Arrow Flight and the Quadratic Equation Brent Sauve Hannahville Indian School

Size: px
Start display at page:

Download "Arrow Flight and the Quadratic Equation Brent Sauve Hannahville Indian School"

Transcription

1 Introduction By Jennifer (McLeod) Anziano Arrow Flight and the Quadratic Equation Brent Sauve Hannahville Indian School Wild game was an important part of my families food. We had very little money, and were lucky that my Dad was an avid hunter. I am the oldest of seven children, and I was taught how to hunt at a very early age. I accompanied my Dad even before Kindergarten, riding on his shoulders and he trudged through the swamps hunting for ducks. By the time I was 10, I was hunting deer on my own, using a 50# lemonwood long-bow. It took lots of practice before I was strong enough to pull the bow, and lots more practice before I could even hit the target. Over time, my brothers and sisters also learned to shoot a bow, and backyard competitions were an every night event. We became good shots, and had to make up new rules because we were splitting too many arrows. Then my Dad decided to make it interesting. First, he made us increase the distance to the target. Little by little, he increased the distance, and initially we would watch our arrows fall short of the target. Eventually, even though we didn t know the math, we had to calculate how much to raise the front of the arrow to compensate for it s drop due to the increased distance (therefore giving gravity more time to act.) We got to the point where we were shooting our arrows from across the street to hit the target in our backyard. This created quite an attraction in our neighborhood. People would come to watch us shoot (and to stop any traffic coming up the road during our competition). They would cheer and laugh, depending on whether we hit the target, split someone else s arrow, or miss the target completely. Of course my Dad could win whenever he wanted to, but once in a while he would miss so that one of us could win (At the time, we honestly believed we won!).

2 When we got to the point where distance wasn t a big enough challenge anymore, Dad made it more interesting by making us shoot the arrows that weren t straight. This proved to be a bit more dangerous, but we got pretty good at figuring out which way the arrow would go. We had to quit though, when too many arrows were ending up in our neighbors yards. My Dad passed away, and the backyard competitions ended. But I ll never forget the joy we shared when one of us could finally pull the bow, actually hit the target, and especially when we brought home food. Born to Laurence and Carleen McLeod, 1955 in Pontiac, Michigan. She is a member of the Sault Ste Marie Tribe of Chippewa Indians, Eagle Clan, first degree Mide. Jennifer is married to George Anziano (Little Traverse Bay Band of Odawa Indians), and she is an instructor at the Hannahville Indian School. Together, George and Jennifer have 11 children and 10 grandchildren. Jennifer and George live in a log cabin in Wilson, MI with their two malamute dogs, a wild mustang horse and a brand new kitten (who already hunts rabbits!). Jennifer and George follow a traditional life, and also continue to hunt deer, geese, moose, bear and elk for food. The bow and arrow was the weapon of choice for many different cultures throughout history. Native Americans used the bow for defense and for the taking of game animals for food. Many aspects of the flight of the arrow can be described using mathematics. When shot, the general flight of an arrow is a parabolic arc. Of course, any parabola can be described using a quadratic equation, ax + bx + c = 0. This lesson helps to define for students how a, b, and c affect the graph of the quadratic equation, and should be considered as an introduction into graphing of quadratics. The National Council of Teachers of Mathematics (NCTM) standards that are best addressed include the Algebra Standard of the Content Standards, and the Connections Standard of the Processes Standards. Quadratic equations and the graphing of them definitely fits into the Algebra Standard. Connections between the cultural heritage of Native Americans and the mathematics defining the flight of an arrow also are apparent. By using a culturally important object, such as the bow and arrow, the mathematics that sometimes can seem so abstract can take on important meaning and give ownership of the ideas of quadratics to our students. This ownership of a mathematical idea also helps fulfill the concept of the NCTM connections.

3 Quadratic Equations/Expressions The flight of an arrow can be described with a quadratic expression. The basic quadratic expression takes the form ax + bx + c. We will explore the quadratic expression/equation by looking at the flight of an arrow. The graph of a basic quadratic equation is shown below and doesn t look much like path of an arrow. f ( x) = x + x + 1 Where a = 1, b = 1, and c = 1. If we let the y-axis be the midpoint between were we are shooting from and where the arrow hits, we can see that the graph is not centered on the y-axis. It is slightly to the left. This is caused by the bx term of our quadratic equation. Below is the same graph without the bx term (actually when b=0). = x + 1. This centers our graph on the y-axis, but it still doesn t look like the flight of an arrow. We can turn the graph upside down by letting a = -1. = x + 1 This looks a little better, but if the tick marks on the graph represent a yard each, our arrow only went about two yards. While being accurate at two yards is important, we probably will have to shoot a little farther to bring game home. Lets look at the quadratic equation a little closer.

4 Obviously, in our quadratic equation f ( x) = ax + bx + c the coefficient of x term, the a in the equation, must be negative to get the graph to look like the flight of an arrow. The coefficient a really could indicate the forces acting on the arrow. These forces include the weight of the arrow, initial arrow speed, and wind resistance among others. If we look at changing the a coefficient to a -.01 we will get a graph that more closely resembles the flight of an arrow. At this point we don t need the second term of the equation (b = 0). =.01x + 1. This looks much more like the graph of an arrow in flight. In fact, if the distance between each grid line is equal to one yard, our arrow rose 1 yard while it flew 0 yards. This is much more realistic than the other graphs we made. If we are to interpret the above graph as shooting an arrow, then the arrow was shot from the ground, flew twenty yards, and then hit the ground again. Since most of the things we will be shooting at will be above the ground, and since when we shoot we are not shooting from ground level we should raise the graph up a little. By changing the c term of our quadratic equation ( the overall graph. f ( x) = ax + bx + c ) we can raise or lower =.01x +. Again this appears to have helped our graph represent the flight of a real arrow. The arrow was fired from a yard above the ground, flew twenty yards, and hit an object a yard above the ground. During its flight the arrow rose one yard before coming back down. If our arrows are heavier, or if we shoot into a strong wind, or if our arrows have bad fletching, the path that our arrow flew would change. Any of the above problems would greatly affect our shot.

5 Here is the flight of an arrow if we only change the a part of the first term of our equation, perhaps by shooting an arrow that was a little heavier. Here is f ( x) =.0x + This shows that the arrow would still only rise one yard above the line of sight. Obviously, changing the a of the quadratic equation f ( x) = ax + c from -.01 to -.0 had a great affect on our graph. To show that we are not shooting off the ground again we will have to move the graph to the left a little. To do so we have to reinsert the bx part of the quadratic equation. =.0x + This shows that the added weight of our arrow would have made us miss whatever we were shooting at. To hit our target we ll have to aim higher, thus taking into account the added weight of the arrow. =.0x + 3. By adding one to the third term it will raise our aim and we should hit what we aimed at. Here is f ( x) =.0x + 3 Again we will have to adjust our graph to the right so that we are shooting from 1 yard above the ground. We can do this by setting our b value to zero. =.0x + 3

6 Here we aimed two yards above the target to get our arrow to hit were we wanted it to. The added weight of the arrow changed our aim point. Lets compare two graphs below. A B Graph A, represented by the equation f ( x) =.01x +, was when we shot from a yard above the ground, and hit a target twenty yards away and a yard above the ground. Graph B represented by the equation f ( x) =.0x + was when our arrow had a little more weight. Remember the added weight was represented by changing -.01 to -.0. the number is more negative (smaller) because the added weight of the arrow would adversely affect the flight of the arrow. The -.1x in graph B s equation simply moved the graph to the left so that the arrow was shot from a yard above the ground. The arrow in graph B again rose 1 yard during its flight but this time it hit the ground at 18 yards, missing what we were shooting at. Equipment: TI 83 Graphing calculators. Above is the windows screen and the Y= screen from the TI 83 calculators used in this lesson. Students should use a new plot each time they put a new equation in the calculator. In this way different graphs can be quickly compared or gone back to. All equations with a darkened in = will be displayed on the calculator. The above Y = screen would show only the f ( x) =.0x +. As an example, below we can compare the graphs of ( ).01 f x = x + 1and of f ( x) =.0x + graphs and discuss how changing certain numbers in the quadratic equation changed the graph of the equation Activities:

7 Have students throw a ball, but have a rod or a stick set at a height that the students must throw under. Raise the rod and compare the distance thrown with the original distance when the rod was at a lower height. Have students see how high they can throw the ball. How far in horizontal distance did the ball go? As the students try to throw the ball higher they should notice that the horizontal distance decreases. Go back into the classroom and illustrate how the quadratic equation would change as students tried to throw for horizontal distance and as they tried to throw for vertical height. Extensions: An entire unit could easily be based around this one basic lesson. Depending on the class and the students, there are a number of extensions that could be included into this lesson to have it last a number of days. These extensions include: -Have students use different numbers in place of the a, the b, and the c in the quadratic equation f ( x) = ax + bx + c. Students should gain a deeper understanding of how small changes to parts of the equation dramatically change the graph (and thus the equation). -Discuss with students why it might not be a good idea to have the y axis for the midpoint for our graphs. Question: Can we have a negative distance? Have students adjust the quadratic equations so that the arrow is shot from the y-axis. -Solving of systems of equations. Each different flight of the arrow is a different quadratic equation. By solving a pair of equations students could see where the arrows would cross (the intersection of the graphs). Solving of systems using graphing and by algebraic means would be a great extension to this lesson. Resources: University of Chicago School of Mathematics Project; Algebra. Chapter 1, pages Scott, Foresman, Copyright TI-83 Plus Calculators. Numerous outside readings involving the use of bows and arrows and the cultural/historic use of the bow. Name 1). Change this equation, f ( x) = 3x + x + 1, so that the graph is shifted 3 places down.

8 ). What would need to be changed so that f ( x) = x x + 3 was shifted to the right 4 places. 3). Which graph is shown to the right? 1 a. f ( x) = x 3 b. f ( x) = 3x 1 c. f ( x) = x 3 d. f ( x) = 3x 4). In the quadratic equation if a is negative the parabola will open. In the quadratic equation if a is postive the parabola will open. 5). Sketch the graph of this equation: f ( x) = x + x 3 6). Match each equation with the appropriate graph.

9 a. f ( x) = x + x + 1 b. f ( x) = x + x 1 c. f ( x) = x + x + 1 d. f ( x) = x + x + 4 I II III IV

Graphing Quadratic Functions

Graphing Quadratic Functions Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the

More information

Mathematics on the Soccer Field

Mathematics on the Soccer Field Mathematics on the Soccer Field Katie Purdy Abstract: This paper takes the everyday activity of soccer and uncovers the mathematics that can be used to help optimize goal scoring. The four situations that

More information

Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

More information

XPULT INSTRUCTIONS BASIC VERSION

XPULT INSTRUCTIONS BASIC VERSION XPULT INSTRUCTIONS BASIC VERSION The Xpult is a device for launching table tennis balls or other light plastic balls. Most likely, you will have received the Xpult from your teacher or somebody else who

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Linear Equations. 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber

Linear Equations. 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber Linear Equations 5- Day Lesson Plan Unit: Linear Equations Grade Level: Grade 9 Time Span: 50 minute class periods By: Richard Weber Tools: Geometer s Sketchpad Software Overhead projector with TI- 83

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

More information

Experiment 2 Free Fall and Projectile Motion

Experiment 2 Free Fall and Projectile Motion Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

More information

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics

More information

LESSON TITLE: Jesus Visits Mary and Martha THEME: Jesus wants us to spend time with \ Him. SCRIPTURE: Luke 10:38-42

LESSON TITLE: Jesus Visits Mary and Martha THEME: Jesus wants us to spend time with \ Him. SCRIPTURE: Luke 10:38-42 Devotion NT249 CHILDREN S DEVOTIONS FOR THE WEEK OF: LESSON TITLE: Jesus Visits Mary and Martha THEME: Jesus wants us to spend time with \ Him. SCRIPTURE: Luke 10:38-42 Dear Parents Welcome to Bible Time

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

Math 1526 Consumer and Producer Surplus

Math 1526 Consumer and Producer Surplus Math 156 Consumer and Producer Surplus Scenario: In the grocery store, I find that two-liter sodas are on sale for 89. This is good news for me, because I was prepared to pay $1.9 for them. The store manager

More information

Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives. Lead In

Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives. Lead In Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives Lesson Activity Barbie Bungee (75-80 minutes) MS-M-A1 Lead In (15-20 minutes) Activity (45-50 minutes) Closure (10

More information

Activity 6 Graphing Linear Equations

Activity 6 Graphing Linear Equations Activity 6 Graphing Linear Equations TEACHER NOTES Topic Area: Algebra NCTM Standard: Represent and analyze mathematical situations and structures using algebraic symbols Objective: The student will be

More information

Algebra: Real World Applications and Problems

Algebra: Real World Applications and Problems Algebra: Real World Applications and Problems Algebra is boring. Right? Hopefully not. Algebra has no applications in the real world. Wrong. Absolutely wrong. I hope to show this in the following document.

More information

Chapter 6 Quadratic Functions

Chapter 6 Quadratic Functions Chapter 6 Quadratic Functions Determine the characteristics of quadratic functions Sketch Quadratics Solve problems modelled b Quadratics 6.1Quadratic Functions A quadratic function is of the form where

More information

PUSD High Frequency Word List

PUSD High Frequency Word List PUSD High Frequency Word List For Reading and Spelling Grades K-5 High Frequency or instant words are important because: 1. You can t read a sentence or a paragraph without knowing at least the most common.

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved. 1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

More information

Overview. Observations. Activities. Chapter 3: Linear Functions Linear Functions: Slope-Intercept Form

Overview. Observations. Activities. Chapter 3: Linear Functions Linear Functions: Slope-Intercept Form Name Date Linear Functions: Slope-Intercept Form Student Worksheet Overview The Overview introduces the topics covered in Observations and Activities. Scroll through the Overview using " (! to review,

More information

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

More information

2. How long had Brian been there? Show the math problem that you did to figure out the answer.

2. How long had Brian been there? Show the math problem that you did to figure out the answer. Chapter 1 Write your answers to the following questions in full 1. Why was Brian in the wilderness? 2. How long had Brian been there? Show the math problem that you did to figure out the answer. 3. List

More information

Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

More information

1 Shapes of Cubic Functions

1 Shapes of Cubic Functions MA 1165 - Lecture 05 1 1/26/09 1 Shapes of Cubic Functions A cubic function (a.k.a. a third-degree polynomial function) is one that can be written in the form f(x) = ax 3 + bx 2 + cx + d. (1) Quadratic

More information

Subject: Math Grade Level: 5 Topic: The Metric System Time Allotment: 45 minutes Teaching Date: Day 1

Subject: Math Grade Level: 5 Topic: The Metric System Time Allotment: 45 minutes Teaching Date: Day 1 Subject: Math Grade Level: 5 Topic: The Metric System Time Allotment: 45 minutes Teaching Date: Day 1 I. (A) Goal(s): For student to gain conceptual understanding of the metric system and how to convert

More information

CHAPTER 1 ARROW BALLISTICS FROM SINGLE SHOT TO COURSE REQUIREMENTS

CHAPTER 1 ARROW BALLISTICS FROM SINGLE SHOT TO COURSE REQUIREMENTS CHAPTER 1 ARROW BALLISTICS FROM SINGLE SHOT TO COURSE REQUIREMENTS ARROW FLIGHT - BALLISTICS The Oxford Dictionary defines ballistics as "the science of projectiles." Unfortunately, this leads to thoughts

More information

Magnetic Fields and Their Effects

Magnetic Fields and Their Effects Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

More information

Curve Fitting, Loglog Plots, and Semilog Plots 1

Curve Fitting, Loglog Plots, and Semilog Plots 1 Curve Fitting, Loglog Plots, and Semilog Plots 1 In this MATLAB exercise, you will learn how to plot data and how to fit lines to your data. Suppose you are measuring the height h of a seedling as it grows.

More information

Our automatic thoughts echo our core beliefs. The more negative our core beliefs are, the more negative our automatic thoughts will be.

Our automatic thoughts echo our core beliefs. The more negative our core beliefs are, the more negative our automatic thoughts will be. cchapter EIGHTb Core beliefs Think Good - Feel Good Paul Stallard Copyright 2002 John Wiley & Sons Ltd ISBN: 0470842903 (Paperback) CORE BELIEFS Core beliefs are the fixed statements ideas that we have

More information

Describing Relationships between Two Variables

Describing Relationships between Two Variables Describing Relationships between Two Variables Up until now, we have dealt, for the most part, with just one variable at a time. This variable, when measured on many different subjects or objects, took

More information

Parable of The Prodigal Son

Parable of The Prodigal Son Parable of The Prodigal Son Teacher Pep Talk: Children need to know that they are loved unconditionally. In fact, we all need to know it! In the Parable of the Prodigal Son, Jesus assures us that God will

More information

SAMPLE INTERVIEW QUESTIONS

SAMPLE INTERVIEW QUESTIONS SAMPLE INTERVIEW QUESTIONS Interviews and interview styles vary greatly, so the best way to prepare is to practice answering a broad range of questions. For other great interview strategies, see our Successful

More information

Introduction to Quadratic Functions

Introduction to Quadratic Functions Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2

More information

Bar Graphs and Dot Plots

Bar Graphs and Dot Plots CONDENSED L E S S O N 1.1 Bar Graphs and Dot Plots In this lesson you will interpret and create a variety of graphs find some summary values for a data set draw conclusions about a data set based on graphs

More information

Optimization Application:

Optimization Application: GOLDen Mathematics: Intermediate Algebra Copyright 2000 Sally J. Keely. All Rights Reserved. Hi. Today's lesson is a bit different. It is one huge multi-part real-life application of quadratic functions

More information

Integers (pages 294 298)

Integers (pages 294 298) A Integers (pages 294 298) An integer is any number from this set of the whole numbers and their opposites: { 3, 2,, 0,, 2, 3, }. Integers that are greater than zero are positive integers. You can write

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

A Quick Algebra Review

A Quick Algebra Review 1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

More information

Elements of a graph. Click on the links below to jump directly to the relevant section

Elements of a graph. Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

More information

PLOTTING DATA AND INTERPRETING GRAPHS

PLOTTING DATA AND INTERPRETING GRAPHS PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they

More information

Lesson 4: Solving and Graphing Linear Equations

Lesson 4: Solving and Graphing Linear Equations Lesson 4: Solving and Graphing Linear Equations Selected Content Standards Benchmarks Addressed: A-2-M Modeling and developing methods for solving equations and inequalities (e.g., using charts, graphs,

More information

Revenge of the Angry Birds. Accommodation Assignment. Chosen Student: Elaine

Revenge of the Angry Birds. Accommodation Assignment. Chosen Student: Elaine Revenge of the Angry Birds Accommodation Assignment Chosen Student: Elaine Tracy Harrison 12/5/2013 Title: Revenge of the Angry Birds Date: 12/5/2013 Grade Level: 9-10 Course: Algebra I Time Allotted:

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

ARCHERY Environmental Education Lesson EDWARDS CAMP AND CONFERENCE CENTER

ARCHERY Environmental Education Lesson EDWARDS CAMP AND CONFERENCE CENTER ARCHERY Environmental Education Lesson EDWARDS CAMP AND CONFERENCE CENTER SUMMARY Students will learn the parts of a bow and arrow, and archery techniques and safety. They practice what they learn, shooting

More information

Devotion NT267 CHILDREN S DEVOTIONS FOR THE WEEK OF: LESSON TITLE: The Second Coming. THEME: Jesus is coming again. SCRIPTURE: Matthew 24:27-31

Devotion NT267 CHILDREN S DEVOTIONS FOR THE WEEK OF: LESSON TITLE: The Second Coming. THEME: Jesus is coming again. SCRIPTURE: Matthew 24:27-31 Devotion NT267 CHILDREN S DEVOTIONS FOR THE WEEK OF: LESSON TITLE: The Second Coming THEME: Jesus is coming again. SCRIPTURE: Matthew 24:27-31 Dear Parents Welcome to Bible Time for Kids. Bible Time for

More information

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial

More information

family games Taking the kids swimming is a great way of making sure they re moving around and having fun. And to help you get them into

family games Taking the kids swimming is a great way of making sure they re moving around and having fun. And to help you get them into swim family games Taking the kids swimming is a great way of making sure they re moving around and having fun. And to help you get them into the pool, we ve come up with loads of great swimming games to

More information

Fry Phrases Set 1. TeacherHelpForParents.com help for all areas of your child s education

Fry Phrases Set 1. TeacherHelpForParents.com help for all areas of your child s education Set 1 The people Write it down By the water Who will make it? You and I What will they do? He called me. We had their dog. What did they say? When would you go? No way A number of people One or two How

More information

Solving Systems of Linear Equations Graphing

Solving Systems of Linear Equations Graphing Solving Systems of Linear Equations Graphing Outcome (learning objective) Students will accurately solve a system of equations by graphing. Student/Class Goal Students thinking about continuing their academic

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

Shooting Uphill and Downhill. Major John L. Plaster, USAR (ret) Of all the ways a precision rifleman must compensate when firing such as for distance,

Shooting Uphill and Downhill. Major John L. Plaster, USAR (ret) Of all the ways a precision rifleman must compensate when firing such as for distance, Shooting Uphill and Downhill By Major John L. Plaster, USAR (ret) Of all the ways a precision rifleman must compensate when firing such as for distance, for wind and for target movement the most confounding

More information

THE EFFECTIVE USE OF MANIPULATIVES (as seen in CORE PLUS)

THE EFFECTIVE USE OF MANIPULATIVES (as seen in CORE PLUS) THE EFFECTIVE USE OF MANIPULATIVES (as seen in CORE PLUS) Stephanie R. Schweyer EDC 564 Core Plus Math 1 April 20, 2000 TABLE OF CONTENTS CURRICULUM PHILOSOPHIES EFFECTIVE USES OF MANIPULATIVES EXAMPLES

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

Math Matters: Why Do I Need To Know This? 1 Probability and counting Lottery likelihoods

Math Matters: Why Do I Need To Know This? 1 Probability and counting Lottery likelihoods Math Matters: Why Do I Need To Know This? Bruce Kessler, Department of Mathematics Western Kentucky University Episode Four 1 Probability and counting Lottery likelihoods Objective: To demonstrate the

More information

ENGLISH PLACEMENT TEST

ENGLISH PLACEMENT TEST ENGLISH PLACEMENT TEST NAME: Look at these examples. The correct answers are underlined. a) In warm climates people like / likes / are liking sitting outside in the sun. b) If it is very hot, they sit

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Barycenter of Solar System Earth-Moon barycenter? Moon orbits what?

Barycenter of Solar System Earth-Moon barycenter? Moon orbits what? Barycenter of Solar System Earth-Moon barycenter? Moon orbits what? Dr. Scott Schneider Friday Feb 24 th, 2006 Sponsored by the Society of Physics Students (SPS) Webpage : http://qbx6.ltu.edu/s_schneider/astro/astroweek_2006.shtml

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

Backyard Visitor by Kelly Hashway

Backyard Visitor by Kelly Hashway Mom! Sarah yelled, running into the house. What is it? her mother asked, looking up from her book. There s a baby deer in the backyard. Can we feed it? Sarah ran for the bowl of fruit on the counter and

More information

Drunk Driving Vocabulary Lesson

Drunk Driving Vocabulary Lesson Hello and welcome to the vocabulary lesson for the conversation Drunk Driving. In this conversation, Joe and I are just talking about different friends or different people that we ve known that have gotten

More information

Objective. Materials. TI-73 Calculator

Objective. Materials. TI-73 Calculator 0. Objective To explore subtraction of integers using a number line. Activity 2 To develop strategies for subtracting integers. Materials TI-73 Calculator Integer Subtraction What s the Difference? Teacher

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

https://williamshartunionca.springboardonline.org/ebook/book/27e8f1b87a1c4555a1212b...

https://williamshartunionca.springboardonline.org/ebook/book/27e8f1b87a1c4555a1212b... of 19 9/2/2014 12:09 PM Answers Teacher Copy Plan Pacing: 1 class period Chunking the Lesson Example A #1 Example B Example C #2 Check Your Understanding Lesson Practice Teach Bell-Ringer Activity Students

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

Use Square Roots to Solve Quadratic Equations

Use Square Roots to Solve Quadratic Equations 10.4 Use Square Roots to Solve Quadratic Equations Before You solved a quadratic equation by graphing. Now You will solve a quadratic equation by finding square roots. Why? So you can solve a problem about

More information

California Treasures High-Frequency Words Scope and Sequence K-3

California Treasures High-Frequency Words Scope and Sequence K-3 California Treasures High-Frequency Words Scope and Sequence K-3 Words were selected using the following established frequency lists: (1) Dolch 220 (2) Fry 100 (3) American Heritage Top 150 Words in English

More information

The Effect of Dropping a Ball from Different Heights on the Number of Times the Ball Bounces

The Effect of Dropping a Ball from Different Heights on the Number of Times the Ball Bounces The Effect of Dropping a Ball from Different Heights on the Number of Times the Ball Bounces Or: How I Learned to Stop Worrying and Love the Ball Comment [DP1]: Titles, headings, and figure/table captions

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

11.1 Parabolas Name: 1

11.1 Parabolas Name: 1 Algebra 2 Write your questions and thoughts here! 11.1 Parabolas Name: 1 Distance Formula The distance between two points, and, is Midpoint Formula The midpoint between two points, and, is,, RECALL: Standard

More information

THE WINNING ROULETTE SYSTEM.

THE WINNING ROULETTE SYSTEM. THE WINNING ROULETTE SYSTEM. Please note that all information is provided as is and no guarantees are given whatsoever as to the amount of profit you will make if you use this system. Neither the seller

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

Equations, Lenses and Fractions

Equations, Lenses and Fractions 46 Equations, Lenses and Fractions The study of lenses offers a good real world example of a relation with fractions we just can t avoid! Different uses of a simple lens that you may be familiar with are

More information

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Algebra II Interim 2. Mid-Year 2014 - Algebra II

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Algebra II Interim 2. Mid-Year 2014 - Algebra II Student Name: Teacher: District: Date: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Algebra II Interim 2 Description: Mid-Year 2014 - Algebra II Form: 201 1. During a physics experiment,

More information

Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Pushes and Pulls. TCAPS Created June 2010 by J. McCain Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................

More information

31 Misleading Graphs and Statistics

31 Misleading Graphs and Statistics 31 Misleading Graphs and Statistics It is a well known fact that statistics can be misleading. They are often used to prove a point, and can easily be twisted in favour of that point! The purpose of this

More information

Session 7 Fractions and Decimals

Session 7 Fractions and Decimals Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,

More information

Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m = Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the

More information

Self-Acceptance. A Frog Thing by E. Drachman (2005) California: Kidwick Books LLC. ISBN 0-9703809-3-3. Grade Level: Third grade

Self-Acceptance. A Frog Thing by E. Drachman (2005) California: Kidwick Books LLC. ISBN 0-9703809-3-3. Grade Level: Third grade Self-Acceptance A Frog Thing by E. Drachman (2005) California: Kidwick Books LLC. ISBN 0-9703809-3-3 This Book Kit was planned by Lindsay N. Graham Grade Level: Third grade Characteristic Trait: Self Acceptance

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

SPIRIT 2.0 Lesson: A Point Of Intersection

SPIRIT 2.0 Lesson: A Point Of Intersection SPIRIT 2.0 Lesson: A Point Of Intersection ================================Lesson Header============================= Lesson Title: A Point of Intersection Draft Date: 6/17/08 1st Author (Writer): Jenn

More information

Devotion NT273 CHILDREN S DEVOTIONS FOR THE WEEK OF: LESSON TITLE: The Garden of Gethsemane. THEME: We always need to pray! SCRIPTURE: Luke 22:39-53

Devotion NT273 CHILDREN S DEVOTIONS FOR THE WEEK OF: LESSON TITLE: The Garden of Gethsemane. THEME: We always need to pray! SCRIPTURE: Luke 22:39-53 Devotion NT273 CHILDREN S DEVOTIONS FOR THE WEEK OF: LESSON TITLE: The Garden of Gethsemane THEME: We always need to pray! SCRIPTURE: Luke 22:39-53 Dear Parents Welcome to Bible Time for Kids. Bible Time

More information

The fairy tale Hansel and Gretel tells the story of a brother and sister who

The fairy tale Hansel and Gretel tells the story of a brother and sister who Piecewise Functions Developing the Graph of a Piecewise Function Learning Goals In this lesson, you will: Develop the graph of a piecewise function from a contet with or without a table of values. Represent

More information

Graphical Integration Exercises Part Four: Reverse Graphical Integration

Graphical Integration Exercises Part Four: Reverse Graphical Integration D-4603 1 Graphical Integration Exercises Part Four: Reverse Graphical Integration Prepared for the MIT System Dynamics in Education Project Under the Supervision of Dr. Jay W. Forrester by Laughton Stanley

More information

Write the Equation of the Line Review

Write the Equation of the Line Review Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

More information

Icebreaker: Fantastic Four

Icebreaker: Fantastic Four Icebreaker: Fantastic Four 1. Break the group into groups of 4. 2. Each team must come up with four things that they all have in common. They may be as simple or as complex as they want (example: we all

More information

SIMPLE CROSSING - FUNCTIONAL PRACTICE

SIMPLE CROSSING - FUNCTIONAL PRACTICE SIMPLE CROSSING - FUNCTIONAL PRACTICE In this simple functional practice we have pairs of strikers waiting in lines just outside the centre circle. There is a wide player positioned out toward one of the

More information

Communication Process

Communication Process Welcome and Introductions Lesson 7 Communication Process Overview: This lesson teaches learners to define the elements of effective communication and its process. It will focus on communication as the

More information

Projectile Motion 1:Horizontally Launched Projectiles

Projectile Motion 1:Horizontally Launched Projectiles A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

More information

SAY IT BETTER IN ENGLISH

SAY IT BETTER IN ENGLISH PHRASE GUIDE FOR THE BOOK SAY IT BETTER IN ENGLISH Useful Phrases for Work & Everyday Life Directions for use: This guide contains all the phrases included in the book Say it Better in English. If you

More information

Slope & y-intercept Discovery Activity

Slope & y-intercept Discovery Activity TI-83 Graphing Calculator Activity Slope & y-intercept Discovery Activity Justin Vallone 11/2/05 In this activity, you will use your TI-83 graphing calculator to graph equations of lines. Follow the steps

More information

The first time my triathlon coach saw me swim,

The first time my triathlon coach saw me swim, Reaching the Podium: Justin Thomas, CFP How You Can Achieve Your Financial Goals 1 The first time my triathlon coach saw me swim, he wasn t very optimistic. You look like an electrocuted frog, he said.

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Monday, January 27, 2003 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Monday, January 27, 2003 1:15 to 4:15 p.m. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A Monday, January 27, 2003 1:15 to 4:15 p.m., only Print Your Name: Print Your School s Name: Print your name and the

More information

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

More information

Performance Based Learning and Assessment Task

Performance Based Learning and Assessment Task Performance Based Learning and Assessment Task Activity/Task Title I. ASSESSSMENT TASK OVERVIEW & PURPOSE: Students will be asked to find various characteristics of a polynomial function, modeled by a

More information

Unit 3: Day 2: Factoring Polynomial Expressions

Unit 3: Day 2: Factoring Polynomial Expressions Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored

More information