Lab 3 Ohm s Law and Resistors

Save this PDF as:

Size: px
Start display at page:

Transcription

1 ` Lab 3 Ohm s Law and Resistors What You Need To Know: The Physics One of the things that students have a difficult time with when they first learn about circuits is the electronics lingo. The lingo and the circuit concepts can be very intimidating at first. It s almost like learning a new language. So, as the concepts are discussed below, some of the associated lingo will be thrown in as well. In the Equipotential Surfaces lab that you did last week, you were using a voltmeter to measure the potential on the conductive paper. Actually, you were measuring the potential difference between a point on the conductive paper and the negative pushpin. Another word for potential difference is voltage. When you measure the voltage, it is always the difference in potential between one point in a circuit and another point. You can use a voltmeter to measure the voltage of an element [a resistor, a battery, etc.] in a circuit. A voltmeter has two wires, or leads, that come from it. One lead is placed on one side of the circuit element and the other lead is placed on the other. You can then measure the potential difference, or the voltage, or the potential drop of the element. This is the reason why, in electronics lingo, the voltage is said to be measured across a circuit element. A potential difference in a circuit will cause the free electrons in the metal of the wires to flow. The electrons will always move towards a higher potential. A high potential can be thought of as positive charge. Since electrons are negative they will be attracted to the high potential and flow. This flow of electrons is called a current. To control the flow of the current in a circuit, you use circuit elements called resistors. Current is said to flow through the resistors. When current flows through a resistor it causes a voltage across the resistor. Another way to state this is that the current causes a difference in potential from one side of the resistor to the other. A common mistake that students make is in thinking that the voltage flows around the circuit. This is incorrect. It is the current that flows around the circuit. The voltage is a comparison between two points in the circuit. There is a very specific relationship between the voltage and current of a resistor. This relationship is defined by an equation called Ohm s Law V IR V is the voltage across the resistor (in volts, V) I is the current through the resistor (in amperes or amps, A) R is the resistance of the resistor (in ohms, ) Ohm s Law says that the voltage is directly proportional to the current in a resistor. If you were to make a graph of Voltage vs. Current for a resistor, you would get a straight line with a slope. If a circuit element follows this behavior, then it is said to be Ohmic. If the graph is not linear, then it is Non-Ohmic. 3-1

2 Color Band Chart BLACK 0 BROWN 1 RED 2 ORANGE 3 YELLOW 4 GREEN 5 BLUE 6 VIOLET 7 GRAY 8 WHITE 9 Color Bands Most resistors have four color bands around them. Each color represents a number that signifies the resistance of the resistor. See the Color Band Chart. There are many mnemonics to help you memorize the chart but most are crude and will not be repeated in the family-style environment of this lab manual. The way you decipher the bands is as follows: The first three bands tell you the value of the resistor and the last band tells you the tolerance, or accuracy, of the resistor. The easiest way to explain this is by example. Figure 1 will be used as an example. RED BLUE ORANGE GOLD RED BLUE ORANGE RED 2% GOLD 5% SILVER 10% FIGURE 1 - A resistor and its value GOLD 26 x 10 3 = 26,000 at 5% The first two colors give you the first two digits of the resistor s value. The third number tells you the power of ten by which the first two numbers will be multiplied. The tolerance tells you that the resistor s real value will lie somewhere in between a certain percentage of the color band value. Note: It is sometimes difficult to determine the color of a band. For example, some grays actually look brown. If you are not sure on a color, utilize the vast experience of your lab TA and ask. What You Need To Do: Equipment List POWER SUPPLY 3 WIRES 2 ALLIGATOR CLIPS 2 RESISTORS LIGHT BULB VOLTAGE PROBE CURRENT PROBE DUAL CHANNEL AMPLIFIER Part 1 The Setup Verify that every item on the Equipment List is on your lab table. Note that there are FOUR alligator clips; two coming from the voltage probe and two stand-alone ones. The first thing you are going to do is hook up your own circuit. Before you begin, make sure that the power supply is TURNED OFF. You ll be using Figure 2 on the next page as a guide to set up the circuit. Do the following A) The first thing you should do is set up the main line which starts at the power supply and ends at the power supply. (Worry about the alligator clips for the voltage probe LAST. See Figure 2.) To set up the main line, use the three wires, the two stand-alone alligator clips (NOT the alligator clips for the voltage probe coming from the Dual Channel Amplifier), the brown-bodied resistor, and the small box that has the plus and minus on it (current probe). See Figure 2. Use the stand-alone alligator clips on the ends of your wires and then attach the clips to either side of the resistor. [NOTE: It does not matter what color wire you use in any part of the circuit.] B) Now attach the alligator clips for the voltage probe that are coming from the Dual Channel Amplifier. See Figure 2. Notice that the voltage probe is attached across the resistor and that the current probe is attached so the current will flow through the resistor first and then through the probe. 3-2

4 Part 2 Finally, You Can Begin The first thing you should do is to make a copy of Chart 1 on your paper. Using the Color Band Chart on the left, record the value of the resistance in the chart under Resistance Value. Color Band Chart BLACK 0 BROWN 1 RED 2 ORANGE 3 YELLOW 4 GREEN 5 BLUE 6 VIOLET 7 GRAY 8 WHITE 9 RED 2% GOLD 5% SILVER 10% Resistor Brown Body Blue Body Resistor Value A) Set the power supply to 0 V. Trial #1 R-Value CHART 1 Trial #2 R-Value Average B) With the mouse, push the Zero button (a zero with a slash through it) on the computer screen. It is the button just to the left of the big green Collect button. Now click OK. This ensures that you have a zero baseline for your values. C) Do the following click on the graph area then, OPTIONS GRAPH OPTIONS AXES OPTIONS. In this mode you can change the axis values on the graph. D) For the X-Axis section set the Left to 0.0 and set the Right to Press DONE. Feel free to adjust the axes throughout the lab so that you have a graph that is spread out across the screen. E) Now you can start taking data. Push the green Collect button. F) Increase the voltage on the power supply to 0.5 V. The voltage that shows on the meter on the computer screen might be a little different but just go with it. G) When the reading is relatively stable (sometimes it jumps) push the Keep button which is to the right of the big red button (formerly green). The reading might still be jumping around but go ahead and push Keep anyway. A red dot will appear on the graph that corresponds to the voltage and current reading. H) Repeat this process in increments of 0.5 V until you reach 5.0 V. NOTE: You do not have to push Stop and Collect each time you change your voltage. NOTE 2 : Make sure you take the data in numerical order. (i.e. don t go back and take data that you missed) You won t be able to use the Linear Fit option (coming up soon) if you jump around with your data. I) Once you are done taking data, push the Stop button. ALSO, set the power supply to 0 V. 3-4

Lab 5 RC Circuits. What You Need To Know: Physics 226 Lab

Lab 5 R ircuits What You Need To Know: The Physics In the previous two labs you ve dealt strictly with resistors. In today s lab you ll be using a new circuit element called a capacitor. A capacitor consists

Background: Electric resistance, R, is defined by:

RESISTANCE & OHM S LAW (PART I and II) - 8 Objectives: To understand the relationship between applied voltage and current in a resistor and to verify Ohm s Law. To understand the relationship between applied

RESISTANCE & OHM S LAW (PART I

RESISTANCE & OHM S LAW (PART I and II) Objectives: To understand the relationship between potential and current in a resistor and to verify Ohm s Law. To understand the relationship between potential and

Lab 3 - DC Circuits and Ohm s Law

Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

Ohm s Law. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference

Ohm s Law Experiment 25 The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of

Name Partner Date Class

Name Partner Date Class Ohm's Law Equipment: Resistors, multi-meters, VOM, alligator clips, wires, breadboard, batteries, 1/4 or 1/2 Amp fuse, low voltage power supply. Object: The object of this exercise

Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

Experiment 15: Ohm s Law

Experiment 15: Ohm s Law Figure 15.1: Simple Series Circuit EQUIPMENT Universal Circuit Board Power Supply (2) DMM s 150 Resistor (R 1 ) 330 Resistor (R 2 ) 560 Resistor (R 3 ) Miniature Light Bulb and

DC Circuits (Combination of resistances)

Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose

Lab 4 - Ohm s Law and Kirchhoff s Circuit Rules

Lab 4 Ohm s Law and Kirchhoff s Circuit Rules L41 Name Date Partners Lab 4 Ohm s Law and Kirchhoff s Circuit Rules OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the

Lab 4 Series and Parallel Resistors

Lab 4 Series and Parallel Resistors What You Need To Know: (a) (b) R 3 FIGURE - Circuit diagrams. (a) and are in series. (b) and are not in series. The Physics Last week you examined how the current and

Basic DC Circuits. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference

Basic DC Circuits Current and voltage can be difficult to understand, because the flow of electrons and potential differences cannot be observed by the unaided human eye. To clarify these terms, some people

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

Basic Ohm s Law & Series and Parallel Circuits

2:256 Let there be no compulsion in religion: Truth stands out clear from Error: whoever rejects evil and believes in Allah hath grasped the most trustworthy hand-hold that never breaks. And Allah heareth

Electric Circuits II. Physics 133 Experiments Electric Circuits II 1

Physics 133 Experiments Electric Circuits II 1 Electric Circuits II GOALS To examine Ohm's Law: the pivotal relationship between voltage and current for resistors To closely study what current does when

P150A Experimental Lab #7 Ohm s Law (Ver A 10/12)

Ohm s Law The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of electrical resistance

Physics 1021 Experiment 6. Ohm s Law and Equivalent Resistance V=IR. Georg Simon Ohm ( )

1 Physics 1021 Ohm s Law and Equivalent Resistance V=IR Georg Simon Ohm (1789-1854) 2 Ohm s Law Electric current, I, is a measure of the flow of charge. It is rate of charge with time across a given point

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of

R Ω. II. Experimental Procedure. Ohm's Law

I. Theory Ohm's Law In this lab we will make detailed measurements on a resistor to see if it obeys Ohm's law. We will also check the rules for combining resistors in series and parallel. Ohm's law describes

Series & Parallel Circuits Challenge

Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,

Circuits and Resistivity

Circuits and Resistivity Look for knowledge not in books but in things themselves. W. Gilbert OBJECTIVES To learn the use of several types of electrical measuring instruments in DC circuits. To observe

LAB ELEC 25.CALC From Physics with Calculators, Vernier Software & Technology, 2003

OHM S LAW LAB ELEC 25.CALC From Physics with Calculators, Vernier Software & Technology, 2003 INTRODUCTION The fundamental relationship among the three important electrical quantities current, voltage,

EE101 - Lab 2: Resistive Circuits. Resistor Color Codes --- Note: carbon composition resistors will be used

EE101 - Lab 2: Resistive Circuits ALL PRELABS ARE TO BE COMPLETED ON SEPARATE PAPER AND TURNED IN AT THE BEGINNING OF THE LAB PERIOD (MAKE A COPY TO USE DURING THE LAB). ALL LAB EXERCISES MUST BE COMPLETED

`Ohm s Law III -- Resistors in Series and Parallel

`Ohm s Law III -- esistors in Series and Parallel by Dr. ames E. Parks Department of Physics and Astronomy 40 Nielsen Physics Building he University of ennessee Knoxville, ennessee 7996-00 Copyright August,

ElectronicsLab1.nb 1. Electronics Lab #1. Ohm's Law and Simple Circuits

ElectronicsLab1.nb 1 Electronics Lab #1 Ohm's Law and Simple Circuits In this laboratory, you will verify Ohm's law V=iR where V is the voltage, i is the current and R is the resistance. You will learn

R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ +

Physics 221 Experiment 3: Simple DC Circuits and Resistors October 1, 2008 ntroduction n this experiment, we will investigate Ohm s Law, and study how resistors behave in various combinations. Along the

Evaluation copy. Ohm s Law. Computer

Ohm s Law Computer 22 The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of electrical

Electrical Measurements

Electrical Measurements Experimental Objective The objective of this experiment is to become familiar with some of the electrical instruments. You will gain experience by wiring a simple electrical circuit

Lab 5: Simple Electrical Circuits

Lab 5: Simple Electrical Circuits Introduction: In this laboratory you will explore simple DC (direct current) electrical circuits. The primary goal of the lab will be to develop a model for electricity.

Resistors. Jeffrey La Favre

1 Resistors Jeffrey La Favre Resistors One of the most basic components (parts) used in electronics is the resistor. Resistors are used to control the amount of current that flows in a circuit and to reduce

Resistance and Ohm s Law - MBL

Resistance and Ohm s Law - MBL In this experiment you will investigate different aspects of Ohm s Law, which relates voltage, current, and resistance. A computer will be used to collect, display, and help

How Does it Flow? Electricity, Circuits, and Motors

How Does it Flow? Electricity, Circuits, and Motors Introduction In this lab, we will investigate the behavior of some direct current (DC) electrical circuits. These circuits are the same ones that move

Goals. Introduction R = DV I (7.1)

Lab 7. Ohm s Law Goals To understand Ohm s law, used to describe the behavior of electrical conduction in many materials and circuits. To calculate the electrical power dissipated as heat in electrical

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance

Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Objective: In this experiment you will learn to use the multi-meter to measure voltage, current and resistance. Equipment: Bread

CHAPTER 2. Basic Electronics & Theory. (The rules behind all those little things)

CHAPTER 2 Basic Electronics & Theory (The rules behind all those little things) 1 Current, Voltage, Resistance Water flowing through a hose is a good way to imagine electricity. Water is like Electrons

Ohm s Law. 1 Object. 2 Apparatus. 3 Theory. To study resistors, Ohm s law, linear behavior, and non-linear behavior.

Ohm s Law Object To study resistors, Ohm s law, linear behavior, and non-linear behavior. pparatus esistors, power supply, meters, wires, and alligator clips. Theory resistor is a circuit element which

Objectives. to understand how to use a voltmeter to measure voltage

UNIT 10 MEASUREMENTS OF VOLTAGE (from Lillian C. McDermott and the Physics Education Group, Physics by Inquiry Volume II, John Wiley and Sons, NY, 1996) Objectives to understand how to use a voltmeter

3 DC Circuits, Ohm's Law and Multimeters

3 DC Circuits, Ohm's Law and Multimeters Theory: Today's lab will look at some basics of electricity and how these relate to simple circuit diagrams. Three basic terms are important to a study of electricity.

Experiment #4: Basic Electrical Circuits

Purpose: Equipment: Discussion: Experiment #4: Basic Electrical Circuits Rev. 07042006 To construct some simple electrical circuits which illustrate the concepts of current, potential, and resistance,

PHY222 Lab 3 Ohm s Law and Electric Circuits Ohm s Law; Series Resistors; Circuits Inside Three- and Four-Terminal Black Boxes

PHY222 Lab 3 Ohm s Law and Electric Circuits Ohm s Law; Series Resistors; Circuits Inside Three- and Four-Terminal Black Boxes Print Your Name Print Your Partners' Names Instructions February 5, 2015 Before

very small Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: P31220 Lab

Ohm s Law and DC Circuits Purpose: Students will become familiar with DC potentiometers circuits and Ohm s Law. Introduction: Ohm s Law for electrical resistance, V = IR, states the relationship between

PHYS-2212 LAB Ohm s Law and Measurement of Resistance

Objectives PHYS-2212 LAB Ohm s Law and Measurement of Resistance Part I: Comparing the relationship between electric current and potential difference (voltage) across an ohmic resistor with the voltage-current

Ohm s Law and Simple DC Circuits

Ohm s Law and Simple DC Circuits 2EM Object: Apparatus: To confirm Ohm s Law, to determine the resistance of a resistor, and to study currents, potential differences, and resistances in simple direct current

Resistors in Series and Parallel

Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the

OHM S LAW 05 AUGUST 2014

OHM S LAW 05 AUGUST 2014 In this lesson, we: Current Lesson Description Revise the definitions of current, potential difference and emf Explore Ohm s law Identify the characteristics of ohmic and non-ohmic

3_given a graph of current_voltage for a resistor, determine the resistance. Three resistance R1 = 1.0 kω, R2 = 1.5 kω, R3 = 2.

Ohm s Law Objectives: 1_measure the current_voltage curve for a resistor 2_construct a graph of the data from objective 1 3_given a graph of current_voltage for a resistor, determine the resistance Equipment:

Intro to Circuits Lab #1

Intro to Circuits Lab #1 Anatomy of a Breadboard: The breadboard is where you will be assembling your circuits. The breadboard is composed of rows and columns of metal clips. These clips are housed in

PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members:

PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: Goals: To explore the basic principles of electric circuits, and how to measure them. Materials: Electrical resistors

International Islamic University Chittagong Department of Electrical & Electronics Engineering

International Islamic University Chittagong Department of Electrical & Electronics Engineering Course No: EEE 1102 Course Title: Electrical Circuit I Sessional Experiment No : 01 Experiment Name: Introduction

Section 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate. Learning Outcomes

Section 4: Ohm s Law: Putting up a Resistance Section 4 Ohm s Law: Putting up a Resistance What Do You See? Learning Outcomes In this section, you will Calculate the resistance of an unknown resistor given

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 1 - D.C. CIRCUITS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME - D.C. CIRCUITS Be able to use circuit theory to determine voltage, current and resistance in direct

Kirchhoff s Voltage Law and RC Circuits

Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator

esiexperiment 1: Electrical Resistance and the Resistor

esiexperiment : Electrical Resistance and the Resistor Introduction Ohm s law is the most fundamental equation in electric circuit analysis. It states that the amount of electric current flowing in a circuit

EXPERIMENT #2: DC Circuits and Tools

Name/NetID: Teammate/NetID: EXPERIMENT #2: DC Circuits and Tools Laboratory Outline In today s lab we ll begin developing the fundamental knowledge and skills you ll need to conduct basic experiments.

Ohm s Law and Simple Electrical Connections

Ohm s Law and Simple Electrical Connections Purpose: To experimentally verify Ohm s Law and to provide experience in making series and parallel electrical connections. TO OD RUNNG FUSES CHECK LL CRCUT

Lab E1: Introduction to Circuits

E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

PHYS245 Lab: Light bulb and resistor ΙΙ: Current voltage (I-V) curves

Purpose: PHYS245 Lab: Light bulb and resistor ΙΙ: Current voltage (I-V) curves Measure the current voltage curve of a light bulb and a resistor using a variable d.c. power supply. Understanding of Ohm

Series & parallel circuit measurements Part I

Series parallel calculations sheet #1 Complete these problems below using your calculator. Both partners need to work the problems and agree on the answers. Record your answers below and analyze the work

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 9. Superconductivity & Ohm s Law

Laboratory Section: Last Revised on January 6, 2016 Partners Names: Grade: EXPERIMENT 9 Superconductivity & Ohm s Law 0. Pre-Laboratory Work [2 pts] 1. Define the critical temperature for a superconducting

Name: Lab Partner: Section:

Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor

Preview of Period 12: Electric Circuits

Preview of Period 2: Electric Circuits 2. Voltage, Current, and esistance How are voltage, current, and resistance related? 2.2 esistance and Voltage of esistors in Connected in Series How does current

Lab #2: Parallel and Series Resistors

Fall 2013 EELE 250 Circuits, Devices, and Motors Lab #2: Parallel and Series Resistors Scope: Use a multimeter to measure resistance, DC voltage, and current Use the color code for resistors. Use the prototype-board

Experiment 9 ~ RC Circuits

Experiment 9 ~ RC Circuits Objective: This experiment will introduce you to the properties of circuits that contain both resistors AND capacitors. Equipment: 18 volt power supply, two capacitors (8 µf

Lab 4: Transistors and Digital Circuits

2 Lab 4: Transistors and Digital Circuits I. Before you come to lab... A. Please review the lecture from Thursday, March 6, on Binary Numbers and Manipulations. There were two different handouts containing

Introduction to Electric Circuits. Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos

Introduction to Electric Circuits Dr. William A. Stapleton Ingram School Of Engineering Texas State University San Marcos Electrical Circuits (Over)simplified The simple model of matter is that it is made

Activity 1: Light Emitting Diodes (LEDs)

Activity 1: Light Emitting Diodes (LEDs) Time Required: 45 minutes Materials List Group Size: 2 Each pair needs: One each of the following: One Activity 1 bag containing: o Red LED o Yellow LED o Green

Circuits. Page The diagram below represents a series circuit containing three resistors.

Name: Circuits Date: 1. Which circuit segment has an equivalent resistance of 6 ohms? 4. The diagram below represents a series circuit containing three resistors. 2. Base your answer to the following question

Lab 9 Kirchhoff s Laws and Wheatstone Bridge

Lab 9 Kirchhoff s Laws and Wheatstone Bridge Learning Goals to explore Kirchhoff s two laws of electrical circuits to use a voltage sensor, current sensor, and the DataStudio software to measure the voltage

Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws

Physics 182 Spring 2013 Experiment #6 1 Experiment #6, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

CIRCUIT DIAGRAMS AND COMPONENT DRAWINGS

CIRCUIT DIAGRAMS AND COMPONENT DRAWINGS Dr. Victor Giurgiutiu Page 70 1/17/01 BASIC MULTIMIETER OPERATION BASIC MULTIMETER INFORMATION Multimeter is a measuring instrument. It can be used to measure voltage,

8.3. Resistance and Ohm s Law. Did You Know? Resistance and the Flow of Electrons. Words to Know

8.3 Resistance and Ohm s Law Resistance slows down the flow of electrons and transforms electrical energy. Resistance is measured in ohms ( ). We calculate resistance by applying a voltage and measuring

People s Physics Book

The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 2 (two weeks) Direct Current Measurement and Ohm's Law

PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 2 (two weeks) Direct Current Measurement and Ohm's Law Equipment: Supplies: VOM (volt-ohm-milliammeter), digital multimeter, power supply. 1/2 watt carbon

Lab 2: Resistance, Current, and Voltage

2 Lab 2: Resistance, Current, and Voltage I. Before you come to la.. A. Read the following chapters from the text (Giancoli): 1. Chapter 25, sections 1, 2, 3, 5 2. Chapter 26, sections 1, 2, 3 B. Read

Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor)

Teacher s Guide Physics Labs with Computers, Vol. 2 012-06101C P52: LRC Circuit Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win)

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

MEASUREMENT OF RESISTORS

MEASUREMENT OF RESISTORS Richard G. Lupa Benjamin M. Cadieux 9/17/2007 Objectives: Learn how to utilize and code with the resistor color code system Learn how to use a digital multimeter (DMM) and an analog

Using a Multimeter to Analyze a Circuit: Measuring Current and Voltage Calculating Power and Resistance

Name: Date: Using a Multimeter to Analyze a Circuit: Measuring Current and Voltage Calculating Power and Resistance Background Information and Pre-Lab Activity Materials: One solar module One small DC

Electronic Trainer. Combined Series and Parallel Circuits

Electronic Trainer Combined Series and Parallel Circuits In this lab you will work with a circuit combining series and parallel elements. You will use six resistors to create a circuit with two parallel

1 THE LIGHT BULB EXPERIMENT: Exploring Simple Electric Circuits

1 THE LIGHT BULB EXPERIMENT: Exploring Simple Electric Circuits Preparatory Questions for Review: (also read this guide sheet, which contains some of the answers!) 1. State Ohm s Law, defining every term

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-11 TRANSISTOR BIASING (Common Emitter Circuits, Fixed Bias, Collector to base Bias) Hello everybody! In our series of lectures

Parallel Resistance, Series/Parallel Circuit Combinations, and Power Consumption

Lab #18 Parallel/Series Resistors page 1 Parallel Resistance, Series/Parallel Circuit Combinations, and Power Consumption Reading: Giambatista, Richardson, and Richardson Chapter 18 (18.1-18.9, 18.11).

D.C. Circuits. 1. To determine the resistance of resistors using (a) a multimeter, and (b) Ohm s Law,

D.C. Circuits 1 Objectives 1. To determine the resistance of resistors using (a) a multimeter, and (b) Ohm s Law, 2. To verify the equivalent resistance formulae for series and parallel resistor combinations,

Q1. (a) The diagram shows the voltage-current graphs for three different electrical components.

Q. (a) The diagram shows the voltage-current graphs for three different electrical components. Which one of the components A, B or C could be a 3 volt filament lamp? Explain the reason for your choice...................

2-1: Types of Resistors

Chapter 2 Resistors Topics Covered in Chapter 2 2-1: Types of Resistors 2-2: Resistor Color Coding 2-3: Variable Resistors 2-4: Rheostats and Potentiometers 2-5: Power Ratings of Resistors 2-6: Resistor

Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

Electric Circuits II

Electric Circuits II Experiment 4: Resistances in Circuits Equipment needed: - AC/DC Electronic Lab Board: Resistors - Multimeter Purpose The purpose of this lab is to begin experimenting with the variables

Experiment: Series and Parallel Circuits

Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent

21 Lab 5: Series and Parallel Circuits

21 Lab 5: Series and Parallel Circuits Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are

EXPERIMENT 9: OHM S LAW

EXPERIMENT 9: OHM S LAW Introduction: In this lab, you will use a variable power supply to subject a resistor (of known resistance) to a variety of voltages. Your objective will be to test Ohm s Law, which

ME : Electronics and Instrumentation Lab 1: Basic Resistor Circuits and DC Power

ME 530.241: Electronics and Instrumentation Lab 1: Basic Resistor Circuits and DC Power Louis L. Whitcomb and Kyle B. Reed Department of Mechanical Engineering The Johns Hopkins University Spring 2009

Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

Electrostatics. Electrostatics Version 2

1. A 150-watt lightbulb is brighter than a 60.-watt lightbulb when both are operating at a potential difference of 110 volts. Compared to the resistance of and the current drawn by the 150-watt lightbulb,

Inductors in AC Circuits

Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

Resistors in Series and Parallel Circuits

69 Resistors in Series and Parallel Circuits E&M: Series and parallel circuits Equipment List DataStudio file: Not Required Qty s Part Numbers 1 C/DC Electronics Lab EM-8656 2 D cell 1.5 volt Introduction

What will we learn in this chapter?

Chapter 19: Current, resistance, circuits What will we learn in this chapter? What are currents? Resistance and Ohm s law (no, there are no 3 laws). Circuits and electric power. Resistors in series and