# Level Set Evolution Without Re-initialization: A New Variational Formulation

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Level Set Evolution Without Re-initialization: A New Variational Formulation Chunming Li 1, Chenyang Xu 2, Changfeng Gui 3, and Martin D. Fox 1 1 Department of Electrical and 2 Department of Imaging 3 Department of Mathematics Computer Engineering and Visualization University of Connecticut University of Connecticut Siemens Corporate Research Storrs, CT 6269, USA Storrs, CT 6269, USA Princeton, NJ 8, USA Abstract In this paper, we present a new variational formulation for geometric active contours that forces the level set function to be close to a signed distance function, and therefore completely eliminates the need of the costly re-initialization procedure. Our variational formulation consists of an internal energy term that penalizes the deviation of the level set function from a signed distance function, and an external energy term that drives the motion of the zero level set toward the desired image features, such as object boundaries. The resulting evolution of the level set function is the gradient flow that minimizes the overall energy functional. The proposed variational level set formulation has three main advantages over the traditional level set formulations. First, a significantly larger time step can be used for numerically solving the evolution partial differential equation, and therefore speeds up the curve evolution. Second, the level set function can be initialized with general functions that are more efficient to construct and easier to use in practice than the widely used signed distance function. Third, the level set evolution in our formulation can be easily implemented by simple finite difference scheme and is computationally more efficient. The proposed algorithm has been applied to both simulated and real images with promising results. 1. Introduction In recent years, a large body of work on geometric active contours, i.e., active contours implemented via level set methods, has been proposed to address a wide range of image segmentation problems in image processing and computer vision (cf. [3,, 7]). Level set methods were first introduced by Osher and Sethian [11] for capturing moving fronts. Active contours were introduced by Kass, Witkins, and Terzopoulos [1] for segmenting objects in images using dynamic curves. The existing active contour models can be broadly classified as either parametric active contour models or geometric active contour models according to their representation and implementation. In particular, the parametric active contours [1, 2] are represented explicitly as parameterized curves in a Lagrangian framework, while the geometric active contours [ 7] are represented implicitly as level sets of a two-dimensional function that evolves in an Eulerian framework. Geometric active contours are independently introduced by Caselles et al. [] and Malladi et al. [7], respectively. These models are based on curve evolution theory [1] and level set method [17]. The basic idea is to represent contours as the zero level set of an implicit function defined in a higher dimension, usually referred as the level set function, and to evolve the level set function according to a partial differential equation (PDE). This approach presents several advantages [4] over the traditional parametric active contours. First, the contours represented by the level set function may break or merge naturally during the evolution, and the topological changes are thus automatically handled. Second, the level set function always remains a function on a fixed grid, which allows efficient numerical schemes. Early geometric active contour models (cf. [ 7]) are typically derived using a Lagrangian formulation that yields a certain evolution PDE of a parametrized curve. This PDE is then converted to an evolution PDE for a level set function using the related Eulerian formulation from level set methods. As an alternative, the evolution PDE of the level set function can be directly derived from the problem of minimizing a certain energy functional defined on the level set function. This type of variational methods are known as variational level set methods [8, 9, 14]. Compared with pure PDE driven level set methods, the variational level set methods are more convenient and natural for incorporating additional information, such as region-based information [8] and shape-prior information [9], into energy functionals that are directly formulated in the level set domain, and therefore produce more robust results. For examples, Chan and Vese [8] proposed an ac-

3 ensuring desirable results. From the practical viewpoints, the re-initialization process can be quite complicated, expensive, and have subtle side effects. Moreover, most of the level set methods are fraught with their own problems, such as when and how to re-initialize the level set function to a signed distance function [12]. There is no simple answer that applies generally [] to date. The variational level set formulation proposed in this paper can be easily implemented by simple finite difference scheme, without the need of re-initialization. 3. Variational Level Set Formulation of Curve Evolution Without Re-initialization 3.1. General Variational Level Set Formulation with Penalizing Energy As discussed before, it is crucial to keep the evolving level set function as an approximate signed distance function during the evolution, especially in a neighborhood around the zero level set. It is well known that a signed distance function must satisfy a desirable property of φ = 1. Conversely, any function φ satisfying φ = 1 is the signed distance function plus a constant [19]. Naturally, we propose the following integral P(φ) = Ω 1 2 ( φ 1)2 dxdy (3) as a metric to characterize how close a function φ is to a signed distance function in Ω R 2. This metric will play a key role in our variational level set formulation. With the above defined functional P(φ), we propose the following variational formulation E(φ) = µp(φ) + E m (φ) (4) where µ > is a parameter controlling the effect of penalizing the deviation of φ from a signed distance function, and E m (φ) is a certain energy that would drive the motion of the zero level curve of φ. In this paper, we denote by E the Gateaux derivative (or first variation) [18] of the functional E, and the following evolution equation: t = E is the gradient flow [18] that minimizes the functional E. For a particular functional E(φ) defined explicitly in terms of φ, the Gateaux derivative can be computed and expressed in terms of the function φ and its derivatives [18]. We will focus on applying the variational formulation in (4) to active contours for image segmentation, so that the zero level curve of φ can evolve to the desired features in the image. For this purpose, the energy E m will be defined () as a functional that depends on image data (see below), and therefore we call it the external energy. Accordingly, the energy P(φ) is called the internal energy of the function φ, since it is a function of φ only. During the evolution of φ according to the gradient flow () that minimizes the functional (4), the zero level curve will be moved by the external energy E m. Meanwhile, due to the penalizing effect of the internal energy, the evolving function φ will be automatically maintained as an approximate signed distance function during the evolution according to the evolution (). Therefore the re-initialization procedure is completely eliminated in the proposed formulation. This concept is demonstrated further in the context of active contours next Variational Level Set Formulation of Active Contours Without Re-initialization In image segmentation, active contours are dynamic curves that moves toward the object boundaries. To achieve this goal, we explicitly define an external energy that can move the zero level curve toward the object boundaries. Let I be an image, and g be the edge indicator function defined by 1 g = 1 + G σ I 2, where G σ is the Gaussian kernel with standard deviation σ. We define an external energy for a function φ(x, y) as below E g,λ,ν (φ) = λl g (φ) + νa g (φ) (6) where λ > and ν are constants, and the terms L g (φ) and A g (φ) are defined by L g (φ) = gδ(φ) φ dxdy (7) and Ω A g (φ) = Ω gh( φ)dxdy, (8) respectively, where δ is the univariate Dirac function, and H is the Heaviside function. Now, we define the following total energy functional E(φ) = µp(φ) + E g,λ,ν (φ) (9) The external energy E g,λ,ν drives the zero level set toward the object boundaries, while the internal energy µp(φ) penalizes the deviation of φ from a signed distance function during its evolution. To understand the geometric meaning of the energy L g (φ), we suppose that the zero level set of φ can be represented by a differentiable parameterized curve C(p), p [, 1]. It is well known [9] that the energy functional L g (φ) in (7) computes the length of the zero level curve of φ in the conformal metric ds = g(c(p)) C (p) dp. The

4 Figure 1. Evolution of level set function φ. Row 1: the evolution of the level set function φ. Row 2: the evolution of the zero level curve of the corresponding level set function φ in Row 1. energy functional A g (φ) in (8) is introduced to speed up curve evolution. Note that, when the function g is constant 1, the energy functional in (8) is the area of the region Ω φ = {(x, y) φ(x, y) < } [17]. The energy functional A g (φ) in (8) can be viewed as the weighted area of Ω φ. The coefficient ν of A g can be positive or negative, depending on the relative position of the initial contour to the object of interest. For example, if the initial contours are placed outside the object, the coefficient ν in the weighted area term should take positive value, so that the contours can shrink faster. If the initial contours are placed inside the object, the coefficient ν should take negative value to speed up the expansion of the contours. By calculus of variations [18], the Gateaux derivative (first variation) of the functional E in (9) can be written as E = µ[ φ div( φ φ )] λδ(φ)div(g φ φ ) νgδ(φ) where is the Laplacian operator. Therefore, the function φ that minimizes this functional satisfies the Euler-Lagrange equation E =. The steepest descent process for minimization of the functional E is the following gradient flow: t φ φ = µ[ φ div( )] + λδ(φ)div(g φ φ ) + νgδ(φ) (1) This gradient flow is the evolution equation of the level set function in the proposed method. The second and the third term in the right hand side of (1) correspond to the gradient flows of the energy functional λl g (φ) and νa g (φ), respectively, and are responsible of driving the zero level curve towards the object boundaries. To explain the effect of the first term, which is associated to the internal energy µp(φ), we notice that the gradient flow φ div( φ φ ) = div[(1 1 φ ) φ] has the factor (1 1 φ ) as diffusion rate. If φ > 1, the diffusion rate is positive and the effect of this term is the usual diffusion, i.e. making φ more even and therefore reduce the gradient φ. If φ < 1, the term has effect of reverse diffusion and therefore increase the gradient. We use an image of a circular object, as shown in Fig. 1, to show the evolution of φ according to Eq. (1). In Fig. 1, the first figure in the upper row shows the initial level set function, and its zero level curve is plotted in first figure in the lower row. The upper row shows the evolution of the level set function φ, and the lower row shows the corresponding zero level curve of φ. The fourth column is the converged result of the evolution. As we can see from this figure, during the evolution, the evolving level set function φ is maintained very close to a signed distance function. 4. Implementation 4.1. Numerical Scheme In practice, the Dirac function δ(x) in (1) is slightly smoothed as the following function δ ε (x) defined by: {, x > ε δ ε (x) = 1 πx 2ε [1 + cos( ε )], x ε. (11)

5 We use the regularized Dirac δ ε (x) with ε = 1., for all the experiments in this paper. Because of the diffusion term introduced by our penalizing energy, we no longer need the upwind scheme [4] as in the traditional level set methods. Instead, all the spatial partial derivatives x and y are approximated by the central difference, and the temporal partial derivative t is approximated by the forward difference. The approximation of (1) by the above difference scheme can be simply written as φ k+1 i,j φ k i,j τ = L(φ k i,j) (12) where L(φ i,j ) is the approximation of the right hand side in (1) by the above spatial difference scheme. The difference equation (12) can be expressed as the following iteration: φ k+1 i,j = φ k i,j + τl(φ k i,j) (13) 4.2. Selection of Time Step In implementing the proposed level set method, the time step τ can be chosen significantly larger than the time step used in the traditional level set methods. We have tried a large range of the time step τ in our experiments, from.1 to 1.. For example, we have used τ =. and µ =.4 for the image in Fig. 1, and the curve evolution only takes iterations, while the curve converge to the object boundary precisely. A natural question is: what is the range of the time step τ for which the iteration (13) is stable? From our experiments, we have found that the time step τ and the coefficient µ must satisfy τµ < 1 4 in the difference scheme described in Section 4.1, in order to maintain stable level set evolution. Using larger time step can speed up the evolution, but may cause error in the boundary location if the time step is chosen too large. There is a tradeoff between choosing larger time step and accuracy in boundary location. Usually, we use τ 1. for the most images Flexible Initialization of Level Set Function In traditional level set methods, it is necessary to initialize the level set function φ as a signed distance function φ. If the initial level set function is significantly different from a signed distance function, then the re-initialization schemes are not able to re-initialize the function to a signed distance function. In our formulation, not only the reinitialization procedure is completely eliminated, but also the level set function φ is no longer required to be initialized as a signed distance function. Here, we propose the following functions as the initial function φ. Let Ω be a subset in the image domain Ω, and Ω be all the points on the boundaries of Ω, which Figure 2. Isocontours plot of the level set function φ, using the proposed initial function φ defined by (14) with ρ = 6. Seven isocontours are plotted at the levels -3, -2, -1,, 1, 2, and 3, with the dark thicker curves being the zero level curves. can be efficiently identified by some simple morphological operations. Then, the initial function φ is defined as ρ, (x, y) Ω Ω φ (x, y) = (x, y) Ω (14) ρ Ω Ω where ρ > is a constant. We suggest to choose ρ larger than 2ε, where ε is the width in the definition of the regularized Dirac function δ ε in (11). Unlike signed distance functions, which are computed from a contour, the proposed initial level set functions are computed from an arbitrary region Ω in the image domain Ω. Such region-based initialization of level set function is not only computationally efficient, but also allows for flexible applications in some situations. For example, if the regions of interest can be roughly and automatically obtained in some way, such as thresholding, then we can use these roughly obtained regions as the region Ω to construct the initial level set function φ. Then, the initial level set function will evolve stably according to the evolution equation, with its zero level curve converged to the exact boundary of the region of interest. To demonstrate the effectiveness of the proposed initialization scheme, we apply the proposed initialization and evolution model for the same image in Fig. 1. The initial level set function φ is constructed as a function defined by (14) with ρ = 6 and Ω containing two separate regions. By definition, this initial function φ only takes three values: -6,, and 6, and its iscontours are

6 (a) The initial contour. (b) iterations (a) The initial contour. (b) iterations (c) 4 iterations (d) 6 iterations (c) 6 iterations (d) 8 iterations Figure 3. Result for a real image of a cup and a bottle, with λ =., µ =.4, ν = 3., and time step τ =.. Figure 4. Result for a real microscope cell image, with λ =., µ =.4, ν = 1., and time step τ =.. plotted in the first figure in Fig. 2. The evolution of φ from its initial values φ is shown in Fig. 2 by plotting the level curves at seven levels -3, -2, -1,, 1, 2, and 3, with the dark thicker ones as the zero level curves (the ones in the middle of the seven isocontours). As clearly seen in this figure, the level set function eventually become very close to a signed distance function, whose isocontours at these seven levels are almost equally spaced, with the distance between two adjacent isocontours very close to 1. Note that this kind of initial function φ significantly deviates from a signed distance function. During the evolution, the level set function φ may not be able to keep its profile globally as an approximate signed distance function in the entire image domain. But the evolution based on the proposed penalizing diffusion still maintains the level set function φ as an approximate signed distance function near the zero level set. Indeed, we have demonstrated this desirable property in the example shown in Fig. 2.. Experimental Results The proposed variational level set method has been applied to a variety of synthetic and real images in different modalities. In all the experimental results shown in this section, the level set functions are initialized as the function φ defined by (14) with ρ = 6 and some regions Ω. For example, Fig. 3 shows the result on a 1 - pixel image of a bottle and a cup. The initial level set φ is computed from the region enclosed by the quadrilateral enclosing, as shown in Fig. 3(a). For this image, we used the parameters λ =., µ =.4, ν = 3., and time step τ =., which is significantly larger than the time step used for traditional level set methods. The curve evolution takes 6 iterations. Fig. 4 shows the evolution of the contour on a pixel microscope image of two cells. As we can see, some parts of the boundaries of the two cells are quite blurry. We use this image to demonstrate the robustness of our method in the presence of weak object boundaries. We used the region below the straight line, shown in Fig. 4(a), as the region Ω for computing the initial level set function φ. As shown in Fig. 4, this initial straight line successfully evolved to the object boundaries, and the shape of them are recovered very well. This result demonstrates desirable performance of our method in extracting weak object boundaries, which is usually very difficult for the traditional level set methods to apply [8]. Our method has also been applied to ultrasound images. Ultrasound images are notorious for the speckle noise and low signal-to-noise ratio, and therefore is very difficult to apply traditional methods to extract the object boundaries. Fig. shows the results of our method for a pixel ultrasound image of carotid artery. The boundary of the carotid artery was successfully extracted by our method despite the presence of strong noise.

7 (a) The initial contour. (b) 1 iterations [3] X. Han, C. Xu and J. Prince, A topology preserving level set method for geometric deformable models, IEEE Trans. Patt. Anal. Mach. Intell., vol., pp , 3. [4] J. A. Sethian, Level set methods and fast marching methods, Cambridge: Cambridge University Press, [] V. Caselles, F. Catte, T. Coll, and F. Dibos, A geometric model for active contours in image processing, Numer. Math., vol. 66, pp. 1-31, [6] V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active contours, Int l J. Comp. Vis., vol. 22, pp , [7] R. Malladi, J. A. Sethian, and B. C. Vemuri, Shape modeling with front propagation: a level set approach, IEEE Trans. Patt. Anal. Mach. Intell., vol. 17, pp. 8-17, 199. [8] T. Chan and L. Vese, Active contours without edges, IEEE Trans. Imag. Proc., vol. 1, pp , 1. (c) iterations (d) 3 iterations Figure. Result for an ultrasound image of carotid artery, with λ = 6., µ =.1, ν = 3., and time step τ = Conclusions In this paper, we present a new variational level set formulation that completely eliminates the need of the reinitialization. The proposed level set method can be easily implemented by using simple finite difference scheme and is computationally more efficient than the traditional level set methods. In our method, significantly larger time step can be used to speed up the curve evolution, while maintaining stable evolution of the level set function. Moreover, the level set function is no longer required to be initialized as a signed distance function. We propose a region-based initialization of level set function, which is not only computationally more efficient than computing signed distance function, but also allows for more flexible applications. We demonstrate the performance of the proposed algorithm using both simulated and real images, and in particular its robustness to the presence of weak boundaries and strong noise. References [1] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: active contour models, Int l J. Comp. Vis., vol. 1, pp , [2] C. Xu and J. Prince, Snakes, shapes, and gradient vector flow, IEEE Trans. Imag. Proc., vol. 7, pp , [9] B. Vemuri and Y. Chen, Joint image registration and segmentation, Geometric Level Set Methods in Imaging, Vision, and Graphics, Springer, pp , 3. [1] B. B. Kimia, A. Tannenbaum, and S. Zucker, Shapes, shocks, and deformations I: the components of twodimensional shape and the reaction-diffusion space, Int l J. Comp. Vis., vol., pp , 199. [11] S. Osher, J. A. Sethian, Fronts propagating with curvaturedependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., vol. 79, pp , [12] J. Gomes and O. Faugeras, Reconciling distance functions and Level Sets, J. Visiual Communic. and Imag. Representation, vol. 11, pp ,. [13] M. Sussman, P. Smereka, and S. Osher, A level set method for momputing solutions to incompressible two-phase flow, J. Comp. Phys., vol. 114, pp , [14] H. Zhao, T. Chan, B. Merriman, and S. Osher, A variational level set approach to multiphase motion, J. Comp. Phys., vol. 127, pp , [] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A PDE-based fast local level set method, J. Comp. Phys., vol., pp , [16] M. Sussman and E. Fatemi An efficient, interfacepreserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM J. Sci. Comp., vol., pp , [17] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2. [18] L. Evans Partial Differential Equations, Providence: American Mathematical Society, [19] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, New York: Springer-Verlag, 1983.

### (1) I. INTRODUCTION (2)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 12, DECEMBER 2010 3243 Distance Regularized Level Set Evolution and Its Application to Image Segmentation Chunming Li, Chenyang Xu, Senior Member, IEEE,

### Re-initialization Free Level Set Evolution via Reaction Diffusion

1 Re-initialization Free Level Set Evolution via Reaction Diffusion Kaihua Zhang, Lei Zhang, Member, IEEE, Huihui Song and David Zhang, Fellow, IEEE Abstract This paper presents a novel reaction-diffusion

### On the Relationship between Parametric and Geometric Active Contours

In Proc. of 34th Asilomar Conference on Signals, Systems, and Computers, pp. 483-489, October 2000 On the Relationship between Parametric and Geometric Active Contours Chenyang Xu Center for Imaging Science

### Efficient initialization for constrained active surfaces, applications in 3D Medical images

Efficient initialization for constrained active surfaces, applications in 3D Medical images Roberto Ardon 1,2 and Laurent D. Cohen 2 1 MEDISYS-Philips France, 51, rue Carnot, 92156 Suresnes, France 2 CEREMADE-Universit

### Edge Strength Functions as Shape Priors in Image Segmentation

Edge Strength Functions as Shape Priors in Image Segmentation Erkut Erdem, Aykut Erdem, and Sibel Tari Middle East Technical University, Department of Computer Engineering, Ankara, TR-06531, TURKEY, {erkut,aykut}@ceng.metu.edu.tr,

### Tracking Distributions with an Overlap Prior

Tracking Distributions with an Overlap Prior Ismail Ben Ayed, Shuo Li GE Healthcare London, ON, Canada {ismail.benayed, shuo.li}@ge.com Ian Ross London Health Sciences Centre London, ON, Canada ian.ross@lhsc.on.ca

### Variational approach to restore point-like and curve-like singularities in imaging

Variational approach to restore point-like and curve-like singularities in imaging Daniele Graziani joint work with Gilles Aubert and Laure Blanc-Féraud Roma 12/06/2012 Daniele Graziani (Roma) 12/06/2012

### Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode Value

IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode

### Analecta Vol. 8, No. 2 ISSN 2064-7964

EXPERIMENTAL APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN ENGINEERING PROCESSING SYSTEM S. Dadvandipour Institute of Information Engineering, University of Miskolc, Egyetemváros, 3515, Miskolc, Hungary,

### A Surface Reconstruction Method for Highly Noisy Point Clouds

A Surface Reconstruction Method for Highly Noisy Point Clouds DanFeng Lu 1, HongKai Zhao 2, Ming Jiang 1, ShuLin Zhou 1, and Tie Zhou 1 1 LMAM, School of Mathematical Sciences, Peking Univ. 2 Department

### Copyright 2010 IEEE. Published in the IEEE 2100 International Conference on Image Processing (ICIP 2010), scheduled for September 26-29, 2010 in Hong

Copyright 2010 IEEE. Published in the IEEE 2100 International Conference on Image Processing (ICIP 2010), scheduled for September 26-29, 2010 in Hong Kong. Personal use of this material is permitted. However,

### Mean-Shift Tracking with Random Sampling

1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of

### A binary level set model and some applications to Mumford-Shah image segmentation. Lie, Johan; Lysaker, Marius; Tai, Xue Cheng

Title A binary level set model and some applications to Mumford-Shah image segmentation Author(s) Lie, Johan; Lysaker, Marius; Tai, Xue Cheng Citation Lie, J., Lysaker, M., & Tai, X. C. (2006). A binary

### A Fundamental Study on the Digital Recognition of Grinding Wheel 1

A Fundamental Study on the Digital Recognition of Grinding Wheel 1 Gong Junfeng *,Xu Xipeng Provincial Key Research La for Stone Machining,Huaqiao University,Quanzhou,Fujian (361) E-mail:dida-gongjunfeng@sohu.com,xpxu@hqu.edu.cn

### DYNAMIC RANGE IMPROVEMENT THROUGH MULTIPLE EXPOSURES. Mark A. Robertson, Sean Borman, and Robert L. Stevenson

c 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

### An Iterative Image Registration Technique with an Application to Stereo Vision

An Iterative Image Registration Technique with an Application to Stereo Vision Bruce D. Lucas Takeo Kanade Computer Science Department Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 Abstract

### Geometric Potential Force for the Deformable Model

S. YEO, X. XIE, I. SAZONOV, P. NITHIARASU: GEOMETRIC POTENTIAL FORCE 1 Geometric Potential Force for the Deformable Model Si Yong Yeo 1 465186@swansea.ac.uk Xianghua Xie 2 x.xie@swansea.ac.uk Igor Sazonov

### Applications to Data Smoothing and Image Processing I

Applications to Data Smoothing and Image Processing I MA 348 Kurt Bryan Signals and Images Let t denote time and consider a signal a(t) on some time interval, say t. We ll assume that the signal a(t) is

### Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data

CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear

### Parallel 3D Image Segmentation of Large Data Sets on a GPU Cluster

Parallel 3D Image Segmentation of Large Data Sets on a GPU Cluster Aaron Hagan and Ye Zhao Kent State University Abstract. In this paper, we propose an inherent parallel scheme for 3D image segmentation

### Removal of Noise from MRI using Spectral Subtraction

International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 3 (2014), pp. 293-298 International Research Publication House http://www.irphouse.com Removal of Noise

### Level Set Framework, Signed Distance Function, and Various Tools

Level Set Framework Geometry and Calculus Tools Level Set Framework,, and Various Tools Spencer Department of Mathematics Brigham Young University Image Processing Seminar (Week 3), 2010 Level Set Framework

### ECE 533 Project Report Ashish Dhawan Aditi R. Ganesan

Handwritten Signature Verification ECE 533 Project Report by Ashish Dhawan Aditi R. Ganesan Contents 1. Abstract 3. 2. Introduction 4. 3. Approach 6. 4. Pre-processing 8. 5. Feature Extraction 9. 6. Verification

### Part-Based Recognition

Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple

### Measuring Line Edge Roughness: Fluctuations in Uncertainty

Tutor6.doc: Version 5/6/08 T h e L i t h o g r a p h y E x p e r t (August 008) Measuring Line Edge Roughness: Fluctuations in Uncertainty Line edge roughness () is the deviation of a feature edge (as

### Types of Elements

chapter : Modeling and Simulation 439 142 20 600 Then from the first equation, P 1 = 140(0.0714) = 9.996 kn. 280 = MPa =, psi The structure pushes on the wall with a force of 9.996 kn. (Note: we could

### Galaxy Morphological Classification

Galaxy Morphological Classification Jordan Duprey and James Kolano Abstract To solve the issue of galaxy morphological classification according to a classification scheme modelled off of the Hubble Sequence,

### Low-resolution Character Recognition by Video-based Super-resolution

2009 10th International Conference on Document Analysis and Recognition Low-resolution Character Recognition by Video-based Super-resolution Ataru Ohkura 1, Daisuke Deguchi 1, Tomokazu Takahashi 2, Ichiro

### Robust Edge Detection Using Mumford-Shah Model and Binary Level Set Method

Robust Edge Detection Using Mumford-Shah Model and Binary Level Set Method Li-Lian Wang 1, Yuying Shi 2, and Xue-Cheng Tai 3 1 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,

### Fast Compressed Sensing Based High Resolution Image Reconstruction

International Journal of New Technology and Research (IJNTR) ISSN:24-4116, Volume-2, Issue-3, March 16 Pages 71-76 Fast Compressed Sensing Based High Resolution Image Reconstruction Dr G Vijay Kumar Abstract

### Multimaterial Meshing of MRI Head Data for Bioelectric Field Simulations

Multimaterial Meshing of MRI Head Data for Bioelectric Field Simulations Ross Whitaker, Robert M. Kirby, Jeroen Sinstra, Miriah Meyer, Martin Cole Scientific Computing and Imaging Institute, University

### 2.2 Creaseness operator

2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared

### Yakushiji, Minamikawachi, Kawachi, Tochigi, Japan 3 Department of Electrical and Electronic Media Engineering,

PAPER Study of a breast tumor extraction algorithm for three-dimensional ultrasound images, using multiple space differentiation filters: Automated breast tumor extraction algorithm with improved accuracy

### ADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING

Development of a Software Tool for Performance Evaluation of MIMO OFDM Alamouti using a didactical Approach as a Educational and Research support in Wireless Communications JOSE CORDOVA, REBECA ESTRADA

### An Overview of the Finite Element Analysis

CHAPTER 1 An Overview of the Finite Element Analysis 1.1 Introduction Finite element analysis (FEA) involves solution of engineering problems using computers. Engineering structures that have complex geometry

### IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: , p-issn: PP

Computer- Aided Fracture Detection Of X-Ray Images R.Aishwariya 1, M.Kalaiselvi Geetha 2, M.Archana 3 1, 2, 3 (Department of Computer Science, Annamalai University, India) ABSTRACT:The usage of medical

Image Segmentation Preview Segmentation subdivides an image to regions or objects Two basic properties of intensity values Discontinuity Edge detection Similarity Thresholding Region growing/splitting/merging

### The QOOL Algorithm for fast Online Optimization of Multiple Degree of Freedom Robot Locomotion

The QOOL Algorithm for fast Online Optimization of Multiple Degree of Freedom Robot Locomotion Daniel Marbach January 31th, 2005 Swiss Federal Institute of Technology at Lausanne Daniel.Marbach@epfl.ch

### 3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials

3. Interpolation Closing the Gaps of Discretization... Beyond Polynomials Closing the Gaps of Discretization... Beyond Polynomials, December 19, 2012 1 3.3. Polynomial Splines Idea of Polynomial Splines

### CHAPTER 3 Image Segmentation Using Deformable Models

CHAPTER 3 Image Segmentation Using Deformable Models Chenyang Xu The Johns Hopkins University Dzung L. Pham National Institute of Aging Jerry L. Prince The Johns Hopkins University Contents 3.1 Introduction

### Robust and Efficient Implicit Surface Reconstruction for Point Clouds Based on Convexified Image Segmentation

Noname manuscript No. (will be inserted by the editor) Robust and Efficient Implicit Surface Reconstruction for Point Clouds Based on Convexified Image Segmentation Jian Liang Frederick Park Hongkai Zhao

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation

### Quasi-static evolution and congested transport

Quasi-static evolution and congested transport Inwon Kim Joint with Damon Alexander, Katy Craig and Yao Yao UCLA, UW Madison Hard congestion in crowd motion The following crowd motion model is proposed

### A Process Flow for Classification and Clustering of Fruit Fly Gene Expression Patterns

A Process Flow for Classification and Clustering of Fruit Fly Gene Expression Patterns Andreas Heffel, Peter F. Stadler, Sonja J. Prohaska, Gerhard Kauer, Jens-Peer Kuska Santa Fe Institute Department

### Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

### Structural Matching of 2D Electrophoresis Gels using Graph Models

Structural Matching of 2D Electrophoresis Gels using Graph Models Alexandre Noma 1, Alvaro Pardo 2, Roberto M. Cesar-Jr 1 1 IME-USP, Department of Computer Science, University of São Paulo, Brazil 2 DIE,

### OpenFOAM Optimization Tools

OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov h.rusche@wikki-gmbh.de and a.jemcov@wikki.co.uk Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation

### Least Squares Approach for Initial Data Recovery in Dynamic

Computing and Visualiation in Science manuscript No. (will be inserted by the editor) Least Squares Approach for Initial Data Recovery in Dynamic Data-Driven Applications Simulations C. Douglas,2, Y. Efendiev

### Canny Edge Detection

Canny Edge Detection 09gr820 March 23, 2009 1 Introduction The purpose of edge detection in general is to significantly reduce the amount of data in an image, while preserving the structural properties

### Level set equations on surfaces via the Closest Point Method

Level set equations on surfaces via the Closest Point Method Colin B. Macdonald 1, Steven J. Ruuth 2 1 Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A1S6 Canada. e-mail: cbm@sfu.ca

### SbLRS: Shape based Leaf Retrieval System

SbLRS: Shape based Leaf Retrieval System Komal Asrani Department of Information Technology B.B.D.E.C., Lucknow, India Renu Jain Deptt. of C.S.E University Institute of Engineering and Technology, Kanpur,

### Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

Tracking Moving Objects In Video Sequences Yiwei Wang, Robert E. Van Dyck, and John F. Doherty Department of Electrical Engineering The Pennsylvania State University University Park, PA16802 Abstract{Object

### Numerical Methods For Image Restoration

Numerical Methods For Image Restoration CIRAM Alessandro Lanza University of Bologna, Italy Faculty of Engineering CIRAM Outline 1. Image Restoration as an inverse problem 2. Image degradation models:

### METHODS TO ESTIMATE AREAS AND PERIMETERS OF BLOB-LIKE OBJECTS: A COMPARISON

MVA'94 IAPR Workshop on Machine Vision Applications Dec. 13-1 5, 1994, Kawasaki METHODS TO ESTIMATE AREAS AND PERIMETERS OF BLOB-LIKE OBJECTS: A COMPARISON Luren Yang, Fritz Albregtsen, Tor Lgnnestad and

### COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS

COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS B.K. Mohan and S. N. Ladha Centre for Studies in Resources Engineering IIT

### ADVANCES IN AUTOMATIC OPTICAL INSPECTION: GRAY SCALE CORRELATION vs. VECTORAL IMAGING

ADVANCES IN AUTOMATIC OPTICAL INSPECTION: GRAY SCALE CORRELATION vs. VECTORAL IMAGING Vectoral Imaging, SPC & Closed Loop Communication: The Zero Defect SMD Assembly Line Mark J. Norris Vision Inspection

### Robust Treatment of Interfaces for Fluid Flows and Computer Graphics

Robust Treatment of Interfaces for Fluid Flows and Computer Graphics Doug Enright 1 and Ron Fedkiw 2 1 Mathematics Department, University of California, Los Angeles, enright@math.ucla.edu 2 Computer Science

### Accurate and robust image superresolution by neural processing of local image representations

Accurate and robust image superresolution by neural processing of local image representations Carlos Miravet 1,2 and Francisco B. Rodríguez 1 1 Grupo de Neurocomputación Biológica (GNB), Escuela Politécnica

### Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide

### Automatic Liver Segmentation using the Random Walker Algorithm

Automatic Liver Segmentation using the Random Walker Algorithm F. Maier 1,2, A. Wimmer 2,3, G. Soza 2, J. N. Kaftan 2,4, D. Fritz 1,2, R. Dillmann 1 1 Universität Karlsruhe (TH), 2 Siemens Medical Solutions,

### Classification of Fingerprints. Sarat C. Dass Department of Statistics & Probability

Classification of Fingerprints Sarat C. Dass Department of Statistics & Probability Fingerprint Classification Fingerprint classification is a coarse level partitioning of a fingerprint database into smaller

### Computation of crystal growth. using sharp interface methods

Efficient computation of crystal growth using sharp interface methods University of Regensburg joint with John Barrett (London) Robert Nürnberg (London) July 2010 Outline 1 Curvature driven interface motion

### POISSON AND LAPLACE EQUATIONS. Charles R. O Neill. School of Mechanical and Aerospace Engineering. Oklahoma State University. Stillwater, OK 74078

21 ELLIPTICAL PARTIAL DIFFERENTIAL EQUATIONS: POISSON AND LAPLACE EQUATIONS Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 2nd Computer

### Highlight Removal by Illumination-Constrained Inpainting

Highlight Removal by Illumination-Constrained Inpainting Ping Tan Stephen Lin Long Quan Heung-Yeung Shum Microsoft Research, Asia Hong Kong University of Science and Technology Abstract We present a single-image

### 3 Numerical Methods for Convection

3 Numerical Methods for Convection The topic of computational fluid dynamics (CFD) could easily occupy an entire semester indeed, we have such courses in our catalog. The objective here is to eamine some

### Centroid Distance Function and the Fourier Descriptor with Applications to Cancer Cell Clustering

Centroid Distance Function and the Fourier Descriptor with Applications to Cancer Cell Clustering By, Swati Bhonsle Alissa Klinzmann Mentors Fred Park Department of Mathematics Ernie Esser Department of

### Intelligent Recognition Technology using Artificial Neural Network for Graphics

Intelligent Recognition Technology using Artificial Neural Network for Graphics FAN Bin 1, ZENG Xiao-Jing *2,a, ZHAO Zhu 3 1,2,3 College of Information technology and Media HeXi University, Zhangye 734000,

### Lecture 4: Thresholding

Lecture 4: Thresholding c Bryan S. Morse, Brigham Young University, 1998 2000 Last modified on Wednesday, January 12, 2000 at 10:00 AM. Reading SH&B, Section 5.1 4.1 Introduction Segmentation involves

### VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS

VEHICLE TRACKING USING ACOUSTIC AND VIDEO SENSORS Aswin C Sankaranayanan, Qinfen Zheng, Rama Chellappa University of Maryland College Park, MD - 277 {aswch, qinfen, rama}@cfar.umd.edu Volkan Cevher, James

### Binary Image Scanning Algorithm for Cane Segmentation

Binary Image Scanning Algorithm for Cane Segmentation Ricardo D. C. Marin Department of Computer Science University Of Canterbury Canterbury, Christchurch ricardo.castanedamarin@pg.canterbury.ac.nz Tom

### Piecewise Constant Level Set Methods and Image Segmentation

Piecewise Constant Level Set Methods and Image Segmentation Johan Lie 1, Marius Lysaker 2, and Xue-Cheng Tai 1 1 Department of Mathematics, University of Bergen, Joh. Brunsgate 12, N-5008 Bergen, Norway

### An Implementation of Leaf Recognition System using Leaf Vein and Shape

An Implementation of Leaf Recognition System using Leaf Vein and Shape Kue-Bum Lee and Kwang-Seok Hong College of Information and Communication Engineering, Sungkyunkwan University, 300, Chunchun-dong,

### Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001

A comparison of the OpenGIS TM Abstract Specification with the CIDOC CRM 3.2 Draft Martin Doerr ICS-FORTH, Heraklion, Crete Oct 4, 2001 1 Introduction This Mapping has the purpose to identify, if the OpenGIS

### Proc. First Users Conference of the National Library of Medicine's Visible Human Project, active contours free forms Triangle meshes may be imp

Proc. First Users Conference of the National Library of Medicine's Visible Human Project, 1996 1 Creation of Finite Element Models of Human Body based upon Tissue Classied Voxel Representations M. Muller,

### PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

### December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

### Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Parametric Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 8, 2015 1 Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point

### Medical Image Segmentation of PACS System Image Post-processing *

Medical Image Segmentation of PACS System Image Post-processing * Lv Jie, Xiong Chun-rong, and Xie Miao Department of Professional Technical Institute, Yulin Normal University, Yulin Guangxi 537000, China

### A New Robust Algorithm for Video Text Extraction

A New Robust Algorithm for Video Text Extraction Pattern Recognition, vol. 36, no. 6, June 2003 Edward K. Wong and Minya Chen School of Electrical Engineering and Computer Science Kyungpook National Univ.

### TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

### MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

### A Fuzzy System Approach of Feed Rate Determination for CNC Milling

A Fuzzy System Approach of Determination for CNC Milling Zhibin Miao Department of Mechanical and Electrical Engineering Heilongjiang Institute of Technology Harbin, China e-mail:miaozhibin99@yahoo.com.cn

### Geometric Constraints

Simulation in Computer Graphics Geometric Constraints Matthias Teschner Computer Science Department University of Freiburg Outline introduction penalty method Lagrange multipliers local constraints University

### Multiphysics Software Applications in Reverse Engineering

Multiphysics Software Applications in Reverse Engineering *W. Wang 1, K. Genc 2 1 University of Massachusetts Lowell, Lowell, MA, USA 2 Simpleware, Exeter, United Kingdom *Corresponding author: University

### Interactive simulation of an ash cloud of the volcano Grímsvötn

Interactive simulation of an ash cloud of the volcano Grímsvötn 1 MATHEMATICAL BACKGROUND Simulating flows in the atmosphere, being part of CFD, is on of the research areas considered in the working group

### A new approach for regularization of inverse problems in image processing

A new approach for regularization of inverse problems in image processing I. Souopgui 1,2, E. Kamgnia 2, 1, A. Vidard 1 (1) INRIA / LJK Grenoble (2) University of Yaounde I 10 th African Conference on

### CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

### ACTIVE models [1], or deformable models [2], have been

2096 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 8, AUGUST 2007 Active Contour External Force Using Vector Field Convolution for Image Segmentation Bing Li, Student Member, IEEE, and Scott T. Acton,

### Introduction to acoustic imaging

Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

### QUANTITATIVE MEASUREMENT OF TEAMWORK IN BALL GAMES USING DOMINANT REGION

QUANTITATIVE MEASUREMENT OF TEAMWORK IN BALL GAMES USING DOMINANT REGION Tsuyoshi TAKI and Jun-ichi HASEGAWA Chukyo University, Japan School of Computer and Cognitive Sciences {taki,hasegawa}@sccs.chukyo-u.ac.jp

### Jiří Matas. Hough Transform

Hough Transform Jiří Matas Center for Machine Perception Department of Cybernetics, Faculty of Electrical Engineering Czech Technical University, Prague Many slides thanks to Kristen Grauman and Bastian

### P. Lu, Sh. Huang and K. Jiang

416 Rev. Adv. Mater. Sci. 33 (2013) 416-422 P. Lu, Sh. Huang and K. Jiang NUMERICAL ANALYSIS FOR THREE-DIMENSIONAL BULK METAL FORMING PROCESSES WITH ARBITRARILY SHAPED DIES USING THE RIGID/VISCO-PLASTIC

### A Learning Based Method for Super-Resolution of Low Resolution Images

A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 emre.ugur@ceng.metu.edu.tr Abstract The main objective of this project is the study of a learning based method

### CHAPTER 4 4. METHODS FOR MEASURING DISTANCE IN IMAGES

50 CHAPTER 4 4. METHODS FOR MEASURING DISTANCE IN IMAGES 4.1. INTRODUCTION In image analysis, the distance transform measures the distance of each object point from the nearest boundary and is an important

### When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment

When to Refinance Mortgage Loans in a Stochastic Interest Rate Environment Siwei Gan, Jin Zheng, Xiaoxia Feng, and Dejun Xie Abstract Refinancing refers to the replacement of an existing debt obligation

### Decoupled Active Surface for Volumetric Image Segmentation

2010 Canadian Conference Computer and Robot Vision Decoupled Active Surface for Volumetric Image Segmentation A. Mishra, Member, IEEE, P. W. Fieguth, Member, IEEE D. A. Clausi, Senior Member, IEEE Abstract

### Regression Using Support Vector Machines: Basic Foundations

Regression Using Support Vector Machines: Basic Foundations Technical Report December 2004 Aly Farag and Refaat M Mohamed Computer Vision and Image Processing Laboratory Electrical and Computer Engineering