# 金融隨機計算 : 第一章. Black-Scholes-Merton Theory of Derivative Pricing and Hedging. CH Han Dept of Quantitative Finance, Natl. Tsing-Hua Univ.

Size: px
Start display at page:

Download "金融隨機計算 : 第一章. Black-Scholes-Merton Theory of Derivative Pricing and Hedging. CH Han Dept of Quantitative Finance, Natl. Tsing-Hua Univ."

## Transcription

1 金融隨機計算 : 第一章 Black-Scholes-Merton Theory of Derivative Pricing and Hedging CH Han Dept of Quantitative Finance, Natl. Tsing-Hua Univ.

2 Derivative Contracts Derivatives, also called contingent claims, are contracts based on some underlying assets. A typical option is a contract that gives its holder the right, but not the obligation, to but one unit of a financial (underlying) asset for a predetermined strike (or exercise) price K by the maturity date T.

3 Option The type of option: the option to buy is called a call option; the option to sell is called a put option. The underlying asset: it can be a stock, bond, currency, etc. The expiration date: if the option can be exercised at any time before maturity, it is called an American option; if it can only be exercised at maturity, it is called a European option. The amount of an underlying asset to be purchased or sold. The price of an option is also called the premium.

4 European Options Let S t denote the underlying risky asset such as a stock price. A European option is a contract to pay h S T at a maturity time T, which is path independent.

5 Call and Put Call payoff: h S T = S T K + = mmm S T K, 0 That means if S T > K, the holder will exercise the option to make a profit S T K by buying the stock for the price K and selling it immediately at the market price S T ; otherwise the option is not worthy to be exercised. Put payoff: h S T = K S T + = mmm K S T, 0

6 American Options A holder of an American option can exercise the option at any time before maturity T. Let τ denote the time to exercise the option, which is a stopping time because up to time t T, the holder has the right to hold or exercise the option based on the information flow. Call payoff: h S τ = S τ K + = mmm S τ K, 0 Put payoff: h S T = K S τ + = mmm K S τ, 0

7 Exotic Option Exotic options are those options for which their contracts are not of European or American style defined previously. Barrier options. Ex, for a down-and-out call option, h S T = S T K + I iiit T S t >B Lookback options. Ex, h = S T inf S t t T Asian options. Ex, h = S T inf t T S t S T 1 T T S 0 t dd + + =

8 Underlying Risky Asset The stock price S t is governed by the geometric Brownian motion under the historical filtered probability space Ω, F, F t, P : ds t = μs t dd + σs t dw t (1) S 0 = x

9 Replication of Trading Strategy A dynamic trading strategy is a pair α t, β t of adapted processes specifying the number of units held at time t of the stock (underlying risky asset) S t and bond (riskless asset) e rr, where r is the risk-free interest rate. At the maturity T, the value this portfolio will replicate the terminal payoff h S T ; namely α T S T + β T e rr = h S T.

10 Self-Financing Portfolio That is the variations of portfolio value are due only to the variations of the stock price and bond price. d α t S t + β t e rr = α t ds t + rβ t e rr dd In integral form α t S t + β t e rr = α 0 S 0 + β 0 + t t α s ds s + β s de rr, 0 t T 0 0

11 Perfect Replication Based on the arbitrage pricing theory, the fair price of a derivatives is equal to the value of its portfolio: α t S t + β t e rr = P t, S t where P t, x denotes the option price at time t and stock price S t = x.

12 Ito s Formula α t μs t + β t e rr dd + α t σs t dw t = + μs t σ2 2 S 2 P t dd + σs x 2 t α t = t, S t β t = P t, S t α t S t e rr dw t

13 Black-Scholes PDE L BB P t, x = 0 With the terminal condition P T, x = h x, where the operator L BB = σ2 x 2 2 x 2 + rr x r is define on the domain of 0, T 0,.

14 Remarks The Black-Scholes PDE can be solved either by numerical PDE methods like finite difference methods or by Monte Carlo simulations. The dynamic trading strategy α t, β t is also called hedging strategy by emphasizing the elimination of risks. This strategy requires a holding number of risky asset α t = t, S t, which is called the Delta in financial engineering.

15 Independence of μ By inspecting the Black-Scholes PDE, the rate of returns μ in (1) does not appear at all. This is a remarkable feature of the Black-Scholes theory that two investors may have completely different speculative view for the rate of returns of the risky asset, but they have to agree that the no-arbitrage price P of the derivative does not depend on μ.

16 Black-Scholes Formula The price of a European call option admits a closed-form solution. C BB t, x = xn d 1 Ke r T t N d 2, where ln x K + r + 1 d 1 = 2 σ2 T t σ T t d 2 = d 1 t, x σ T t N d = 1 2π e u2 2 d dd

17 Put-Call Parity r T t C BB t, S t P BB t, S t = S t Ke L BB C BB P BB t, x = 0 with the terminal condition h x = x K, admits a simple solution C BB P BB t, x = r T t x Ke

18 Parameter Estimation Within the Black-Scholes formula, there is only one non-observable parameter, namely the volatility σ. 1. the direct method: given a set of historical stock prices, one can use either (1) the approximation of the quadratic variation of log returns or (2) the maximum likelihood of log returns of estimate σ. 2. the implied method: given the quoted European call or put option prices, one can invert an implied volatility from each quoted option.

19 Change of Probability Measure By Girsanov s Theorem, one can construct a new probability measure P which is equivalent to P so that the drifted Brownian motion W t + μ r t becomes a standard σ Brownian motion, denoted by W t. ds t = μs t dd + σs t dw t μ r = μ + r μ S t dd + σs t d W t + σ t = rs t dd + σs t dw t

20 Remarks 1. the discounted stock price becomes a martingale under P. This is because of d e rr S t = e rr S t σdw t. 2. the discounted value of portfolio becomes a martingale under P. This is because of de rr α t S t + β t e rr = α t e rr S t σdw t. We call such probability measure P as the riskneutral measure and the shifted drift μ r as the σ market price of risk.

21 Risk-Neutral Evaluation (I) The trading strategy must replicate the terminal payoff h S T, α T S T + β T e rt = h S T. Since e rr α t S t + β t e rr is a martingale under P, e rr α t S t + β t e rr = E e rr α T S T + β T e rr F t The value of the portfolio is equal to α t S t + β t e rr = E e r(t t) h S T F t = E e r(t t) h S T S t by the Markov property of S t.

22 Risk-Neutral Evaluation (II) Based on the definition of the fair price, the option price can be defined as a conditional expectation of the discounted payoff under the risk-neutral probability measure P : P t, S t = E e r T t h S T S t.

23 Derivation of The Black-Scholes Formula S T = S t eee r σ2 2 P t, S t = E e r T t S t eee r σ2 T t + σ T tz 2 T t + σ T tz K + = e r T t S t eee r σ2 2 T t + σ T tz K + 1 2π e z2 2 dd = = S t N d 1 Ke r T t N d 2

24 Hedging with One Stock d e rr P t, S t = e rr e rr σ2 2 S 2 P t + rs x 2 t t, S t σs t dw t e rr P T, S T = T P 0, S 0 + e 0 rr P 0, S 0 = E e rr h S T S 0 rr t, S t dd + t, S t σs t dw t

25 Martingale Representation Theorem Theorem Let W t,0 t T be a Brownian motion on a probability space Ω, F, F t 0 t T, P and the filtration is generated by this Brownian motion. Let M t, 0 t T be a martingale with respect to this filtration. Then there is an adapted process Γ u, 0 u T, such that M t = M 0 + Γ u 0 t dw u, 0 t T Γ u is typically related to the hedging strategy associated with a trading martingale M t. This theorem only guarantees the existence condition of the hedging strategy. One can use Ito formula to compute Γ explicitly.

26 Arbitrage An arbitrage is a way of trading so that one starts with zero capital and at some later time T is sure not to have lost money and furthermore has a positive probability of having made money Definition An arbitrage is a portfolio value process V t satisfying V 0 = 0 and also satisfying for some time T > 0 P V T 0 = 1, P V T > 0 > 0

27 Fundamental Theorems of Asset Pricing First Theorem If a market model has a riskneutral probability measure, then it does not admit arbitrage. Definition A market model is complete if every derivative security can be hedged. Second Theorem Consider a market model that has a risk-neutral probability measure. The model is complete if and only if the riskneutral probability measure is unique.

28 Forward Contract Definition A forward contract is an agreement to pay a specified delivery price L at a delivery date T for the asset price S t at time t. The T-forward price FFF S t, T of this asset, is the value of K that makes the forward contract have no-arbitrage price zero at time t. Theorem The T-forward price is FFF S t, T = S t B t, T, where the price of a zero-coupon is B r, T = 1 D t E e T t r udd 1 r t

29 Futures Definition The futures price of an asset whose value at time T is S T is given by the formula FFF S t, T = E S T F t, 0 t T A long position in the futures contract is an agreement to receive as a cash flow the changes in the futures price during the time the position is held. A short position in the futures contract receives the opposite cash flow.

30 Forward-Futures Spread When the (instantaneous) interest-rate r t is random, the forward-futures spread is defined by FFF S 0, T FFF S 0, T = S 0 E D T E S T = 1 E D T E D T S T E D T E S T = 1 E D T CCC D T, S T where CCC D T, S T denotes the covariance of D T and S T under the risk-neutral probability measure.

31 Appendix: Girsanov Theorem Let W t be a standard Brownian motion under a probability space Ω, F, F t 0 t T, P. Let θ t be an adapted process. Define Z t = eee t θ s 0 W t = W t + θ s t dw s 1 2 θ s 2 and assume that T E θ 2 s Z2 s dd < 0 Set Z = Z T. Then EZ = 1 and under the probability measure P defined by dp = Z dp T, the process W t,0 t T, is a Brownian motion. 0 t dd 0 dd

### European Options Pricing Using Monte Carlo Simulation

European Options Pricing Using Monte Carlo Simulation Alexandros Kyrtsos Division of Materials Science and Engineering, Boston University akyrtsos@bu.edu European options can be priced using the analytical

### On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

### The Black-Scholes Formula

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

### Mathematical Finance

Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

### Options Markets: Introduction

Options Markets: Introduction Chapter 20 Option Contracts call option = contract that gives the holder the right to purchase an asset at a specified price, on or before a certain date put option = contract

### Option Pricing. 1 Introduction. Mrinal K. Ghosh

Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified

### Monte Carlo Methods in Finance

Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

### Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing

Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing Key concept: Ito s lemma Stock Options: A contract giving its holder the right, but not obligation, to trade shares of a common

### Option Valuation. Chapter 21

Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price

### Financial Modeling. Class #06B. Financial Modeling MSS 2012 1

Financial Modeling Class #06B Financial Modeling MSS 2012 1 Class Overview Equity options We will cover three methods of determining an option s price 1. Black-Scholes-Merton formula 2. Binomial trees

### Put-Call Parity. chris bemis

Put-Call Parity chris bemis May 22, 2006 Recall that a replicating portfolio of a contingent claim determines the claim s price. This was justified by the no arbitrage principle. Using this idea, we obtain

### On Market-Making and Delta-Hedging

On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing What to market makers do? Provide

### The Black-Scholes Model

The Black-Scholes Model Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 12, 13, 14) Liuren Wu The Black-Scholes Model Options Markets 1 / 19 The Black-Scholes-Merton

### Lecture 11: Risk-Neutral Valuation Steven Skiena. skiena

Lecture 11: Risk-Neutral Valuation Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Risk-Neutral Probabilities We can

### Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.

Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.

### More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options

More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path

### Properties of Stock Options. Chapter 10

Properties of Stock Options Chapter 10 1 Notation c : European call option price C : American Call option price p : European put option price P : American Put option price S 0 : Stock price today K : Strike

### Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

### Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies

Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative

### Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.

Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards

### TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13

TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:

### Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013

Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed

### Introduction to Arbitrage-Free Pricing: Fundamental Theorems

Introduction to Arbitrage-Free Pricing: Fundamental Theorems Dmitry Kramkov Carnegie Mellon University Workshop on Interdisciplinary Mathematics, Penn State, May 8-10, 2015 1 / 24 Outline Financial market

### Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration

CHAPTER 16 Option Valuation 16.1 OPTION VALUATION: INTRODUCTION Option Values Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise price Put:

### 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

### Pricing of an Exotic Forward Contract

Pricing of an Exotic Forward Contract Jirô Akahori, Yuji Hishida and Maho Nishida Dept. of Mathematical Sciences, Ritsumeikan University 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan E-mail: {akahori,

### An Introduction to Exotic Options

An Introduction to Exotic Options Jeff Casey Jeff Casey is entering his final semester of undergraduate studies at Ball State University. He is majoring in Financial Mathematics and has been a math tutor

### Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.

Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral

### Chapter 1: Financial Markets and Financial Derivatives

Chapter 1: Financial Markets and Financial Derivatives 1.1 Financial Markets Financial markets are markets for financial instruments, in which buyers and sellers find each other and create or exchange

### Chapter 11 Properties of Stock Options. Options, Futures, and Other Derivatives, 9th Edition, Copyright John C. Hull

Chapter 11 Properties of Stock Options 1 Notation c: European call option price p: European put option price S 0 : Stock price today K: Strike price T: Life of option σ: Volatility of stock price C: American

### Session IX: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics

Session IX: Stock Options: Properties, Mechanics and Valuation Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Stock

### Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12

Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

### Stephane Crepey. Financial Modeling. A Backward Stochastic Differential Equations Perspective. 4y Springer

Stephane Crepey Financial Modeling A Backward Stochastic Differential Equations Perspective 4y Springer Part I An Introductory Course in Stochastic Processes 1 Some Classes of Discrete-Time Stochastic

### Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington

Option Pricing with S+FinMetrics PETER FULEKY Department of Economics University of Washington August 27, 2007 Contents 1 Introduction 3 1.1 Terminology.............................. 3 1.2 Option Positions...........................

### Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options

Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder

### Lecture 7: Bounds on Options Prices Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 7: Bounds on Options Prices Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Option Price Quotes Reading the

### Introduction to Options. Derivatives

Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived

### Chapter 21 Valuing Options

Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher

### Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6

Lecture 15 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 Black-Scholes Equation and Replicating Portfolio 2 Static

### Black-Scholes and the Volatility Surface

IEOR E4707: Financial Engineering: Continuous-Time Models Fall 2009 c 2009 by Martin Haugh Black-Scholes and the Volatility Surface When we studied discrete-time models we used martingale pricing to derive

### Option Pricing. Chapter 11 Options on Futures. Stefan Ankirchner. University of Bonn. last update: 13/01/2014 at 14:25

Option Pricing Chapter 11 Options on Futures Stefan Ankirchner University of Bonn last update: 13/01/2014 at 14:25 Stefan Ankirchner Option Pricing 1 Agenda Forward contracts Definition Determining forward

### Enhanced Monte Carlo Methods for Pricing and Hedging Exotic Options

Enhanced Monte Carlo Methods for Pricing and Hedging Exotic Options Basileios Papatheodorou Pembroke College A Thesis submitted for the degree of Master of Science in Applied and Computational Mathematics

### Options. + Concepts and Buzzwords. Readings. Put-Call Parity Volatility Effects

+ Options + Concepts and Buzzwords Put-Call Parity Volatility Effects Call, put, European, American, underlying asset, strike price, expiration date Readings Tuckman, Chapter 19 Veronesi, Chapter 6 Options

### UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:

UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,

### Options/1. Prof. Ian Giddy

Options/1 New York University Stern School of Business Options Prof. Ian Giddy New York University Options Puts and Calls Put-Call Parity Combinations and Trading Strategies Valuation Hedging Options2

### Binomial lattice model for stock prices

Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

### Chapter 8 Financial Options and Applications in Corporate Finance ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 8 Financial Options and Applications in Corporate Finance ANSWERS TO END-OF-CHAPTER QUESTIONS 8-1 a. An option is a contract which gives its holder the right to buy or sell an asset at some predetermined

### One Period Binomial Model

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing

### Contents. iii. MFE/3F Study Manual 9th edition Copyright 2011 ASM

Contents 1 Put-Call Parity 1 1.1 Review of derivative instruments................................................ 1 1.1.1 Forwards............................................................ 1 1.1.2 Call

### Derivatives: Principles and Practice

Derivatives: Principles and Practice Rangarajan K. Sundaram Stern School of Business New York University New York, NY 10012 Sanjiv R. Das Leavey School of Business Santa Clara University Santa Clara, CA

### American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options

American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus

### Protective Put Strategy Profits

Chapter Part Options and Corporate Finance: Basic Concepts Combinations of Options Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options

### 7: The CRR Market Model

Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The Cox-Ross-Rubinstein

### FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes consider the way put and call options and the underlying can be combined to create hedges, spreads and combinations. We will consider the

### Lecture 6 Black-Scholes PDE

Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent

### Session X: Lecturer: Dr. Jose Olmo. Module: Economics of Financial Markets. MSc. Financial Economics. Department of Economics, City University, London

Session X: Options: Hedging, Insurance and Trading Strategies Lecturer: Dr. Jose Olmo Module: Economics of Financial Markets MSc. Financial Economics Department of Economics, City University, London Option

### Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the

### Lecture 3: Put Options and Distribution-Free Results

OPTIONS and FUTURES Lecture 3: Put Options and Distribution-Free Results Philip H. Dybvig Washington University in Saint Louis put options binomial valuation what are distribution-free results? option

### where N is the standard normal distribution function,

The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at

### FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

### Lecture. S t = S t δ[s t ].

Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important

### Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)

Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared

### a. What is the portfolio of the stock and the bond that replicates the option?

Practice problems for Lecture 2. Answers. 1. A Simple Option Pricing Problem in One Period Riskless bond (interest rate is 5%): 1 15 Stock: 5 125 5 Derivative security (call option with a strike of 8):?

### Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Log-Normal Distribution

Lecture 8: Random Walk vs. Brownian Motion, Binomial Model vs. Log-ormal Distribution October 4, 200 Limiting Distribution of the Scaled Random Walk Recall that we defined a scaled simple random walk last

### Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week

Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics

### Computational Finance Options

1 Options 1 1 Options Computational Finance Options An option gives the holder of the option the right, but not the obligation to do something. Conversely, if you sell an option, you may be obliged to

### Caput Derivatives: October 30, 2003

Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor

### Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D

Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS

### Valuing Options / Volatility

Chapter 5 Valuing Options / Volatility Measures Now that the foundation regarding the basics of futures and options contracts has been set, we now move to discuss the role of volatility in futures and

### 2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold

Chapter 21 : Options-1 CHAPTER 21. OPTIONS Contents I. INTRODUCTION BASIC TERMS II. VALUATION OF OPTIONS A. Minimum Values of Options B. Maximum Values of Options C. Determinants of Call Value D. Black-Scholes

### OPTION PRICING, JAVA PROGRAMMING AND MONTE CARLO SIMULATION

OPTION PRICING, JAVA PROGRAMMING AND MONTE CARLO SIMULATION NITESH AIDASANI KHYAMI Abstract. Option contracts are used by all major financial institutions and investors, either to speculate on stock market

### The Black-Scholes pricing formulas

The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

### This paper is not to be removed from the Examination Halls

~~FN3023 ZA d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON FN3023 ZA BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,

### VALUATION IN DERIVATIVES MARKETS

VALUATION IN DERIVATIVES MARKETS September 2005 Rawle Parris ABN AMRO Property Derivatives What is a Derivative? A contract that specifies the rights and obligations between two parties to receive or deliver

### Dynamics of exchange rates and pricing of currency derivatives

Dynamics of exchange rates and pricing of currency derivatives by Jens Christian Jore Christensen THESIS for the degree of Master of Science Master i Modellering og Dataanalyse Faculty of Mathematics and

### Lecture 21 Options Pricing

Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call

### Finance 436 Futures and Options Review Notes for Final Exam. Chapter 9

Finance 436 Futures and Options Review Notes for Final Exam Chapter 9 1. Options: call options vs. put options, American options vs. European options 2. Characteristics: option premium, option type, underlying

### 1. Assume that a (European) call option exists on this stock having on exercise price of \$155.

MØA 155 PROBLEM SET: Binomial Option Pricing Exercise 1. Call option [4] A stock s current price is \$16, and there are two possible prices that may occur next period: \$15 or \$175. The interest rate on

### Martingale Pricing Applied to Options, Forwards and Futures

IEOR E4706: Financial Engineering: Discrete-Time Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the

### The Black-Scholes-Merton Approach to Pricing Options

he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining

### S 1 S 2. Options and Other Derivatives

Options and Other Derivatives The One-Period Model The previous chapter introduced the following two methods: Replicate the option payoffs with known securities, and calculate the price of the replicating

### Notes on Black-Scholes Option Pricing Formula

. Notes on Black-Scholes Option Pricing Formula by De-Xing Guan March 2006 These notes are a brief introduction to the Black-Scholes formula, which prices the European call options. The essential reading

### Mathematical Finance: Stochastic Modeling of Asset Prices

Mathematical Finance: Stochastic Modeling of Asset Prices José E. Figueroa-López 1 1 Department of Statistics Purdue University Worcester Polytechnic Institute Department of Mathematical Sciences December

### Options 1 OPTIONS. Introduction

Options 1 OPTIONS Introduction A derivative is a financial instrument whose value is derived from the value of some underlying asset. A call option gives one the right to buy an asset at the exercise or

### TULLIE, TRACEY ANDREW. Variance Reduction for Monte Carlo Simulation of. for the evolution of an asset price under constant volatility.

Abstract TULLIE, TRACEY ANDREW. Variance Reduction for Monte Carlo Simulation of European, American or Barrier Options in a Stochastic Volatility Environment. (Under the direction of Jean-Pierre Fouque.)

### Rolf Poulsen, Centre for Finance, University of Gothenburg, Box 640, SE-40530 Gothenburg, Sweden. E-mail: rolf.poulsen@economics.gu.se.

The Margrabe Formula Rolf Poulsen, Centre for Finance, University of Gothenburg, Box 640, SE-40530 Gothenburg, Sweden. E-mail: rolf.poulsen@economics.gu.se Abstract The Margrabe formula for valuation of

### THE BLACK-SCHOLES MODEL AND EXTENSIONS

THE BLAC-SCHOLES MODEL AND EXTENSIONS EVAN TURNER Abstract. This paper will derive the Black-Scholes pricing model of a European option by calculating the expected value of the option. We will assume that

### Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies

Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies No-arbitrage bounds on option prices Binomial option pricing Black-Scholes-Merton

### FUNDING INVESTMENTS FINANCE 238/738, Spring 2008, Prof. Musto Class 5 Review of Option Pricing

FUNDING INVESTMENTS FINANCE 238/738, Spring 2008, Prof. Musto Class 5 Review of Option Pricing I. Put-Call Parity II. One-Period Binomial Option Pricing III. Adding Periods to the Binomial Model IV. Black-Scholes

### Chapter 2 Introduction to Option Management

Chapter 2 Introduction to Option Management The prize must be worth the toil when one stakes one s life on fortune s dice. Dolon to Hector, Euripides (Rhesus, 182) In this chapter we discuss basic concepts

### COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS

COMPLETE MARKETS DO NOT ALLOW FREE CASH FLOW STREAMS NICOLE BÄUERLE AND STEFANIE GRETHER Abstract. In this short note we prove a conjecture posed in Cui et al. 2012): Dynamic mean-variance problems in

### Factors Affecting Option Prices

Factors Affecting Option Prices 1. The current stock price S 0. 2. The option strike price K. 3. The time to expiration T. 4. The volatility of the stock price σ. 5. The risk-free interest rate r. 6. The

### Option Values. Option Valuation. Call Option Value before Expiration. Determinants of Call Option Values

Option Values Option Valuation Intrinsic value profit that could be made if the option was immediately exercised Call: stock price exercise price : S T X i i k i X S Put: exercise price stock price : X

### Forward Price. The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow.

Forward Price The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow. The forward price is the delivery price which makes the forward contract zero

### Bond Options, Caps and the Black Model

Bond Options, Caps and the Black Model Black formula Recall the Black formula for pricing options on futures: C(F, K, σ, r, T, r) = Fe rt N(d 1 ) Ke rt N(d 2 ) where d 1 = 1 [ σ ln( F T K ) + 1 ] 2 σ2

### FINANCIAL ECONOMICS OPTION PRICING

OPTION PRICING Options are contingency contracts that specify payoffs if stock prices reach specified levels. A call option is the right to buy a stock at a specified price, X, called the strike price.