common. This indicates that no points will satisfy both equations, and so the system has no solutions. Tech Tip: Students who are unfamiliar with the 3-D graphing feature might need some help plotting functions. Teachers might want to explain to students that they should click on the chevron to expand the function entry line and then enter the functions as z1 and z2, in the same way that functions are plotted in traditional graphing. 6. Without graphing, how many solutions do you think the following system will have? Can you use what you know about systems of linear equations in two variables to help you? Sample Answers: The system will have 0 solutions. The planes are parallel, having the same rate of change in the x-direction and the same rate of change in the y-direction. A system of linear equations in two variables with no solutions has graphs which are non-intersecting (parallel) lines. These functions have the same slopes, so one could predict that linear functions in three variables having equal rates of change with respect to each of the independent variables would also be non-intersecting Texas Instruments Incorporated 4 education.ti.com

6 11. Now suppose you have three equations in three variables. Based on your work with two functions, predict how many possible solutions a system of three linear equations can have. Justify your prediction geometrically. Sample Answers: A system of three linear equations in three variables can either have no solution, one solution, or infinitely many solutions. If the three planes do not intersect in a common point or common line, the system does not have a solution. If the three planes intersect in a common point, the system has one unique solution. If the three planes intersect in a line, or if all three are the same plane, the system has infinitely many solutions. 12. Clear the plotted functions, and plot several groups of three functions to investigate. How many solutions can a system of three linear equations in three unknowns have? How can you see these in the graphs? Sample Answers: See the answer to Question 11. TI-Nspire Navigator Opportunity: Screen Capture See Note 2 at the end of this lesson. No Solutions: Teacher Tip: Examples of the cases are pictured below for teacher reference Texas Instruments Incorporated 6 education.ti.com

7 One Solution: Infinitely Many Solutions: Wrap Up Upon completion of the lesson, the teacher should ensure that students are able to understand: The connection between the graph of a linear function in three variables and its parameters. That a system of two linear equations in three variables will not have a unique solution. That a system of three linear equations in three variables might have 0, 1, or infinitely many solutions. The connections between the graphs of three linear functions in three variables and the number of solutions of the system. Assessment Teachers can give students systems to solve, with particular focus on predicting and testing predictions about the number of solutions based on the graphs of the functions. TI-Nspire Navigator Note 1 Question 3d, Name of Feature: Quick Poll A Quick Poll can be used to dynamically share students observations regarding the impact of parameters on the graph of a plane. Note 2 Question 12, Name of Feature: Screen Capture A Screen Capture can be used to show all the different possible arrangements of three planes and launch discussions about what these arrangements reveal about the number of solutions of a system Texas Instruments Incorporated 7 education.ti.com

### Area Formulas TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Math Objectives Students will be able to describe how the area of a parallelogram relates to the area of a rectangle with the same base and height. Students will be able to describe how the area of a triangle

### Law of Cosines TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson. TI-Nspire Navigator System

Math Objectives Students will be able to state the Law of Cosines Students will be able to apply the Law of Cosines to find missing sides and angles in a triangle Students will understand why the Law of

### Triangle Trigonometry and Circles

Math Objectives Students will understand that trigonometric functions of an angle do not depend on the size of the triangle within which the angle is contained, but rather on the ratios of the sides of

### Secants, Tangents, and Arcs

Math Objectives Students will understand that if the intersection point P of two lines lies inside a circle, then the measure of the angle formed by the two secants is equal to the average of the measures

### Transforming Bivariate Data

Math Objectives Students will recognize that bivariate data can be transformed to reduce the curvature in the graph of a relationship between two variables. Students will use scatterplots, residual plots,

### Application of a Circle Angles and Arcs TEACHER NOTES MATH NSPIRED: GEOMETRY

Math Objectives Students will identify and know the difference between central angles and inscribed angles of a circle. Students will identify the relationships between the measures of inscribed angles

### Sum or Difference of Cubes

Math Objectives Students will be able to classify expressions as the sum of cubes, difference of cubes, or neither. Students will be able to make connections between the graph of a cubic polynomial, in

### Monopoly and Regression

Math Objectives Students will analyze the linear association between two variables and interpret the association in the context of a given scenario. Students will calculate a least-squares regression line

### Transformations: Rotations

Math Objectives Students will identify a rotation as an isometry, also called a congruence transformation. Students will identify which properties (side length, angle measure, perimeter, area, and orientation)

### Power Function Inverses

Math Objectives For power functions of the form f(x)=x n, where n is a positive integer and the domain is all real numbers, students will be able to identify which functions are invertible (odd powers)

### Application of Function Composition

Math Objectives Given functions f and g, the student will be able to determine the domain and range of each as well as the composite functions defined by f ( g( x )) and g( f ( x )). Students will interpret

### Graphic Designing with Transformed Functions

Math Objectives Students will be able to identify a restricted domain interval and use function translations and dilations to choose and position a portion of the graph accurately in the plane to match

### TEACHER NOTES MATH NSPIRED

Math Objectives Students will describe the relationship between the unit circle and the sine and cosine functions. Students will describe the shape of the sine and cosine curves after unwrapping the unit

### Introduction to the TI-Nspire CX

Introduction to the TI-Nspire CX Activity Overview: In this activity, you will become familiar with the layout of the TI-Nspire CX. Step 1: Locate the Touchpad. The Touchpad is used to navigate the cursor

### Linear Systems and Calories

Math Objectives Students will model a real-world application with a linear system of equations with three variables. Students will use the technology to solve a system of three equations in three variables

### It s Just a Lunar Phase

Science Objectives Students will identify patterns in data associated with the lunar phases. Students will describe how the relative positions of the Earth, the Moon, and the Sun cause lunar phases. Students

### All points on the coordinate plane are described with reference to the origin. What is the origin, and what are its coordinates?

Classwork Example 1: Extending the Axes Beyond Zero The point below represents zero on the number line. Draw a number line to the right starting at zero. Then, follow directions as provided by the teacher.

### Graph Ordered Pairs on a Coordinate Plane

Graph Ordered Pairs on a Coordinate Plane Student Probe Plot the ordered pair (2, 5) on a coordinate grid. Plot the point the ordered pair (-2, 5) on a coordinate grid. Note: If the student correctly plots

### Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

### Grade level: secondary Subject: mathematics Time required: 45 to 90 minutes

TI-Nspire Activity: Paint Can Dimensions By: Patsy Fagan and Angela Halsted Activity Overview Problem 1 explores the relationship between height and volume of a right cylinder, the height and surface area,

### Students will understand 1. use numerical bases and the laws of exponents

Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?

### The River of Life TEACHER NOTES SCIENCE NSPIRED. Science Objectives. Math Objectives. Materials Needed. Vocabulary.

Science Objectives Students will calculate the volume of blood in their own bodies. Students will analyze and quantify some of the components of their blood. Math Objectives Students will use tabular data

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### Norwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction

1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K-7. Students must demonstrate

### Chapter 8 Graphs and Functions:

Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes

### Tennessee Department of Education. Task: Sally s Car Loan

Tennessee Department of Education Task: Sally s Car Loan Sally bought a new car. Her total cost including all fees and taxes was \$15,. She made a down payment of \$43. She financed the remaining amount

### with functions, expressions and equations which follow in units 3 and 4.

Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

### D. ( 1 5 )2. Grade 8 Mathematics Item Specifications Florida Standards Assessments. MAFS.8.EE.1 Work with radicals and integer exponents.

MAFS.8.EE.1 Work with radicals and integer exponents. MAFS.8.EE.1.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 3 2 3 5 = 3 3 = 1 3 2 =

### c sigma & CEMTL

c sigma & CEMTL Foreword The Regional Centre for Excellence in Mathematics Teaching and Learning (CEMTL) is collaboration between the Shannon Consortium Partners: University of Limerick, Institute of Technology,

### The Point-Slope Form

7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

### GRADE 8 MATH: TALK AND TEXT PLANS

GRADE 8 MATH: TALK AND TEXT PLANS UNIT OVERVIEW This packet contains a curriculum-embedded Common Core standards aligned task and instructional supports. The task is embedded in a three week unit on systems

### Mathematics Curriculum Guide Precalculus 2015-16. Page 1 of 12

Mathematics Curriculum Guide Precalculus 2015-16 Page 1 of 12 Paramount Unified School District High School Math Curriculum Guides 2015 16 In 2015 16, PUSD will continue to implement the Standards by providing

### Sect The Slope-Intercept Form

Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

Task Model 3 Equation/Numeric DOK Level 1 algebraically, example, have no solution because 6. 3. The student estimates solutions by graphing systems of two linear equations in two variables. Prompt Features:

### Building Concepts: Dividing a Fraction by a Whole Number

Lesson Overview This TI-Nspire lesson uses a unit square to explore division of a unit fraction and a fraction in general by a whole number. The concept of dividing a quantity by a whole number, n, can

### PLOTTING DATA AND INTERPRETING GRAPHS

PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they

### Florida Department of Education/Office of Assessment January 2012. Grade 7 FCAT 2.0 Mathematics Achievement Level Descriptions

Florida Department of Education/Office of Assessment January 2012 Grade 7 FCAT 2.0 Mathematics Grade 7 FCAT 2.0 Mathematics Reporting Category Geometry and Measurement Students performing at the mastery

### Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University

Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University Overview The GeoGebra documents allow exploration of four geometric transformations taught

### SPIRIT 2.0 Lesson: A Point Of Intersection

SPIRIT 2.0 Lesson: A Point Of Intersection ================================Lesson Header============================= Lesson Title: A Point of Intersection Draft Date: 6/17/08 1st Author (Writer): Jenn

### TEACHER NOTES MATH NSPIRED

Math Objectives Students will understand that normal distributions can be used to approximate binomial distributions whenever both np and n(1 p) are sufficiently large. Students will understand that when

### Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade

Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade

### The Graphical Method: An Example

The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

### Answers Teacher Copy. Systems of Linear Equations Monetary Systems Overload. Activity 3. Solving Systems of Two Equations in Two Variables

of 26 8/20/2014 2:00 PM Answers Teacher Copy Activity 3 Lesson 3-1 Systems of Linear Equations Monetary Systems Overload Solving Systems of Two Equations in Two Variables Plan Pacing: 1 class period Chunking

### Build an Atom TEACHER NOTES MIDDLE GRADES SCIENCE NSPIRED. Science Objectives

Science Objectives Students will discover that atoms are made up of particles and that the number of particles in an atom affects its properties. Students will learn that these particles protons, neutrons,

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### Rotational Motion and Torque

Science Objectives Students will describe how different forces can be balanced. Students will relate the balance of a lever to torque on a wrench. Students will develop an understanding of torques as they

### TImath.com Algebra 1. Absolutely!

Absolutely! ID: 8791 Time required 45 minutes Activity Overview In this activity, students first solve linear absolute value equations in a single variable using the definition of absolute value to write

### Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

### Mathematical goals. Starting points. Materials required. Time needed

Level C1 of challenge: D C1 Linking the properties and forms of quadratic of quadratic functions functions Mathematical goals Starting points Materials required Time needed To enable learners to: identif

### GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

### Lesson 22: Solution Sets to Simultaneous Equations

Student Outcomes Students identify solutions to simultaneous equations or inequalities; they solve systems of linear equations and inequalities either algebraically or graphically. Classwork Opening Exercise

### PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and

### Lesson 9: Graphing Standard Form Equations Lesson 2 of 2. Example 1

Lesson 9: Graphing Standard Form Equations Lesson 2 of 2 Method 2: Rewriting the equation in slope intercept form Use the same strategies that were used for solving equations: 1. 2. Your goal is to solve

### 12.5 Equations of Lines and Planes

Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

### Situation 23: Simultaneous Equations Prepared at the University of Georgia EMAT 6500 class Date last revised: July 22 nd, 2013 Nicolina Scarpelli

Situation 23: Simultaneous Equations Prepared at the University of Georgia EMAT 6500 class Date last revised: July 22 nd, 2013 Nicolina Scarpelli Prompt: A mentor teacher and student teacher are discussing

### Volumes of Revolution

Mathematics Volumes of Revolution About this Lesson This lesson provides students with a physical method to visualize -dimensional solids and a specific procedure to sketch a solid of revolution. Students

### TI-Nspire Technology Version 3.2 Release Notes

TI-Nspire Technology Version 3.2 Release Notes Release Notes 1 Introduction Thank you for updating your TI Nspire products to Version 3.2. This version of the Release Notes has updates for all of the following

### TEACHER NOTES SCIENCE NSPIRED

Science Objectives Students will simulate adjusting the ph of a lake and draw conclusions about the relationship between ph and biodiversity. Students will learn the difference between biotic and abiotic

### 9 Multiplication of Vectors: The Scalar or Dot Product

Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the

### Quickstart for Web and Tablet App

Quickstart for Web and Tablet App What is GeoGebra? Dynamic Mathematic Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

### Quickstart for Desktop Version

Quickstart for Desktop Version What is GeoGebra? Dynamic Mathematics Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

### Prentice Hall Mathematics: Algebra 1 2007 Correlated to: Michigan Merit Curriculum for Algebra 1

STRAND 1: QUANTITATIVE LITERACY AND LOGIC STANDARD L1: REASONING ABOUT NUMBERS, SYSTEMS, AND QUANTITATIVE SITUATIONS Based on their knowledge of the properties of arithmetic, students understand and reason

### Unit 4: Analyze and Graph Linear Equations, Functions, and Relations

Unit 4 Table of Contents Unit 4: Analyze and Graph Linear Equations, Functions and Relations Video Overview Learning Objectives 4.2 Media Run Times 4.3 Instructor Notes 4.4 The Mathematics of Analyzing

### Pennsylvania System of School Assessment

Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read

### The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6

Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

### High School Algebra Reasoning with Equations and Inequalities Solve systems of equations.

Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student

### Algebra Bridge Project Cell Phone Plans

Algebra Bridge Project Cell Phone Plans Name Teacher Part I: Two Cell Phone Plans You are in the market for a new cell phone, and you have narrowed your search to two different cell phone companies --

### Performance Level Descriptors Grade 6 Mathematics

Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with

### Basic Understandings

Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying

### TIME VALUE OF MONEY PROBLEM #8: NET PRESENT VALUE Professor Peter Harris Mathematics by Sharon Petrushka

TIME VALUE OF MONEY PROBLEM #8: NET PRESENT VALUE Professor Peter Harris Mathematics by Sharon Petrushka Introduction Creativity Unlimited Corporation is contemplating buying a machine for \$100,000, which

### Meet You at the Intersection: Solving a System of Linear Equations

Meet You at the Intersection: Solving a System of Linear Equations Activity 30 Many times, the solution to a real-life problem involves solving more than one mathematical equation at the same time. The

### Lesson 10.1 Skills Practice

Lesson 0. Skills Practice Name_Date Location, Location, Location! Line Relationships Vocabulary Write the term or terms from the box that best complete each statement. intersecting lines perpendicular

### Overview of Math Standards

Algebra 2 Welcome to math curriculum design maps for Manhattan- Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems

Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small

### Working with Coordinate Planes

Virtual Math Girl: Module 1 (Student) and 2 (Teacher) Working with Coordinate Planes Activities and Supplemental Materials The purpose of Virtual Math Girl Module 1 (Student) and 2 (Teacher) is to familiarize

### Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

### Foundations of Mathematics 11 (Online)

Course Outline Coquitlam Learning Opportunity Centre 104-2748 Lougheed Hwy Port Coquitlam, BC, V3B 6P2 Phone: (604) 945-4211 Course Name Teacher Course Format Teacher Contact Information & Schedule Learning

### Solving Systems of Two Equations Algebraically

8 MODULE 3. EQUATIONS 3b Solving Systems of Two Equations Algebraically Solving Systems by Substitution In this section we introduce an algebraic technique for solving systems of two equations in two unknowns

### The Cartesian Plane The Cartesian Plane. Performance Criteria 3. Pre-Test 5. Coordinates 7. Graphs of linear functions 9. The gradient of a line 13

6 The Cartesian Plane The Cartesian Plane Performance Criteria 3 Pre-Test 5 Coordinates 7 Graphs of linear functions 9 The gradient of a line 13 Linear equations 19 Empirical Data 24 Lines of best fit

### TI-Nspire Technology Version 3.0 Release Notes

TI-Nspire Technology Version 3.0 Release Notes Release Notes 1 Introduction Thank you for updating your TI Nspire products to Version 3.0. This version of the Release Notes has updates for all of the following

### Graphic Designing with Transformed Functions

Name Class The teacher will display the completed example to the right as an example to re-create. Work to make the image of the letter M on your handheld. Transformations of parabolas, domain restrictions,

### Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

7.5 SYSTEMS OF INEQUALITIES Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch the graphs of inequalities in two variables. Solve systems of inequalities. Use systems of inequalities

### Lesson Plan Mine Shaft Grade 8 Slope

CCSSM: Grade 8 DOMAIN: Expressions and Equations Cluster: Understand the connections between proportional relationships, lines, and linear equations. Standard: 8.EE.5: Graph proportional relationships,

### Final Graphing Practice #1

Final Graphing Practice #1 Beginning Algebra / Math 100 Fall 2013 506 (Prof. Miller) Student Name/ID: Instructor Note: Assignment: Set up a tutoring appointment with one of the campus tutors or with me.

### GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

### KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007

KEANSBURG HIGH SCHOOL Mathematics Department HSPA 10 Curriculum September 2007 Written by: Karen Egan Mathematics Supervisor: Ann Gagliardi 7 days Sample and Display Data (Chapter 1 pp. 4-47) Surveys and

### Algebra II: Strand 7. Conic Sections; Topic 1. Intersection of a Plane and a Cone; Task 7.1.2

1 TASK 7.1.2: THE CONE AND THE INTERSECTING PLANE Solutions 1. What is the equation of a cone in the 3-dimensional coordinate system? x 2 + y 2 = z 2 2. Describe the different ways that a plane could intersect

### 5 Systems of Equations

Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

### Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below.

Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School

### 3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs

SUGGESTED LEARNING STRATEGIES: Think/Pair/Share, Use Manipulatives Two rays with a common endpoint form an angle. The common endpoint is called the vertex. You can use a protractor to draw and measure

### GeoGebra. 10 lessons. Gerrit Stols

GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

### Mathematics Grade-Level Instructional Materials Evaluation Tool

Mathematics Grade-Level Instructional Materials Evaluation Tool Quality Review GRADE 8 Textbooks and their digital counterparts are vital classroom tools but also a major expense, and it is worth taking

### The Graph of a Linear Equation

4.1 The Graph of a Linear Equation 4.1 OBJECTIVES 1. Find three ordered pairs for an equation in two variables 2. Graph a line from three points 3. Graph a line b the intercept method 4. Graph a line that