Skyscan 1076 in vivo scanning: X-ray dosimetry

Size: px
Start display at page:

Download "Skyscan 1076 in vivo scanning: X-ray dosimetry"

Transcription

1 Skyscan 1076 in vivo scanning: X-ray dosimetry

2 DOSIMETRY OF HIGH RESOLUTION IN VIVO RODENT MICRO-CT IMAGING WITH THE SKYSCAN 1076 An important distinction is drawn between local tissue absorbed dose in milligrays, and the weighted whole body effective dose equivalent in millisieverts. Details of the conversion from local dose to effective dose equivalent are given in Appendix 1. Effective dose equivalent is calculated using ICRP (International Commission of Radiological Protection) tissue specific weighting factors (International Commission of Radiological Protection Publication 60, 1990) based on the difference in radiation sensitivity of different body tissues. Note that in the absence of a fully worked out dosimetry system for the rodent, it is necessary to employ tissue dose weighting factors from the human. It should be noted that in the Skyscan 1076 scanner the x-ray beam is directed and the non-selected regions of the animal shielded, so that radiation dose to the non-selected part of the animal is minimal, for example when the knee region is scanned the knee only is irradiated. If the whole rodent is scanned (a procedure requiring several sequential autospliced scans) dosimetry is simplified, and the effective dose equivalent is then the same as the absorbed dose in Grays (since the radiation quality factor for x-rays is 1). For all scans imaging less than the whole body, effective dose equivalent will be less than the absorbed dose. In a single rotation scan in the 1076, a region 1.7 cm long only is scanned (width 3.5 or 6.8 cm), and scanning longer regions with multiple sequential scans does not increase the local absorbed dose at any location. An important feature of irradiation by x-rays typical of micro-ct ( kv) is that the smaller the diameter of animal tissue scanned, the larger the dose; this is because at these relatively low energies (and considering the spread of energies from microfocus x-ray sources) there is considerable absorption of the lower energy x-rays at the skin, resulting in a relatively high skin dose. However the skin and fur, comprising a layer about 2mm thick, are not radiation sensitive. Where the scanned tissue diameter is greater, average dose across the whole diameter is reduced. It should be borne in mind that in the in vivo micro-ct imaging of rodents, when considering multiple sequential scans of the same animal, repeated general anaesthesia, a cause of stress and weight curtailment, is probably a welfare issue of at least as great significance as radiation doses of the magnitude reported here. Page 2 of 10

3 METHOD Dosimetry measurements were carried out by the Department of Medical Physics and Radiation Protection, Faculty of Medicine, University of Ghent, Belgium. An ionisation chamber was employed. A full range of measurements with different filters and settings was carried out on 29 April, 2003, on the Skyscan 1076 scanner at the Skyscan head office, Aartselaar, Belgium. The following are the specifications of the dosimetry performed by Ghent University, 2003: The CT chamber used was the PTW W30009 s/n The electrometer was the NE Farmer 2670 s/n 151. The dose in air at the rotation axis D air is defined as : D air = 1/h N a M where h = slice thickness in cm, N a = calibration factor for the conversion to dose length product (DLP): 8.862E+7 Gy.cm/C M = display reading in C. The percentage depth dose at depth for the used beam qualities are taken from: The Physics of Radiology, 3rd. Ed., HE Johns and JR Cunningham, CC Thomas Publisher, Illinois, Page 3 of 10

4 RESULTS Table 1. Mouse dosimetry (50 kv, 200 µa x-ray, 1mm Al filter) Anatomical site scanned Width of animal tissue scanned Combined tissue weighting factor (converts Gy to Sv) Local absorbed dose rate, Gy/min Local absorbed dose from 10 minute scan, Gy Whole body effective dose equivalent rate, Sv/min Hindlimb knee 10 mm Thorax 30 mm Abdomen 30 mm Head 17 mm Table 2. Rat dosimetry (80 kv, 124 µa x-ray, 1mm Al filter) Anatomical site scanned Width of animal tissue scanned Combined tissue weighting factor (converts Gy to Sv) Local absorbed dose rate, Gy/min Local absorbed dose from 10 minute scan, Gy Whole body effective dose equivalent rate, Sv/min Hindlimb knee 15 mm Thorax 60 mm Abdomen 60 mm Head 25 mm Page 4 of 10

5 APPENDIX 1: EFFECTIVE DOSE EQUIVALENT In the absence of detailed dosimetry factors for rodents, we can obtain estimates of effective dose equivalents to rodents by using human tissue weighting factors published by the International Commission on Radiological Protection (ICRP). We have to take into account the varying biological effects of radiation on a particular tissue (or body part) type, T. The same radiation exposure to different parts of the body can have very different results. That is, if the entire body were irradiated with a uniform beam of a single type of radiation, some parts of the body would react more sensitively than others. To take this effect into account, the ICRP has published list of tissue weighting factors, denoted W T, for a number of organs and tissues that most significantly contribute to overall biological damage to the body (ICRP Publication 60, 1990). Table 3 below gives the values of the tissue weighting factor W T from ICRP 60. The ICRP went on to define the integrated effective human-equivalent dose, or effective dose equivalent denoted H E, for the determination of the whole-body biological damage due to various forms of radiation exposure in different parts of the body. This effective dose equivalent is given as follows: H E = W H T T T (1) where W T is the ICRP s tissue weighting factor for the type of tissue or body part T, and H T is the dose equivalent for tissue T defined in Equation (1). The units of H E are sieverts, Sv, the same as those of H T. Essentially the effective dose equivalent indicates the radiation probabilistic harm caused by irradiation of a restricted part of the body, expressed as the dose of low LET radiation given uniformly to the whole body that would cause the same degree of radiation probabilistic harm. Tissue weighted effective dose equivalents are shown in table 3 for four typical rodent micro-ct scan scenarios, head, upper body, lower body and knee. Tissue fractions have been calculated by reference to ICRP publication 70 (1995), Radiation protection basic anatomical and physiological data. As an example for interpreting these data, a dose in mgy received by the knee should be multiplied by the weighting factor of to calculate an effective dose equivalent in msv that is, the dose (low LET) delivered uniformly to the whole body of the rodent, that would cause the same radiation harm as the dose delivered to the rodent knee only. Page 5 of 10

6 Table 3. Tissue weighted dosimetry of the rodent for SKYSCAN 1076 in vivo micro-ct Tissue ICRP Tissue weighting factor H T Fraction of tissue, head scan H T head Fraction of tissue, upper body scan H T upper body Fraction of tissue, lower body scan H T lower body Fraction of tissue, knee H T knee Gonads Bone Marrow Colon Lung Stomach Bladder Breast Liver Esophagus Thyroid Skin Bone Surface Remainder Total: Adrenals, brain, upper large intestine, small intestine, kidney, muscle, pancreas, spleen, thymus, and uterus.

7 APPENDIX 2: CALCULATION OF DOSE TO MICE IN THE SKYSCAN 1076 SCANNER, BASED ON X-RAY EXPOSURE FROM THE SOURCE 15 June 2005 Dose calculations to mice in the Skyscan 1076 in vivo scanner are intended to supplement the measurement of doses by ionisation chamber. Both the calculations from source exposure and measurements by ionisation chamber inside the scanner, require correction for depth in tissue. 1. The measured exposure rate at a distance of one foot (300 mm) from the microfocus x-ray source is 11 Roentgens (R) per minute. This relates to a source applied voltage of 100 kv, current 100 µa i.e. 10 W of power. To reduce dose to mice during in vivo scanning, source applied voltage is reduced to 50 kv (200 µa). This reduces exposure to about 60% of the value for 100 kv. Furthermore, a 1 mm aluminium filter is applied to the x-ray beam. The filter reduces x-ray exposure by five times (i.e. to 20% of the unfiltered value) due to removal of the dominant 10keV x-ray peak from the tungsten target. As a result, scanning at 50 kv (200 µa) and with 1 mm Al filter, reduces the exposure at 30 cm to the value: = 1.32 R/min Source sample distance correction: In the 1076 scanner the distance from source to sample midline is not 300 mm but 121 mm. Due to the inverse square law the x-ray exposure therefore increases by: Exposure = = 6.15 times (1) = 8.12 R A more modern unit for exposure is the X unit, of coulombs per kilogram one X unit is 1 C / kg of ionisation charge generated in air, and equals 3881 R Therefore 8.12 R corresponds to 2.09 E-3 X units (C / kg) of exposure

8 2. Exposure-dose relationship The dose to biological tissue per mass (g) is slightly different from the dose from air due to a different atomic composition and mean atomic number. If one assumes tissue to have the following composition: Hydrogen 5.98 E22 atoms / g Oxygen 2.75 E22 atoms / g Nitrogen E22 atoms / g Carbon 6.02 E22 atoms / g then the electronic density for tissue is 3.28 E23 electrons / g (Cember 1988). For air the electron density is 3.01 E23 electrons / g. Thus, the ratio of x-ray energy absorption of biological tissue to air is given: 3.28 = (2) X unit (C / kg) of exposure in air corresponds to an absorbed dose in air of 34 Gy (joules / kg) This is derived as follows: 1 X unit = 1C kg ion in air C ev ion J ev Gy 1 J / kg = 34 Gy (3) (Cember 1988) Note that exposure is an integrated unit of charge deposited in air, and thus is independent of the time over which exposure occurs. The strength of a radiation field is usually expressed as the exposure rate, in C/kg/seconds or minutes. As a result, the ratio of exposure in air (C/kg) to dose in biological tissue (Gy) refer to equation 2 is given: = 37 Consequently, an exposure rate at the midline of the Skyscan 1076 scanner of 8.12 R/min, equals 2.09 E-3 C/kg/min, and this corresponds to a dose rate of 2.09 E-3 37 = Gy / minute This dose rat needs to be corrected for depth in tissue According to data published in Johns and Cunningham (1983) depth corrections for an x-ray beam similar to that in the Skyscan 1076 microct scanner, are: Mouse leg depth 5 mm depth factor Mouse body depth 15 mm depth factor Multiplying the dose rat by the depth factors we obtain: Dose rate to the mouse hindlimb Dose rate to the mouse body = Gy / min = Gy / min Page 8 of 10

9 These fairly simple calculations are reasonably close to the dose rates calculated to the mouse hindlimb and body from ionisation chamber measurements. The dose rate values obtained from ionisation chamber measurements (see the accompanying dosimetry report) are compared to the calculated values in table 4, below. Table 4. Dose rates to the mouse hindlimb and body in the Skyscan 1076 in vivo scanner, measured by ionisation chamber and calculated from the x-ray exposure rate of the micro-focus source. In vivo scanned site Depth of tissue Dose rate calculated from x-ray source exposure (Gy / min) Dose rate calculated from ionisation chamber measurement, (Gy / min) Mouse hindlimb 5 mm Mouse body 15 mm The average of the dose values obtained from ionisation chamber measurement and from calculation from the source exposure measurement, was used in the dose calculations given in tables 1 and 2. REFERENCES Cember H (1988) Introduction to Health Physics. Pergamon Press, 2 nd edition. International Commission on Radiological Protection (1991) Publication 60, 1990 Recommendations of the ICRP Ann. ICRP Vol. 21 No. 1/3, Pergamon Press, Oxford, UK. International Commission on Radiological Protection (1995) Publication 70, Radiation protection basic anatomical and physiological data. Ann. ICRP vol. 25 (2), Report of the task group of the committee. Pergamon Press, Oxford, UK. Johns HE, Cunningham JR, The Physics of Radiology, 3rd. Ed., CC Thomas Publisher, Illinois, Page 9 of 10

10 Don t forget your film badge Page 10 of 10

Practical exercise: Effective dose estimate in CT

Practical exercise: Effective dose estimate in CT Practical exercise: Effective dose estimate in CT TRAINING COURCE PROGRAM 19 20 May 2011, Sofia, Bulgaria Virginia Tsapaki Medical Physics Dpt Konstantopoulio General Hospital email: virginia@otenet.gr

More information

Assessing Radiation Dose: How to Do It Right

Assessing Radiation Dose: How to Do It Right Assessing Radiation Dose: How to Do It Right Michael McNitt-Gray, PhD, DABR, FAAPM Professor, Department of Radiology Director, UCLA Biomedical Physics Graduate Program David Geffen School of Medicine

More information

Production of X-rays and Interactions of X-rays with Matter

Production of X-rays and Interactions of X-rays with Matter Production of X-rays and Interactions of X-rays with Matter Goaz and Pharoah. Pages 11-20. Neill Serman Electrons traveling from the filament ( cathode) to the target (anode) convert a small percentage

More information

The effects of radiation on the body can be divided into Stochastic (random) effects and deterministic or Non-stochastic effects.

The effects of radiation on the body can be divided into Stochastic (random) effects and deterministic or Non-stochastic effects. RADIATION SAFETY: HOW TO EDUCATE AND PROTECT YOURSELF AND YOUR STAFF John Farrelly, DVM, MS, ACVIM (Oncology), ACVR (Radiation Oncology) Cornell University Veterinary Specialists The Veterinary Cancer

More information

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel

Chemistry 1000 Lecture 2: Nuclear reactions and radiation. Marc R. Roussel Chemistry 1000 Lecture 2: Nuclear reactions and radiation Marc R. Roussel Nuclear reactions Ordinary chemical reactions do not involve the nuclei, so we can balance these reactions by making sure that

More information

Implementation of Cone-beam CT imaging for Radiotherapy treatment localisation.

Implementation of Cone-beam CT imaging for Radiotherapy treatment localisation. Implementation of Cone-beam CT imaging for Radiotherapy treatment localisation. Andrew Bridges Clinical Scientist Diagnostic Radiology & Radiation Protection Physics Overview What is CBCT? Use of CBCT

More information

Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered

Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered Image Quality and Radiation Dose for Intraoral Radiography: Hand-Held Held (Nomad), Battery Powered vs. Wall-Mount X-Ray X Systems Edgar Bailey*, MSEHE, CHP Consultant Joel Gray*, PhD, FAAPM DIQUAD, LLC

More information

P R E S E N T S Dr. Mufa T. Ghadiali is skilled in all aspects of General Surgery. His General Surgery Services include: General Surgery Advanced Laparoscopic Surgery Surgical Oncology Gastrointestinal

More information

Use of lead shielding for adult chest CT. patient & radiographer experiences

Use of lead shielding for adult chest CT. patient & radiographer experiences Use of lead shielding for adult chest CT Dose measurements and patient & radiographer experiences Previous published work Doshi S, Negus I, Oduko J, Foetal radiation dose from CT pulmonary angiography

More information

FXA 2008. UNIT G485 Module 4 5.4.3 Ultrasound. Candidates should be able to :

FXA 2008. UNIT G485 Module 4 5.4.3 Ultrasound. Candidates should be able to : 1 Candidates should be able to : ULTRASOUND Describe the properties of ultrasound. ULTRASOUND is any sound wave having a frequency greater than the upper frequency limit of human hearing (20 khz). Describe

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter

Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter Study the Quality Assurance of Conventional X-ray Machines Using Non Invasive KV meter T.M.Taha Radiation Protection Department, Nuclear Research Center, Atomic Energy Authority, Cairo.P.O.13759 Egypt.

More information

Are children more sensitive to radiation than adults?

Are children more sensitive to radiation than adults? Are children more sensitive to radiation than adults? By Madan M. Rehani Director of Radiation Protection, European Society of Radiology There is a commonly held belief that children may be two to three

More information

Radiation Effects Modulating Factors and Risk Assessment An Overview

Radiation Effects Modulating Factors and Risk Assessment An Overview Radiation Effects Modulating Factors and Risk Assessment An Overview Richard Wakeford Visiting Professor in Epidemiology, Dalton Nuclear Institute, The University of Manchester, UK (Richard.Wakeford@manchester.ac.uk)

More information

CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index. Acknowledgements

CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index. Acknowledgements CT: Size Specific Dose Estimate (SSDE): Why We Need Another CT Dose Index Keith J. Strauss, MSc, FAAPM, FACR Clinical Imaging Physicist Cincinnati Children s Hospital University of Cincinnati College of

More information

DOSES TO EYES AND EXTREMITIES OF MEDICAL STAFF DURING INTERVENTIONAL RADIOLOGY PROCEDURES

DOSES TO EYES AND EXTREMITIES OF MEDICAL STAFF DURING INTERVENTIONAL RADIOLOGY PROCEDURES DOSES TO EYES AND EXTREMITIES OF MEDICAL STAFF DURING INTERVENTIONAL RADIOLOGY PROCEDURES Ausra Urboniene, Birute Griciene Lithuania Introduction Medical staff during interventional radiology procedures

More information

Patient Exposure Doses During Diagnostic Radiography

Patient Exposure Doses During Diagnostic Radiography Patient Exposure Doses During Diagnostic Radiography JMAJ 44(11): 473 479, 2001 Shoichi SUZUKI Associated Professor, Faculty of Radiological Technology, School of Health Sciences, Fujita Health University

More information

1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range

1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range 1. Orthovoltage vs. megavoltage x-rays. (AL) External beam radiation sources: Orthovoltage radiotherapy: 200-500 kv range The radiation from orthovoltage units is referred to as x-rays, generated by bombarding

More information

X-ray Radiation Safety Course. James Kane & Rob Deters Office of Radiological Control 545-7581

X-ray Radiation Safety Course. James Kane & Rob Deters Office of Radiological Control 545-7581 X-ray Radiation Safety Course James Kane & Rob Deters Office of Radiological Control 545-7581 About the Course X-ray Radiation Safety X-ray radiation safety training is mandatory for radiation workers

More information

Radiation Protection Series

Radiation Protection Series Radiation The Radiation is published by the Australian Radiation and Nuclear Safety Agency (ARPANSA) to promote practices which protect human health and the environment from the possible harmful effects

More information

GAFCHROMIC DOSIMETRY MEDIA TYPE MD-V3

GAFCHROMIC DOSIMETRY MEDIA TYPE MD-V3 GAFCHROMIC DOSIMETRY MEDIA TYPE MD-V3 WARNING: Store below 25ºC Store away from radiation sources Do not expose film to sunlight Handle film carefully, creasing may cause damage Do not expose to temperatures

More information

Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13

Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis. Tushita Patel 4/2/13 Scan Time Reduction and X-ray Scatter Rejection in Dual Modality Breast Tomosynthesis Tushita Patel 4/2/13 Breast Cancer Statistics Second most common cancer after skin cancer Second leading cause of cancer

More information

6 RADIATION DOSE, RADIATION PROTECTION AND THE IONISING RADIATIONS REGULATIONS

6 RADIATION DOSE, RADIATION PROTECTION AND THE IONISING RADIATIONS REGULATIONS 6 RADIATION DOSE, RADIATION PROTECTION AND THE IONISING RADIATIONS REGULATIONS Overview This chapter discusses the issues of radiation dose, radiation protection and the relevant aspects of United Kingdom

More information

GAFCHROMIC DOSIMETRY MEDIA, TYPE HD-V2

GAFCHROMIC DOSIMETRY MEDIA, TYPE HD-V2 GAFCHROMIC DOSIMETRY MEDIA, TYPE HD-V2 WARNING: Store below 25ºC Store away from radiation sources Do not expose film to sunlight Handle film carefully, creasing may cause damage Do not expose to temperatures

More information

5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION

5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION 5.2 ASSESSMENT OF X-RAY TUBE LEAKAGE RADIATION AND X-RAY TUBE OUTPUT TOTAL FILTRATION 5.2.1 Task The bremsstrahlung produced by the X-ray tube has a continuous spectrum, limited by the set and spreads

More information

X-Rays Benefits and Risks. Techniques that use x-rays

X-Rays Benefits and Risks. Techniques that use x-rays X-Rays Benefits and Risks X-rays are a form of electromagnetic radiation, just like light waves and radiowaves. Because X-rays have higher energy than light waves, they can pass through the body. X-rays

More information

Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University

Clinical Physics. Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Clinical Physics Dr/Aida Radwan Assistant Professor of Medical Physics Umm El-Qura University Physics of Radiotherapy using External Beam Dose distribution PHANTOMS Basic dose distribution data are usually

More information

EFFECTS OF ELECTROMAGNETIC RADIATION FROM MOBILE PHONES AND CASE STUDIES OF COMPUTATIONAL MODELS FOR CALCULATING SAR DISTRIBUTION IN HUMAN BODY Settapong Malisuwan National Broadcasting and Telecommunications

More information

Introduction. Chapter 15 Radiation Protection. Regulatory bodies. Dose Equivalent. Regulatory bodies. Main Principles of Radiation Protection

Introduction. Chapter 15 Radiation Protection. Regulatory bodies. Dose Equivalent. Regulatory bodies. Main Principles of Radiation Protection Introduction Chapter 15 Radiation Protection Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. F.M. Khan, The Physics of Radiation Therapy, 4th ed., Chapter

More information

Multi-slice Helical CT Scanning of the Chest

Multi-slice Helical CT Scanning of the Chest Multi-slice Helical CT Scanning of the Chest Comparison of different low-dose acquisitions Lung cancer is the main cause of deaths due to cancer in human males and the incidence is constantly increasing.

More information

BIOMEDICAL ULTRASOUND

BIOMEDICAL ULTRASOUND BIOMEDICAL ULTRASOUND Goals: To become familiar with: Ultrasound wave Wave propagation and Scattering Mechanisms of Tissue Damage Biomedical Ultrasound Transducers Biomedical Ultrasound Imaging Ultrasonic

More information

Personal Dosimetry in Dental Radiology

Personal Dosimetry in Dental Radiology Personal Dosimetry in Dental Radiology Position Statement Personal Dosimetry in Dental Radiology Radiological Protection Institute of Ireland May 2011 3 Clonskeagh Square, Dublin 14 Background The RPII

More information

3D SCANNERTM. 3D Scanning Comes Full Circle. s u n. Your Most Valuable QA and Dosimetry Tools A / B / C. The 3D SCANNER Advantage

3D SCANNERTM. 3D Scanning Comes Full Circle. s u n. Your Most Valuable QA and Dosimetry Tools A / B / C. The 3D SCANNER Advantage 3D SCANNERTM 3D Scanning Comes Full Circle Relative 3D Dosimetry offering the easiest setup, most objectivity, and best consistency available The 3D SCANNER Advantage Advanced Design Ring and diameter

More information

Strahlenschutzbelehrung Allgemeiner Teil. Radiation Protection

Strahlenschutzbelehrung Allgemeiner Teil. Radiation Protection 1 Radiation Protection 2 Why radiation protection? - Ionizing radiation (>5eV -> UV; X-rays;α,β,γ-radiation)has physical, chemical and biological effects -> human tissue (70% water!) and genetic material

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

Dose enhancement near metal electrodes in diamond X- ray detectors. A. Lohstroh*, and D. Alamoudi

Dose enhancement near metal electrodes in diamond X- ray detectors. A. Lohstroh*, and D. Alamoudi Dose enhancement near metal electrodes in diamond X- ray detectors Acknowledgements Surrey University: P.J. Sellin M. Abd-El Rahman P. Veeramani H. Al-Barakaty F. Schirru Mechanical Workshop A. Lohstroh*,

More information

In vivo dose response assays

In vivo dose response assays In vivo dose response assays Tumor assays 1. Tumor growth measurements; tumor growth delay. After irradiation, the tumor is measured daily to determine the mean diameter, or volume. Plot tumor size versus

More information

Name Class Date Laboratory Investigation 24A Chapter 24A: Human Skin

Name Class Date Laboratory Investigation 24A Chapter 24A: Human Skin Name Class Date Laboratory Investigation 24A Chapter 24A: Human Skin Human Anatomy & Physiology: Integumentary System You may refer to pages 386-394 in your textbook for a general discussion of the integumentary

More information

RADIOLOGY SERVICES. By Dr Lim Eng Kok 1

RADIOLOGY SERVICES. By Dr Lim Eng Kok 1 INTRODUCTION RADIOLOGY SERVICES By Dr Lim Eng Kok 1 Radiology is the branch of medicine that deals with the use of ionising (e.g. x- rays and radio-isotopes) and non-ionising radiation (e.g. ultrasound

More information

Principles of dosimetry The ionization chamber

Principles of dosimetry The ionization chamber Principles of dosimetry The ionization chamber FYS-KJM 4710 Audun Sanderud Department of Physics Ionometry 1) Ionometry: the measurement of the number of ionizations in substance The number of ionizations

More information

CT RADIATION DOSE REPORT FROM DICOM. Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH

CT RADIATION DOSE REPORT FROM DICOM. Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH CT RADIATION DOSE REPORT FROM DICOM Frank Dong, PhD, DABR Diagnostic Physicist Imaging Institute Cleveland Clinic Foundation Cleveland, OH CT Patient comes out... Patient goes in... Big Black Box Radiology

More information

MDCT Technology. Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington

MDCT Technology. Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington MDCT Technology Kalpana M. Kanal, Ph.D., DABR Assistant Professor Department of Radiology University of Washington Seattle, Washington ACMP Annual Meeting 2008 - Seattle, WA Educational Objectives Historical

More information

Irradiation Field Size: 5cmX5cm 10cmX10cm 15cmX15cm 20cmX20cm. Focus-Surface Distance: 100cm. 20cm Volume of Ion Chamber : 1cmX1cmX1cm

Irradiation Field Size: 5cmX5cm 10cmX10cm 15cmX15cm 20cmX20cm. Focus-Surface Distance: 100cm. 20cm Volume of Ion Chamber : 1cmX1cmX1cm Proceedings of the Ninth EGS4 Users' Meeting in Japan, KEK Proceedings 200-22, p.5-8 MONTE CARLO SIMULATION ANALYSIS OF BACKSCATTER FACTOR FOR LOW-ENERGY X-RAY K. Shimizu, K. Koshida and T. Miyati Department

More information

PATIENT ORGANS DOSE CALCULATIONS IN NUCLEAR MEDICINE

PATIENT ORGANS DOSE CALCULATIONS IN NUCLEAR MEDICINE www.arpapress.com/volumes/vol11issue1/ijrras_11_1_17.pdf PATIENT ORGANS DOSE CALCULATIONS IN NUCLEAR MEDICINE Nadia Helal Radiation Safety Dep. NCNSRC., Atomic Energy Authority, 3, Ahmed El Zomor St.,

More information

Dose Measurement in Mammography; What are we measuring? David E. Hintenlang, Ph.D. DABR University of Florida

Dose Measurement in Mammography; What are we measuring? David E. Hintenlang, Ph.D. DABR University of Florida Dose Measurement in Mammography; What are we measuring? David E. Hintenlang, Ph.D. DABR University of Florida Average Glandular Dose Required measurement performed by medical physicist as part of Mammography

More information

SUMMARY OF CURRENT UK LEGISLATION AND GUIDELINES

SUMMARY OF CURRENT UK LEGISLATION AND GUIDELINES SUMMARY OF CURRENT UK LEGISLATION AND GUIDELINES Legislation There are two sets of regulations in the UK governing the use of ionizing radiation. They both form part of The Health and Safety at Work Act

More information

R A D I A T I O N D O S E E S T I M A T E S R A D I O P H A R M A C E U T I C A L S

R A D I A T I O N D O S E E S T I M A T E S R A D I O P H A R M A C E U T I C A L S R A D I A T I O N D O S E E S T I M A T E S F O R R A D I O P H A R M A C E U T I C A L S April 30, 1996 RADIATION INTERNAL DOSE INFORMATION CENTER OAK RIDGE INSTITUTE FOR SCIENCE AND EDUCATION Mail Stop

More information

CT scanning. By Mikael Jensen & Jens E. Wilhjelm Risø National laboratory Ørsted DTU. (Ver. 1.2 4/9/07) 2002-2007 by M. Jensen and J. E.

CT scanning. By Mikael Jensen & Jens E. Wilhjelm Risø National laboratory Ørsted DTU. (Ver. 1.2 4/9/07) 2002-2007 by M. Jensen and J. E. 1 Overview CT scanning By Mikael Jensen & Jens E. Wilhjelm Risø National laboratory Ørsted DTU (Ver. 1.2 4/9/07) 2002-2007 by M. Jensen and J. E. Wilhjelm) As it can be imagined, planar X-ray imaging has

More information

Biokinetic model of americium in the beagle dog. Salt Lake City, UT 84108-1218 (U.S.A.)

Biokinetic model of americium in the beagle dog. Salt Lake City, UT 84108-1218 (U.S.A.) Biokinetic model of americium in the beagle dog A. Luciani 1, E. Polig 2, R. D. Lloyd 3, S. C. Miller 3 1 ENEA Radiation Protection Institute via dei Colli, 16 4136 Bologna, (Italy) 2 Forschungszentrum

More information

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS Department of Health and Human services Population Health Radiation Protection Act 2005 Section 17 CERTIFICATE OF COMPLIANCE: STANDARD FOR RADIATION APPARATUS - X-RAY MEDICAL DIAGNOSTIC (MAMMOGRAPHY) SECTION

More information

Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2

Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 D. K. McDermitt, J. M. Welles, and R. D. Eckles - LI-COR, inc. Lincoln, NE 68504 USA Introduction Infrared analysis

More information

ORGAN SYSTEMS OF THE BODY

ORGAN SYSTEMS OF THE BODY ORGAN SYSTEMS OF THE BODY DEFINITIONS AND CONCEPTS A. Organ a structure made up of two or more kinds of tissues organized in such a way that they can together perform a more complex function that can any

More information

1. Provide clinical training in radiation oncology physics within a structured clinical environment.

1. Provide clinical training in radiation oncology physics within a structured clinical environment. Medical Physics Residency Program Overview Our Physics Residency Training is a 2 year program typically beginning July 1 each year. The first year resident will work closely with medical physicists responsible

More information

Physical Quantities, Symbols and Units

Physical Quantities, Symbols and Units Table 1 below indicates the physical quantities required for numerical calculations that are included in the Access 3 Physics units and the Intermediate 1 Physics units and course together with the SI

More information

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010

Lecture 2 Macroscopic Interactions. 22.106 Neutron Interactions and Applications Spring 2010 Lecture 2 Macroscopic Interactions 22.106 Neutron Interactions and Applications Spring 2010 Objectives Macroscopic Interactions Atom Density Mean Free Path Moderation in Bulk Matter Neutron Shielding Effective

More information

SAR Distribution in Test Animals Exposed to RF Radiation

SAR Distribution in Test Animals Exposed to RF Radiation German Mobile Telecommunication Research Programme, July 25th, 2006 SAR Distribution in Test Animals Exposed to RF Radiation Verónica Berdiñas Torres, Andreas Christ, Niels Kuster IT IS Foundation, ETH

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Prepublication Requirements

Prepublication Requirements Issued Prepublication Requirements The Joint Commission has approved the following revisions for prepublication. While revised requirements are published in the semiannual updates to the print manuals

More information

X-ray (Radiography) - Abdomen

X-ray (Radiography) - Abdomen Scan for mobile link. X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small dose of ionizing radiation to produce pictures of the inside of the abdominal cavity. It is used to evaluate the stomach,

More information

CONTENT SPECIFICATIONS FOR THE FLUOROSCOPY EXAMINATION

CONTENT SPECIFICATIONS FOR THE FLUOROSCOPY EXAMINATION CONTENT SPECIFICATIONS FOR THE FLUOROSCOPY EXAMINATION Publication Date: November 2010 Implementation Date: March 2011 The purpose of the American Registry of Radiologic Technologists Fluoroscopy Examination

More information

BREAST CHARACTERISTICS AND DOSIMETRIC DATA IN X RAY MAMMOGRAPHY - A LARGE SAMPLE WORLDWIDE SURVEY

BREAST CHARACTERISTICS AND DOSIMETRIC DATA IN X RAY MAMMOGRAPHY - A LARGE SAMPLE WORLDWIDE SURVEY BREAST CHARACTERISTICS AND DOSIMETRIC DATA IN X RAY MAMMOGRAPHY - A LARGE SAMPLE WORLDWIDE SURVEY N. GEERAERT a,b,c, R. KLAUSZ a, S. MULLER a, I. BLOCH c, H. BOSMANS b a GE Healthcare, Buc, France b Department

More information

UNIT 1 MASS AND LENGTH

UNIT 1 MASS AND LENGTH UNIT 1 MASS AND LENGTH Typical Units Typical units for measuring length and mass are listed below. Length Typical units for length in the Imperial system and SI are: Imperial SI inches ( ) centimetres

More information

Radiation Dose Limits. Radiation Safety Training Module 3

Radiation Dose Limits. Radiation Safety Training Module 3 Module 3 This module will address Western Kentucky University radiation dose limits. Basis for WKU limits Kentucky Administrative Regulations, specifically 902 KAR 100:019 Overview Module 3, Page 2 Annual

More information

Radiation Strip Thickness Measurement Systems

Radiation Strip Thickness Measurement Systems Radiation Strip Thickness Measurement Systems During the past years we have increased our sales of radiometric Vollmer strip thickness measurement systems, i.e. X-ray or isotope gauges, dramatically. Now,

More information

Coating Thickness and Composition Analysis by Micro-EDXRF

Coating Thickness and Composition Analysis by Micro-EDXRF Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing

More information

Contents. X-ray and Computed Tomography. Characterization of X-rays. Production of X-rays

Contents. X-ray and Computed Tomography. Characterization of X-rays. Production of X-rays J. E. Wilhjelm Ørsted TU Technical University of enmark, Bldg. 348, K-2800 Kongens Lyngby, enmark. X-ray and Computed Tomography Contents History and characterization of X-rays Conventional (projection)

More information

Effect of Metallic Materials on SAR

Effect of Metallic Materials on SAR Contemporary Engineering Sciences, Vol. 5, 2012, no. 9, 407-411 Effect of Metallic Materials on SAR Asma Lak Department of Electrical Engineering, Genaveh branch Islamic Azad University, Genaveh, Iran

More information

An abdominal ultrasound produces a picture of the organs and other structures in the upper abdomen.

An abdominal ultrasound produces a picture of the organs and other structures in the upper abdomen. Scan for mobile link. Ultrasound - Abdomen Ultrasound imaging of the abdomen uses sound waves to produce pictures of the structures within the upper abdomen. It is used to help diagnose pain or distention

More information

Abdomen X-Ray (AXR) Collimation is ideally from diaphragms to lower border of the symphysis pubis and the lateral skin margins.

Abdomen X-Ray (AXR) Collimation is ideally from diaphragms to lower border of the symphysis pubis and the lateral skin margins. Abdomen X-Ray (AXR) Collimation is ideally from diaphragms to lower border of the symphysis pubis and the lateral skin margins. LMP of child-bearing age female patients should be checked. 1. Acute abdomen

More information

Measuring Patient Exposure in Interventional Radiology

Measuring Patient Exposure in Interventional Radiology Measuring Patient Exposure in Interventional Radiology GAFCHROMIC XR-R, a Wide-Area Dosimetry Film to Assess Peak Skin Dose (PSD) Xiang Yu, Ph.D. Director, Advanced Materials International Specialty Products

More information

Integrated Management & Educational Consultancy

Integrated Management & Educational Consultancy Integrated Management & Educational Consultancy Services MANDEC Radiology Update Seminar for The Dental Team Dr. Richard DeCann & Mr. Tim Reynolds IMECS Radiography Consultants Tel:07855 183117 email:admin@imecs.freeserve.co.uk

More information

IONISING RADIATION. X-rays: benefit and risk

IONISING RADIATION. X-rays: benefit and risk IONISING RADIATION X-rays: benefit and risk Impress Federal Office for Radiation Protection Postfach 10 01 49 D - 38201 Salzgitter Telephone: + 49 (0) 30 18333-0 Fax: + 49 (0) 30 18333-1885 Website: www.bfs.de

More information

IGRT. IGRT can increase the accuracy by locating the target volume before and during the treatment.

IGRT. IGRT can increase the accuracy by locating the target volume before and during the treatment. DERYA ÇÖNE RADIOTHERAPY THERAPIST ACIBADEM KOZYATAGI HOSPITAL RADIATION ONCOLOGY DEPARTMENT IGRT IGRT (image-guided radiation therapy) is a technique that reduces geometric uncertainties by considering

More information

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the

More information

CT Dose to Patients. CT Dose Reporting Requirements of CA Senate Bill 1237. Sources of Ionizing Radiation Exposure (then) 5/3/2011

CT Dose to Patients. CT Dose Reporting Requirements of CA Senate Bill 1237. Sources of Ionizing Radiation Exposure (then) 5/3/2011 CT Dose to Patients CT Dose Reporting Requirements of CA Senate Bill 1237 In U.S., CT comprises only 11% of all exams but generates 67% of total diagnostic dose» Mettler 2000 Melissa C. Martin, M.S., FACMP,

More information

Manual for simulation of EB processing. Software ModeRTL

Manual for simulation of EB processing. Software ModeRTL 1 Manual for simulation of EB processing Software ModeRTL How to get results. Software ModeRTL. Software ModeRTL consists of five thematic modules and service blocks. (See Fig.1). Analytic module is intended

More information

UNIT 1 BODY PLAN AND ORGANIZATION LECTURE

UNIT 1 BODY PLAN AND ORGANIZATION LECTURE UNIT 1 BODY PLAN AND ORGANIZATION LECTURE 1.03 CONTRAST THE SCIENCES OF ANATOMY AND PHYSIOLOGY A. Anatomy Anatomy is the scientific study of structures and the relationship of.. structures to each other.

More information

Chapter XIII. PDD TAR TMR Dose Free Space

Chapter XIII. PDD TAR TMR Dose Free Space Ver 2.11 Chapter XIII PDD TAR TMR Dose Free Space Joseph F. Buono RTT Allied Health Science Nassau Community College 1 Education Drive Garden City, NY 11530-6793 phone: 516-572 - 7536 oice - 9460 Secretary

More information

Use of the VALIDATOR Dosimetry System for Quality Assurance and Quality Control of Blood Irradiators

Use of the VALIDATOR Dosimetry System for Quality Assurance and Quality Control of Blood Irradiators Technical Note: 9 Use of the VALIDATOR Dosimetry System for Quality Assurance and Quality Control of Blood Irradiators 1- Introduction The VALIDATOR, model TN-ID-60, is a compact, and stand-alone dosimetry

More information

CT Protocol Optimization over the Range of CT Scanner Types: Recommendations & Misconceptions

CT Protocol Optimization over the Range of CT Scanner Types: Recommendations & Misconceptions CT Protocol Optimization over the Range of CT Scanner Types: Recommendations & Misconceptions Frank N. Ranallo, Ph.D. Associate Professor of Medical Physics & Radiology University of Wisconsin School of

More information

LYMPHOMA IN DOGS. Diagnosis/Initial evaluation. Treatment and Prognosis

LYMPHOMA IN DOGS. Diagnosis/Initial evaluation. Treatment and Prognosis LYMPHOMA IN DOGS Lymphoma is a relatively common cancer in dogs. It is a cancer of lymphocytes (a type of white blood cell) and lymphoid tissues. Lymphoid tissue is normally present in many places in the

More information

CT dose reconstruction based on RIS and PACS data

CT dose reconstruction based on RIS and PACS data Pst, Urvin, what can I say about CT dosimetry? 20 min CT dose reconstruction based on RIS and PACS data Hiii, if you understand the technology you may understand the CT dosimetry also... Hilde M. Olerud.

More information

Design and Implementation of an Institution-Wide Patient-Specific Radiation Dose

Design and Implementation of an Institution-Wide Patient-Specific Radiation Dose Design and Implementation of an Institution-Wide Patient-Specific Radiation Dose Monitoring Program for Computed Tomography, Digital Radiography, and Nuclear Medicine by Olav Christianson Medical Physics

More information

Describing Sound Waves. Period. Frequency. Parameters used to completely characterize a sound wave. Chapter 3. Period Frequency Amplitude Power

Describing Sound Waves. Period. Frequency. Parameters used to completely characterize a sound wave. Chapter 3. Period Frequency Amplitude Power Parameters used to completely characterize a sound wave Describing Sound Waves Chapter 3 Period Frequency Amplitude Power Intensity Speed Wave Length Period Defined as the time it take one wave vibrate

More information

Human Body Systems Project By Eva McLanahan

Human Body Systems Project By Eva McLanahan Human Body Systems Project By Eva McLanahan Students will work in groups to research one of the eleven body systems as found in Holt, Rinehart, and Winston Modern Biology (2002). Research will focus on

More information

Thermal Effects of Mobile Phones

Thermal Effects of Mobile Phones Thermal Effects of Mobile Phones S. Kassimi 1, A. ELfadl, S. Bri 3, A. Nakheli 4, M. Habibi 5, M. Ben Ahmed 6 Systems and Telecommunications Engineering Decision Laboratory,Ibn Tofail University, Faculty

More information

A radiation weighting factor is an estimate of the effectiveness per unit dose of the given radiation relative a to low-let standard.

A radiation weighting factor is an estimate of the effectiveness per unit dose of the given radiation relative a to low-let standard. Radiological Protection For practical purposes of assessing and regulating the hazards of ionizing radiation to workers and the general population, weighting factors are used. A radiation weighting factor

More information

Acknowledgement. Diagnostic X-Ray Shielding. Nomenclature for Radiation Design Criteria. Shielding Design Goal (Air Kerma):

Acknowledgement. Diagnostic X-Ray Shielding. Nomenclature for Radiation Design Criteria. Shielding Design Goal (Air Kerma): Diagnostic X-Ray Shielding Multi-Slice CT Scanners Using NCRP 47 Methodology Melissa C. Martin, M.S., FAAPM, FACR Therapy Physics Inc., Bellflower, CA AAPM Annual Meeting, Orlando, FL Refresher Course

More information

RADIATION THERAPY. Dosimetry Pioneers since 1922 NEW

RADIATION THERAPY. Dosimetry Pioneers since 1922 NEW RADIATION THERAPY Dosimetry Pioneers since 1922 NEW New Product Releases 2015 One phantom multiple options 4D Patient and Machine QA Modular Phantom for Stay flexible. Go modular. } Revolutionary new modular

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

Wireless Broadband: Health & Safety Information

Wireless Broadband: Health & Safety Information Wireless Broadband: Health & Safety Information Introduction The increasing use of mobile phones and other wireless technology has been accompanied by public debate about possible adverse effects on health.

More information

Staff Doses & Practical Radiation Protection in DEXA

Staff Doses & Practical Radiation Protection in DEXA Patient Xray X Doses Staff Doses & Practical Radiation Protection in DEXA Una O ConnorO Dept. of Medical Physics & Bioengineering, St. James s s Hospital. Examination Types General XrayX Fluoroscopy /

More information

Rethinking Risk and Benefit in Dental and Maxillofacial Imaging Dose matters

Rethinking Risk and Benefit in Dental and Maxillofacial Imaging Dose matters Rethinking Risk and Benefit in Dental and Maxillofacial Imaging Dose matters John B Ludlow, DDS, MS, FDS RCSEd University of North Carolina, Chapel Hill, NC Background Radiation risk is frequently front

More information

Annals of the ICRP ICRP PUBLICATION 121. Radiological Protection in Paediatric Diagnostic and Interventional Radiology. Editor-in-Chief C.H.

Annals of the ICRP ICRP PUBLICATION 121. Radiological Protection in Paediatric Diagnostic and Interventional Radiology. Editor-in-Chief C.H. Annals of the ICRP ICRP PUBLICATION 121 Radiological Protection in Paediatric Diagnostic and Interventional Radiology Editor-in-Chief C.H. CLEMENT Associate Editor M. SASAKI Authors on behalf of ICRP P-L.

More information

Radiation Safety Characteristics of the NOMAD Portable X-ray System

Radiation Safety Characteristics of the NOMAD Portable X-ray System Radiation Safety Characteristics of the NOMAD Portable X-ray System D. Clark Turner 1, Donald K. Kloos 1, Robert Morton 2 1 Aribex, Inc., 754 South 400 East, Orem, UT 84097 USA, www.aribex.com 2 Quality

More information

Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration.

Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration. Monte Carlo simulation of a scanning whole body counter and the effect of BOMAB phantom size on the calibration. Gary H. Kramer, Linda C. Burns and Steven Guerriere Human Monitoring Laboratory, Radiation

More information

CHAPTER 9 BODY ORGANIZATION

CHAPTER 9 BODY ORGANIZATION CHAPTER 9 BODY ORGANIZATION Objectives Identify the meaning of 10 or more terms relating to the organization of the body Describe the properties of life Describe the function for the structures of the

More information

American College of Radiology CT Accreditation Program. Testing Instructions

American College of Radiology CT Accreditation Program. Testing Instructions American College of Radiology CT Accreditation Program Testing Instructions (Revised July 24, 2015) This guide provides all of the instructions necessary for clinical tests, phantom tests and general submission

More information

HADRON THERAPY FOR CANCER TREATMENT

HADRON THERAPY FOR CANCER TREATMENT HADRON THERAPY FOR CANCER TREATMENT Seminar presented by Arlene Lennox at Fermilab on Nov 21, 2003 CANCER STAGES LOCAL TUMOR REGIONAL METASTASIS SYSTEMIC DISEASE CANCER TREATMENT SURGERY RADIATION THERAPY

More information

Environmental Radiation Risk Assessment

Environmental Radiation Risk Assessment Environmental Radiation Risk Assessment Jerome Puskin, PhD Center for Science & Risk Assessment Radiation Protection Division Office of Radiation and Indoor Air (ORIA) 2 Outline 1. Ionizing radiation definitions,

More information