CHEM2541 Physical Chemistry I. Assignment 2 Solution. Execises

Size: px
Start display at page:

Download "CHEM2541 Physical Chemistry I. Assignment 2 Solution. Execises"

Transcription

1 CHEM541 Physical Cheistry I Assignent Solution Execises A. 1(a) Use the equiartition theore to estiate the olar internal energy relative to U(0) of (i) I (ii) CH 4 (iii) C 6 H 6 in the gas hase at 5 o C According to equiartition theore, each translational and rotational degree of freedo contributes degree of freedo contributes to the olar internal energy, and each active vibrational to the olar internal energy. A vibrational ode is said to be active at a certain teerature if the energy required to excite the vibrational ode is coarable or saller than the k, i.e. where h is the Planck constant and is the vibrational frequency of the ode. At roo teerature =98K, we have wavenuber as, which converts to (i) I is a linear olecule, so ranslational degree of freedo = Rotational degree of freedo = ibrational degree of freedo =N-5 = 1 he vibrational frequency is 14c, so we shall consider it active 1 7 So U( ) U(0) ( 1) R R 8.67kJol (ii) CH 4 ranslational degree of freedo = Rotational degree of freedo = ibrational degree of freedo =N-6 = 9 But none of the vibrational odes are active since the vibrational frequency for the C-H stretching and bending odes are all higher than 1000c 1 So U( ) U(0) ( 0) R R 7.44kJol

2 (iii) C 6 H 6 ranslational degree of freedo = Rotational degree of freedo = ibrational degree of freedo =N-6 = 0 Estiating the nuber of active odes is hard in this case since any bending odes are in the range of 00c 1000c. Many of the ay have slight activity and contribute to the internal energy. Assue nuber of active odes 1 U( ) U(0) ( 4) R 7R 17.5kJol A. (a) Which of (i) ressure, (ii) teerature, (iii) work, (iv) enthaly are state functions? Pressure, teerature, enthaly A. (b) Which of (i) volue, (ii) heat, (iii) internal energy, (iv) density are state functions? olue, internal energy, density

3 A.4(a) A sale consisting of 1.00 ol Ar is exanded isotherally at 0 o C fro 10.0d to 00d (i) reversibly, (ii) against a constant external ressure equal to the final ressure of the gas and (iii) freely (against zero external ressure). For the three rocesses calculate q w, and. For all cases, since the internal energy of a erfect gas deends only on teerature. Fro the definition of enthaly,. So ( ) ( ) (erfect gas). Hence, as well, at constant teerature for all rocesses in a erfect gas.

4 A. 5(a) A sale consisting of 1.00ol of erfect gas atos, for which, initially at 1 = 1.00 at and 1 = 00 K, is heated reversibly to 400 K at constant volue. Calculate the final ressure,. For a erfect gas at constant volue, U nc, n R 400K 00K 1.00 ol 8.14 JK ol 100K w J 1.5 kj constant volue q U w 1.5kJ B.(a) he constant-ressure heat caacity of a sale of a erfect gas was found to vary with teerature according to the exression ( ) ( ). Calculate when the teerature is raised fro 5 o C to 100 o C (i) at constant ressure, (ii) at constant volue.

5 B. (a) When.0 ol O is heated at a constant ressure of.5 at, its teerature increases fro 60 K to 85 K. Given that the olar heat caacity of O at constant ressure is 9.4 J K ol, calculate.

6 C. (a) he standard enthaly of cobustion of cycloroane is -091 kjol at 5 o C. Fro this inforation and enthaly of foration data for CO (g) and H O(g). calculate the enthaly of foration cycloroane. he enthaly of foration of roene is +0.4 kjol. Calculate the enthaly of isoerization of cycloroane to roene. C.4(a) Given that the standard enthaly of foration of HCl(aq) is 67kJol, what is the value of ( )

7 C. 6(a) Given the reactions (1) and () below, deterine (i) and for reaction (), (ii) for both HCl(g) and H O(g) all at 98K (1) H (g) + Cl (g) HCl(g) () H (g) + O (g) H O(g) () 4HCl(g) + O (g) Cl (g) + H O(g)

8

9 D. 1(a) Estiate the internal ressure,, of water vaour at 1.00 bar and 400 K, treating it as a van der Waals gas. Hint: Silify the aroach by estiating the olar volue by treating the gas as erfect. he internal ressure is defined as: U For a van der Waals gas which obey the equation of state n a nb nr a Its internal ressure is given by. ( Given in D. (a) ) R at 1.00 bar 1.01bar d at K 400K.6d ol 6 - a 5.464d at ol (.6d ol ) at 5.0bar

10 D.(a) For a van der Waals gas,,. Calculate for the isotheral exansion of nitrogen gas fro an initial volue of 1.00d to 0.00d at 98 K. What are the values of q and w? he internal energy is a function of teerature and volue, i.e. ( ) U U U du d d d d For isotheral exansion, d=0, U 0.00d 0.00d d 1.00d 1.00d 1.5d at ol 0.0d ol 1.84d at ol 6-1.5d at ol 1.00d ol d at ol 10.1Jol a 6 - a d 0.00d 1.00d 1015 Pa 10 d 1at R a w d where b 0.00d 1.00d R ln( b) U 8.14 JK ol K ln Jol 10.1Jol Jol q U w 7.51 R a d b d 0 Jol U

11 Probles A.1 Calculate the work done during the isotheral reversible exansion of a van der Waals gas. Plot on the sae grah the indicator diagras (grahs of ressure against volue) for the isotheral reversible exansion of (a) a erfect gas, (b) a van der Waals gas in which a=0 and b=5.11 x 10 - d ol, and (c) a =4. d 6 at ol - and b=0. he values selected exaggerate the ierfections but give rise to significant effects on the indicator diagras. ake =,, and. f ( a) wideal nr ln.0d 1.0ol 8.14ol 98Kln 1.0d 1.7kJ i For van der Waals gas, the work done is: ( See D. (a) ) w vdw f i f i d nr nb n a d f nb 1 1 nr ln n a i nb f i f nb ( b) wvdw nr ln nb.0 d d 1.0ol 8.14ol 98Kln 1.0d d 1.8kJ i 1 1 f ( c) wvdw nr ln n a i f i kj 1.0ol 4.d 6 at ol -.0d 1.0d 1.7 kj 0.1kJ 1.5 kj

12

13 A.7 As a continuation of Proble A.6, (a) show that for sall extensions of the chain, when, the restoring force is given by vk nk F l Nl (b) Is the variation of the restoring force with extension of the chain given in art (a) different fro that redicted by Hooke s law? Exlain your answer. Fro Proble A.6, we have k 1 v k F ln ln(1 v) ln(1 v) l 1 v l For v 1, we can aly the aylor exansion for the natural log at v0 0, () (1) f ( v0 ) f ( v) f ( v0) f ( v0) v v 1 ln(1 v) ln(1 0) v 1 0 v 1 ln(1 v) ln(1 0) v 1 0 v k vk F v ( v) l l Hooke law: F kx vk x k k F l Nl l Nl x herefore, for sall dislaceents, the one-diensional chain odel obeys the Hooke s law.

14 B.1 he following data show how the standard olar constant-ressure heat caacity of sulfur dioxide varies with teerature. By how uch does the standard olar enthaly of SO (g) increase when the teerature is raised fro 98.15K to l500k? /K θ ( ) he change in the olar enthaly of foration of SO as the teerature increases fro 00K to 1500K is calculated as follows: 1500K C 98K, ( H f ) ( ) d C, ( ) can be obtained by fitting the heat caacity data to an equation of the for: ( ) c C a b, We find: a JK ol b JK ol - c JK ol hus K ( H ) C ( ) d f 98K 1500K 98K 1, a b 6.kJol c a b c 1500K 98K d

15 B. A sale consisting of.0 ol CO occuies a fixed volue of 15.0d at 00 K. When it is sulied with.5 kj of energy as heat its teerature increases to 41 K. Assue that CO is described by the van der Waals equation of state and calculate.

16 C.1 A sale of the sugar D-ribose (C 5 H 10 O 5 ) of ass 0.77 g was laced in a constantvolue calorieter and then ignited in the resence of excess oxygen. he teerature rose by K. In a searate exerient in the sae calorieter, the cobustion of 0.85g of benzoic acid, for which the internal energy of cobustion is -51 kj ol gave a teerature rise of K. Calculate the internal energy of cobustion of D-ribose and its enthaly of foration. Coound Mass Molecular ass Nuber of ole D-ribose 0.77g 150 g/ol x10 - ol Benzoic acid 0.85g 1 g/ol 6.76x10 - ol Heat caacity of calorieter: C U K 11.kJK 51kJol ol Internal energy of cobustion of D-ribose C 5 H 10 O 5 (s)+5o (g) 5CO (g)+5h O(l) U c c C n 11.kJK ol H U n R c K 17kJol g U (0) R 17 kj ol c H f [C5H10O 5(s)] 169.7kJol

17 C.9 An average huan roduces about 10 MJ of heat each day through etabolic activity. If a huan body were an isolated syste of ass 65kg with the heat caacity of water, what teerature rise would the body exerience? Huan bodies are actually oen systes, and the ain echanis of heat loss is through the evaoration of water. What ass of water should be evaorated each day to aintain constant teerature? he needed data are the secific heat caacity of water and enthaly of vaorization: D. 1 In 006, the Intergovernental Panel on Cliate Change (IPCC) considered a global average teerature rise of o C likely by the year 100 with.0 o C its best estiate. Predict the average rise in sea level due to theral exansion of sea water based on teerature rises of 1.0 o C,.0 o C and.5 o C given that the volue of the Earth s oceans is and their surface area is, and state the aroxiations that go into the estiates. Assutions: 1. Global water teerature is 5 o C at resent.. Melting of glaciers is neglected. herefore, (a) Rise in sea level is solely due to theral exansion (b) Mass of sea water is fixed

18 d d d (surface area) h K ( ) ( C) - (gc ) (k ) h(k) h() E E E-0.61 Alternatively, we can assue the coefficient of theral exansion is a constant for sall change in teerature. 1 P We sily use its value at 98K: [H O( l), 98 K] K 4 K ( ) (k ) h(k) h() , x , x ,1,85.41 x

19 D. Starting fro the exression ( ) ( ), use the aroriate relations between artial derivatives to show that C C / / Evaluate C -C v for a erfect gas. We ay use the Euler s chain relation we roved in Assignent Substitute in the given exression, we have C C For erfect gas, C C nr nr nr

20 D. 9 Use the fact that ( ) for a van der Waals gas to show that by using the definition of and aroriate relations between artial derivatives. Hint: Use the aroxiation P = R when it is justifiable to do so. Consider n=1 ol, H C, H U P H U ( ) H U a ( )( b) R 1 R R a b 1 b a n n( n 1) We aly binoial exansion 1 x 1 nx x and assue 1 a a a a R Ra R a b b R R a b R U a R Ra a R C, H a b R a End of Assignent

- The value of a state function is independent of the history of the system. - Temperature is an example of a state function.

- The value of a state function is independent of the history of the system. - Temperature is an example of a state function. First Law of hermodynamics 1 State Functions - A State Function is a thermodynamic quantity whose value deends only on the state at the moment, i. e., the temerature, ressure, volume, etc - he value of

More information

1 Exercise 4.1b pg 153

1 Exercise 4.1b pg 153 In this solution set, an underline is used to show the last significant digit of numbers. For instance in x = 2.51693 the 2,5,1, and 6 are all significant. Digits to the right of the underlined digit,

More information

Toolbox 6 THERMODYNAMIC AND TRANSPORT PROPERTIES OF MOIST AIR

Toolbox 6 THERMODYNAMIC AND TRANSPORT PROPERTIES OF MOIST AIR PPLIED INDURIL ENERGY ND ENIRONMENL MNGEMEN Z. K. Moray, D. D. Gozdenac Part III: FUNDMENL FOR NLYI ND CLCULION OF ENERGY ND ENIRONMENL PERFORMNCE lied Industrial Energy and Enironental Manageent Zoran

More information

HW 2. Q v. kt Step 1: Calculate N using one of two equivalent methods. Problem 4.2. a. To Find:

HW 2. Q v. kt Step 1: Calculate N using one of two equivalent methods. Problem 4.2. a. To Find: HW 2 Proble 4.2 a. To Find: Nuber of vacancies per cubic eter at a given teperature. b. Given: T 850 degrees C 1123 K Q v 1.08 ev/ato Density of Fe ( ρ ) 7.65 g/cc Fe toic weight of iron ( c. ssuptions:

More information

( C) CLASS 10. TEMPERATURE AND ATOMS

( C) CLASS 10. TEMPERATURE AND ATOMS CLASS 10. EMPERAURE AND AOMS 10.1. INRODUCION Boyle s understanding of the pressure-volue relationship for gases occurred in the late 1600 s. he relationships between volue and teperature, and between

More information

a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L

a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal

More information

The Velocities of Gas Molecules

The Velocities of Gas Molecules he Velocities of Gas Molecules by Flick Colean Departent of Cheistry Wellesley College Wellesley MA 8 Copyright Flick Colean 996 All rights reserved You are welcoe to use this docuent in your own classes

More information

A Gas Law And Absolute Zero Lab 11

A Gas Law And Absolute Zero Lab 11 HB 04-06-05 A Gas Law And Absolute Zero Lab 11 1 A Gas Law And Absolute Zero Lab 11 Equipent safety goggles, SWS, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution

More information

What Is Required? You need to find the final temperature of an iron ring heated by burning alcohol. 4.95 g

What Is Required? You need to find the final temperature of an iron ring heated by burning alcohol. 4.95 g Calculatig Theral Eergy i a Bob Calorieter (Studet textbook page 309) 31. Predict the fial teperature of a 5.00 10 2 g iro rig that is iitially at 25.0 C ad is heated by cobustig 4.95 g of ethaol, C 2

More information

Work, Energy, Conservation of Energy

Work, Energy, Conservation of Energy This test covers Work, echanical energy, kinetic energy, potential energy (gravitational and elastic), Hooke s Law, Conservation of Energy, heat energy, conservative and non-conservative forces, with soe

More information

First Law, Heat Capacity, Latent Heat and Enthalpy

First Law, Heat Capacity, Latent Heat and Enthalpy First Law, Heat Caacity, Latent Heat and Enthaly Stehen R. Addison January 29, 2003 Introduction In this section, we introduce the first law of thermodynamics and examine sign conentions. Heat and Work

More information

1.3 Saturation vapor pressure. 1.3.1 Vapor pressure

1.3 Saturation vapor pressure. 1.3.1 Vapor pressure 1.3 Saturation vaor ressure Increasing temerature of liquid (or any substance) enhances its evaoration that results in the increase of vaor ressure over the liquid. y lowering temerature of the vaor we

More information

Chapter 5. Principles of Unsteady - State Heat Transfer

Chapter 5. Principles of Unsteady - State Heat Transfer Suppleental Material for ransport Process and Separation Process Principles hapter 5 Principles of Unsteady - State Heat ransfer In this chapter, we will study cheical processes where heat transfer is

More information

Thermodynamics worked examples

Thermodynamics worked examples An Introduction to Mechanical Engineering Part hermodynamics worked examles. What is the absolute ressure, in SI units, of a fluid at a gauge ressure of. bar if atmosheric ressure is.0 bar? Absolute ressure

More information

Fugacity, Activity, and Standard States

Fugacity, Activity, and Standard States Fugacity, Activity, and Standard States Fugacity of gases: Since dg = VdP SdT, for an isothermal rocess, we have,g = 1 Vd. For ideal gas, we can substitute for V and obtain,g = nrt ln 1, or with reference

More information

A Gas Law And Absolute Zero

A Gas Law And Absolute Zero A Gas Law And Absolute Zero Equipent safety goggles, DataStudio, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution This experient deals with aterials that are very

More information

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Hoework 7 David McIntyre 453 Mar 5, 004 This print-out should have 4 questions. Multiple-choice questions ay continue on the next colun or page find all choices before aking your selection.

More information

OUTCOME 1. TUTORIAL No. 2 THERMODYNAMIC SYSTEMS

OUTCOME 1. TUTORIAL No. 2 THERMODYNAMIC SYSTEMS UNI 6: ENGINEERING HERMODYNAMICS Unit code: D/60/40 QCF level: 5 Credit value: 5 OUCOME UORIAL No. HERMODYNAMIC SYSEMS. Understand the arameters and characteristics of thermodynamic systems Polytroic rocesses:

More information

1 Adaptive Control. 1.1 Indirect case:

1 Adaptive Control. 1.1 Indirect case: Adative Control Adative control is the attet to redesign the controller while online, by looking at its erforance and changing its dynaic in an autoatic way. Adative control is that feedback law that looks

More information

Kinetic Molecular Theory of Ideal Gases

Kinetic Molecular Theory of Ideal Gases ecture /. Kinetic olecular Theory of Ideal Gases ast ecture. IG is a purely epirical law - solely the consequence of eperiental obserations Eplains the behaior of gases oer a liited range of conditions.

More information

Chapter 18 Homework Answers

Chapter 18 Homework Answers Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

More information

The Reduced van der Waals Equation of State

The Reduced van der Waals Equation of State The Redued van der Waals Equation of State The van der Waals equation of state is na + ( V nb) n (1) V where n is the mole number, a and b are onstants harateristi of a artiular gas, and R the gas onstant

More information

Exergy Calculation. 3.1 Definition of exergy. 3.2 Exergy calculations. 3.2.1. Exergy of environment air

Exergy Calculation. 3.1 Definition of exergy. 3.2 Exergy calculations. 3.2.1. Exergy of environment air Exergy Calculation This chapter is intended to give the user a better knoledge of exergy calculations in Cycle-Tepo. Exergy is not an absolute quantity but a relative one. Therefore, to say soething about

More information

Name Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase.

Name Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase. Skills Worksheet Concept Review Section: Calculating Quantities in Reactions Complete each statement below by writing the correct term or phrase. 1. All stoichiometric calculations involving equations

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start

More information

Lecture L9 - Linear Impulse and Momentum. Collisions

Lecture L9 - Linear Impulse and Momentum. Collisions J. Peraire, S. Widnall 16.07 Dynaics Fall 009 Version.0 Lecture L9 - Linear Ipulse and Moentu. Collisions In this lecture, we will consider the equations that result fro integrating Newton s second law,

More information

Modelling Fine Particle Formation and Alkali Metal Deposition in BFB Combustion

Modelling Fine Particle Formation and Alkali Metal Deposition in BFB Combustion Modelling Fine Particle Foration and Alkali Metal Deposition in BFB Cobustion Jora Jokiniei and Olli Sippula University of Kuopio and VTT, Finland e-ail: jora.jokiniei@uku.fi Flae Days, Naantali 8.-9.01.009

More information

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10 Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force

More information

Thermochemical equations allow stoichiometric calculations.

Thermochemical equations allow stoichiometric calculations. CHEM 1105 THERMOCHEMISTRY 1. Change in Enthalpy ( H) Heat is evolved or absorbed in all chemical reactions. Exothermic reaction: heat evolved - heat flows from reaction mixture to surroundings; products

More information

Salty Waters. Instructions for the activity 3. Results Worksheet 5. Class Results Sheet 7. Teacher Notes 8. Sample results. 12

Salty Waters. Instructions for the activity 3. Results Worksheet 5. Class Results Sheet 7. Teacher Notes 8. Sample results. 12 1 Salty Waters Alost all of the water on Earth is in the for of a solution containing dissolved salts. In this activity students are invited to easure the salinity of a saple of salt water. While carrying

More information

Lesson 44: Acceleration, Velocity, and Period in SHM

Lesson 44: Acceleration, Velocity, and Period in SHM Lesson 44: Acceleration, Velocity, and Period in SHM Since there is a restoring force acting on objects in SHM it akes sense that the object will accelerate. In Physics 20 you are only required to explain

More information

ChE 203 - Physicochemical Systems Laboratory EXPERIMENT 2: SURFACE TENSION

ChE 203 - Physicochemical Systems Laboratory EXPERIMENT 2: SURFACE TENSION ChE 203 - Physicocheical Systes Laboratory EXPERIMENT 2: SURFACE TENSION Before the experient: Read the booklet carefully. Be aware of the safety issues. Object To deterine the surface tension of water

More information

2. The percent yield is the maximum amount of product that can be produced from the given amount of limiting reactant.

2. The percent yield is the maximum amount of product that can be produced from the given amount of limiting reactant. UNIT 6 stoichiometry practice test True/False Indicate whether the statement is true or false. moles F 1. The mole ratio is a comparison of how many grams of one substance are required to participate in

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

Ideal Gas and Real Gases

Ideal Gas and Real Gases Ideal Gas and Real Gases Lectures in Physical Chemistry 1 Tamás Turányi Institute of Chemistry, ELTE State roerties state roerty: determines the macroscoic state of a hysical system state roerties of single

More information

Final Exam CHM 3410, Dr. Mebel, Fall 2005

Final Exam CHM 3410, Dr. Mebel, Fall 2005 Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture

More information

They may be based on a number of simplifying assumptions, and their use in design should tempered with extreme caution!

They may be based on a number of simplifying assumptions, and their use in design should tempered with extreme caution! 'Rules o Mixtures' are atheatical expressions which give soe property o the coposite in ters o the properties, quantity and arrangeent o its constituents. They ay be based on a nuber o sipliying assuptions,

More information

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro

More information

Lecture 09 Nuclear Physics Part 1

Lecture 09 Nuclear Physics Part 1 Lecture 09 Nuclear Physics Part 1 Structure and Size of the Nucleus Νuclear Masses Binding Energy The Strong Nuclear Force Structure of the Nucleus Discovered by Rutherford, Geiger and Marsden in 1909

More information

Chapter 5, Calculations and the Chemical Equation

Chapter 5, Calculations and the Chemical Equation 1. How many iron atoms are present in one mole of iron? Ans. 6.02 1023 atoms 2. How many grams of sulfur are found in 0.150 mol of sulfur? [Use atomic weight: S, 32.06 amu] Ans. 4.81 g 3. How many moles

More information

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P Boyles Law At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 or k 1 Boyles Law Example ressure olume Initial 2.00 atm 100 cm 3

More information

STABILITY OF PNEUMATIC and HYDRAULIC VALVES

STABILITY OF PNEUMATIC and HYDRAULIC VALVES STABILITY OF PNEUMATIC and HYDRAULIC VALVES These three tutorials will not be found in any examination syllabus. They have been added to the web site for engineers seeking knowledge on why valve elements

More information

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

More information

Chapter 3 Mass Relationships in Chemical Reactions

Chapter 3 Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions Student: 1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative

More information

Calculation Method for evaluating Solar Assisted Heat Pump Systems in SAP 2009. 15 July 2013

Calculation Method for evaluating Solar Assisted Heat Pump Systems in SAP 2009. 15 July 2013 Calculation Method for evaluating Solar Assisted Heat Pup Systes in SAP 2009 15 July 2013 Page 1 of 17 1 Introduction This docuent describes how Solar Assisted Heat Pup Systes are recognised in the National

More information

TOPIC T3: DIMENSIONAL ANALYSIS AUTUMN 2013

TOPIC T3: DIMENSIONAL ANALYSIS AUTUMN 2013 TOPIC T3: DIMENSIONAL ANALYSIS AUTUMN 013 Objectives (1 Be able to deterine the diensions of hysical quantities in ters of fundaental diensions. ( Understand the Princile of Diensional Hoogeneity and its

More information

Chapter 6 Thermodynamics: The First Law

Chapter 6 Thermodynamics: The First Law Key Concepts 6.1 Systems Chapter 6 Thermodynamics: The First Law Systems, States, and Energy (Sections 6.1 6.8) thermodynamics, statistical thermodynamics, system, surroundings, open system, closed system,

More information

7-5.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including:

7-5.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: 7-5.5 Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: NaCl [salt], H 2 O [water], C 6 H 12 O 6 [simple sugar], O 2 [oxygen

More information

Answer: Same magnitude total momentum in both situations.

Answer: Same magnitude total momentum in both situations. Page 1 of 9 CTP-1. In which situation is the agnitude of the total oentu the largest? A) Situation I has larger total oentu B) Situation II C) Sae agnitude total oentu in both situations. I: v 2 (rest)

More information

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

More information

GAS TURBINE PERFORMANCE WHAT MAKES THE MAP?

GAS TURBINE PERFORMANCE WHAT MAKES THE MAP? GAS TURBINE PERFORMANCE WHAT MAKES THE MAP? by Rainer Kurz Manager of Systems Analysis and Field Testing and Klaus Brun Senior Sales Engineer Solar Turbines Incororated San Diego, California Rainer Kurz

More information

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790. CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

THE BAROMETRIC FALLACY

THE BAROMETRIC FALLACY THE BAROMETRIC FALLACY It is often assumed that the atmosheric ressure at the surface is related to the atmosheric ressure at elevation by a recise mathematical relationshi. This relationshi is that given

More information

PHYSICS 151 Notes for Online Lecture 2.2

PHYSICS 151 Notes for Online Lecture 2.2 PHYSICS 151 otes for Online Lecture. A free-bod diagra is a wa to represent all of the forces that act on a bod. A free-bod diagra akes solving ewton s second law for a given situation easier, because

More information

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X HOMEWORK 5A Barometer; Boyle s Law 1. The pressure of the first two gases below is determined with a manometer that is filled with mercury (density = 13.6 g/ml). The pressure of the last two gases below

More information

1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams?

1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams? Name: Tuesday, May 20, 2008 1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams? 2 5 1. P2O 5 3. P10O4 2. P5O 2 4. P4O10 2. Which substance

More information

Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction

Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction Introduction Chapter 5 Chemical Reactions and Equations Chemical reactions occur all around us. How do we make sense of these changes? What patterns can we find? 1 2 Copyright The McGraw-Hill Companies,

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phs0 Lectures 4, 5, 6 Moentu and ollisions Ke points: Moentu and ipulse ondition for conservation of oentu and wh How to solve collision probles entre of ass Ref: 9-,,3,4,5,6,7,8,9. Page Moentu is a vector:

More information

Measuring relative phase between two waveforms using an oscilloscope

Measuring relative phase between two waveforms using an oscilloscope Measuring relative hase between two waveforms using an oscilloscoe Overview There are a number of ways to measure the hase difference between two voltage waveforms using an oscilloscoe. This document covers

More information

Chem 338 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.13, 5.15, 5.17, 5.21

Chem 338 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.13, 5.15, 5.17, 5.21 Chem 8 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.1, 5.15, 5.17, 5.21 5.2) The density of rhombic sulfur is 2.070 g cm - and that of monoclinic sulfur is 1.957 g cm -. Can

More information

Version 001 test 1 review tubman (IBII201516) 1

Version 001 test 1 review tubman (IBII201516) 1 Version 001 test 1 review tuban (IBII01516) 1 This print-out should have 44 questions. Multiple-choice questions ay continue on the next colun or page find all choices before answering. Crossbow Experient

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

Online Appendix I: A Model of Household Bargaining with Violence. In this appendix I develop a simple model of household bargaining that

Online Appendix I: A Model of Household Bargaining with Violence. In this appendix I develop a simple model of household bargaining that Online Appendix I: A Model of Household Bargaining ith Violence In this appendix I develop a siple odel of household bargaining that incorporates violence and shos under hat assuptions an increase in oen

More information

Properties of Pure Substances

Properties of Pure Substances ure Substance roperties o ure Substances A substance that has a ixed cheical coposition throuhout is called a pure substance such as water, air, and nitroen. A pure substance does not hae to be o a sinle

More information

Chemical Equations and Chemical Reactions. Chapter 8.1

Chemical Equations and Chemical Reactions. Chapter 8.1 Chemical Equations and Chemical Reactions Chapter 8.1 Objectives List observations that suggest that a chemical reaction has taken place List the requirements for a correctly written chemical equation.

More information

Physics 211: Lab Oscillations. Simple Harmonic Motion.

Physics 211: Lab Oscillations. Simple Harmonic Motion. Physics 11: Lab Oscillations. Siple Haronic Motion. Reading Assignent: Chapter 15 Introduction: As we learned in class, physical systes will undergo an oscillatory otion, when displaced fro a stable equilibriu.

More information

Chapter 1 The Atomic Nature of Matter

Chapter 1 The Atomic Nature of Matter Chapter 1 The Atomic Nature of Matter 6. Substances that cannot be decomposed into two or more simpler substances by chemical means are called a. pure substances. b. compounds. c. molecules. d. elements.

More information

Unit 4: The Mole and Chemical Composition UNIT 4: THE MOLE AND CHEMICAL COMPOSITION

Unit 4: The Mole and Chemical Composition UNIT 4: THE MOLE AND CHEMICAL COMPOSITION Uit 4: The ole ad Cheical Copositio Cheistry UNIT 4: THE OLE AND CHEICAL COPOSITION Chapter 7: The ole ad Cheical Copositio 7.1 & 7.: Avogadro s Nuber ad olar Coversio & Relative Atoic ass ad Cheical Forulas

More information

Chapter 13 Chemical Kinetics

Chapter 13 Chemical Kinetics Chapter 13 Chemical Kinetics Student: 1. The units of "reaction rate" are A. L mol -1 s -1. B. L 2 mol -2 s -1. C. s -1. D. s -2. E. mol L -1 s -1. 2. For the reaction BrO 3 - + 5Br - + 6H + 3Br 2 + 3H

More information

be the mass flow rate of the system input stream, and m be the mass flow rates of the system output stream, then Vout V in in out out

be the mass flow rate of the system input stream, and m be the mass flow rates of the system output stream, then Vout V in in out out Chater 4 4. Energy Balances on Nonreactive Processes he general energy balance equation has the form Accumulation Inut Outut Heat added = + of Energy of Energy of Energy to System Work by done System Let

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Test Review # 9. Chemistry R: Form TR9.13A

Test Review # 9. Chemistry R: Form TR9.13A Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

Pressure Drop in Air Piping Systems Series of Technical White Papers from Ohio Medical Corporation

Pressure Drop in Air Piping Systems Series of Technical White Papers from Ohio Medical Corporation Pressure Dro in Air Piing Systems Series of Technical White Paers from Ohio Medical Cororation Ohio Medical Cororation Lakeside Drive Gurnee, IL 600 Phone: (800) 448-0770 Fax: (847) 855-604 info@ohiomedical.com

More information

Homework 8. problems: 10.40, 10.73, 11.55, 12.43

Homework 8. problems: 10.40, 10.73, 11.55, 12.43 Hoework 8 probles: 0.0, 0.7,.55,. Proble 0.0 A block of ass kg an a block of ass 6 kg are connecte by a assless strint over a pulley in the shape of a soli isk having raius R0.5 an ass M0 kg. These blocks

More information

As we have seen, there is a close connection between Legendre symbols of the form

As we have seen, there is a close connection between Legendre symbols of the form Gauss Sums As we have seen, there is a close connection between Legendre symbols of the form 3 and cube roots of unity. Secifically, if is a rimitive cube root of unity, then 2 ± i 3 and hence 2 2 3 In

More information

Balancing Chemical Equations

Balancing Chemical Equations Balancing Chemical Equations Academic Success Center Science Tutoring Area Science Tutoring Area Law of Conservation of Mass Matter cannot be created nor destroyed Therefore the number of each type of

More information

Applying Multiple Neural Networks on Large Scale Data

Applying Multiple Neural Networks on Large Scale Data 0 International Conference on Inforation and Electronics Engineering IPCSIT vol6 (0) (0) IACSIT Press, Singapore Applying Multiple Neural Networks on Large Scale Data Kritsanatt Boonkiatpong and Sukree

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12. Gases and the Kinetic-Molecular Theory CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

More information

Exam 4 Practice Problems false false

Exam 4 Practice Problems false false Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids

More information

ESTIMATION OF THE DEMAND FOR RESIDENTIAL WATER IN A STONE- GEARY FORM AND THE CHOICE OF THE PRICE VARIABLE MARIE-ESTELLE BINET. Associate Professor

ESTIMATION OF THE DEMAND FOR RESIDENTIAL WATER IN A STONE- GEARY FORM AND THE CHOICE OF THE PRICE VARIABLE MARIE-ESTELLE BINET. Associate Professor ESTIMATION OF THE DEMAND FOR RESIDENTIAL WATER IN A STONE- GEARY FORM AND THE CHOICE OF THE PRICE VARIABLE MARIE-ESTELLE BINET Associate Professor arie-estelle.binet@univ-rennes1.fr CREM (UMR 611 CNRS),

More information

Problem Solving. Stoichiometry of Gases

Problem Solving. Stoichiometry of Gases Skills Worksheet Problem Solving Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations.

More information

Internet Electronic Journal of Molecular Design

Internet Electronic Journal of Molecular Design ISSN 1538 6414 Internet Electronic Journal of Molecular Design June 2003, Volue 2, Nuber 6, Pages 375 382 Editor: Ovidiu Ivanciuc Special issue dedicated to Professor Haruo Hosoya on the occasion of the

More information

INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION. 37 74 20 40 60 80 m/e

INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION. 37 74 20 40 60 80 m/e CHM111(M)/Page 1 of 5 INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION SECTION A Answer ALL EIGHT questions. (52 marks) 1. The following is the mass spectrum

More information

Measurement Methods for Single- and Multi-Component Gas Adsorption Equilibria

Measurement Methods for Single- and Multi-Component Gas Adsorption Equilibria Measureent Methods for Single- and Multi-Coponent Gas Adsorption Equilibria JUERGEN U. KELLER, FRIEDER DREISBACH 1), NADIA IOSSIFOVA, MARC SEELBACH, WOLFGANG ZIMMERMANN AND REINER STAUDT 2) Inst. Fluid-

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may

More information

Chemistry: Chemical Equations

Chemistry: Chemical Equations Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 1.8 B) 0.55

More information

The Mathematics of Pumping Water

The Mathematics of Pumping Water The Matheatics of Puping Water AECOM Design Build Civil, Mechanical Engineering INTRODUCTION Please observe the conversion of units in calculations throughout this exeplar. In any puping syste, the role

More information

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Version B UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) Version B DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004 Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

More information

Extended-Horizon Analysis of Pressure Sensitivities for Leak Detection in Water Distribution Networks: Application to the Barcelona Network

Extended-Horizon Analysis of Pressure Sensitivities for Leak Detection in Water Distribution Networks: Application to the Barcelona Network 2013 European Control Conference (ECC) July 17-19, 2013, Zürich, Switzerland. Extended-Horizon Analysis of Pressure Sensitivities for Leak Detection in Water Distribution Networks: Application to the Barcelona

More information

Use of extrapolation to forecast the working capital in the mechanical engineering companies

Use of extrapolation to forecast the working capital in the mechanical engineering companies ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL 2014. Vol. 1. No. 1. 23 28 Use of extrapolation to forecast the working capital in the echanical engineering copanies A. Cherep, Y. Shvets Departent of finance

More information

Mole Notes.notebook. October 29, 2014

Mole Notes.notebook. October 29, 2014 1 2 How do chemists count atoms/formula units/molecules? How do we go from the atomic scale to the scale of everyday measurements (macroscopic scale)? The gateway is the mole! But before we get to the

More information

ON SELF-ROUTING IN CLOS CONNECTION NETWORKS. BARRY G. DOUGLASS Electrical Engineering Department Texas A&M University College Station, TX 77843-3128

ON SELF-ROUTING IN CLOS CONNECTION NETWORKS. BARRY G. DOUGLASS Electrical Engineering Department Texas A&M University College Station, TX 77843-3128 ON SELF-ROUTING IN CLOS CONNECTION NETWORKS BARRY G. DOUGLASS Electrical Engineering Departent Texas A&M University College Station, TX 778-8 A. YAVUZ ORUÇ Electrical Engineering Departent and Institute

More information

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K 1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what

More information

Mr. Bracken. Multiple Choice Review: Thermochemistry

Mr. Bracken. Multiple Choice Review: Thermochemistry Mr. Bracken AP Chemistry Name Period Multiple Choice Review: Thermochemistry 1. If this has a negative value for a process, then the process occurs spontaneously. 2. This is a measure of how the disorder

More information

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass

More information

Problem Solving. Percentage Yield

Problem Solving. Percentage Yield Skills Worksheet Problem Solving Percentage Yield Although we can write perfectly balanced equations to represent perfect reactions, the reactions themselves are often not perfect. A reaction does not

More information