Drexel-SDP GK-12 ACTIVITY

Size: px
Start display at page:

Download "Drexel-SDP GK-12 ACTIVITY"

Transcription

1 Drexel-SDP GK-12 ACTIVITY Subject Areas: Chemistry, Physical Science, Numbers & Operations, Problem Solving Associated Unit: Serial Dilution the Solution to Pollution? Activity Title: ACTIVITY I: Serial Dilution of Food Coloring Dye Water-soluble food dye dissolving in water 2008 Matthew D. Cathell Grade Level: 6 (5 8) Time Required: minutes Group Size: 4-5 students

2 Expendable Cost per Group: < $1 (food dye is the only consumable which must be purchased, all other materials should be available for free or commonly found in a classroom science kit). Summary: In this activity, students use dyes to explore the serial dilution, an important technique in physical science and engineering. Students will systematically dilute solutions of food coloring with pure water. They will observe how the color intensity, or saturation, of each subsequent solution changes. They will also keep a running calculation of the concentration of drops per ml water. Engineering Connection: Engineers and scientists must often adjust the concentration of chemical solutions. For instance, an engineer might have a solution of 5 grams of polymer dissolved in 1 liter of solvent, but might need a solutions with concentrations of 1 g/l, 0.1 g/l, and 0.01 g/l. Using a technique called serial dilution, the engineer can easily and accurately produce these lower concentration solutions in a step-by-step fashion. Biomedical engineers use this technique when they have suspensions of cells (collections of cells floating in water or other liquids). By serially diluting these cell suspensions, engineers reduce the number of cells floating per unit volume of liquid. Keywords: concentration, dilution, solutions, solute, solvent Educational Standards: Science: Math: Learning Objectives: After this lesson, students should be able to: explain the purpose of serial dilution use serial dilution to make solutions of various concentrations from an initial solution Materials List: Each group needs: 2 larger plastic or glass container (~500 ml in volume) 4 8 smaller clear plastic or glass vials (15 50 ml in volume) pipette graduated cylinder 2

3 water To share with the entire class: food coloring dye Introduction / Motivation: What if you needed to make a solution with a concentration 1 drop of a medicine per 999 drops of water? Any less concentrated, and the medicine will do no good but any more concentrated, and the medicine will be poisonous! You could start counting those 1,000 drops (1 drop medicine and 999 drops water), but that would take quite awhile! What happens if you only need a small amount of solution (say, 10 drops total) at that concentration? How in the world are you ever going to measure out a fraction of a drop??? Today we re going to learn a technique called serial dilution. Biologists, chemists, and engineers use this technique all the time to quickly and accurately make dilute solutions from more concentrated ones. It s a simple step-by-step process! When we investigate water pollution, an important thing to consider is how much water a chemical pollutant is dissolved in. A thimble full of mercury in an ocean of water is not a high level of pollution, but the same amount of mercury in a small pond is a cause for real concern. That same thimble of mercury in a glass of drinking water would probably be fatal! It s all a question of how concentration how dilute is the pollution solution? In this activity, we ll be diluting a non-toxic food dye (the same stuff we use for cake frosting and Easter eggs). After diluting by the same dilution factor several times (a serial dilution), the dye will seem to disappear. But is it still there??? Vocabulary / Definitions: Word Definition concentration The amount of a substance (solute) dissolved in a liquid (solvent) in a chemical solution dilution The process of reducing the concentration of unit solute per unit solvent in a solution dilution factor The total number of units volume in which your sample will be dissolved. For instance, a dilution factor of 10 means we have combined 1 unit of our sample with 9 units of solvent 3

4 saturation (of color) (1+9=10). The intensity of a color (how much it differs from white). As color saturation decreases, the color itself doesn t change hues (orange doesn t change to green), but its level of intensity goes down. Procedure: Before the Activity: Review the basics of solutions (solutes dissolve in solvents to become solutions). With the Students: 1. Divide the students into groups. Each group should get 2 large container to hold pure water (and the rinse water) and 4 8 smaller containers for their solutions. 2. Each group should obtain several drops of food coloring dye, which should be placed in the smaller clear vials. They should record how many drops they used. 3. Then, they will use their graduated cylinder to measure 10 ml of pure water to place in the container with the food coloring. They can gently swirl the vial to help the dye dissolve in the liquid. 4. The volume in the vial will be approximately 10 ml (plus the few drops of dye which don t really contribute much to the volume). Students should record the concentration. For instance, if they dissolved 5 drops of dye in the 10 ml volume, they will record the concentration as 5 drops/10 ml (which is the same as saying 0.5 drop/ml). Students should also record the color they see. 4

5 5. Next, the students can use a pipette to remove 1 ml of solution from vial #1 and will place it in vial #2. After rinsing the graduated cylinder, students should measure 9 ml of pure water and also place it in vial #2. They have just diluted the first solution by a dilution factor of ten (1 part dyed water to 9 parts pure water). 6. After gently swirling vial #2, students should observe the color of the liquid in vial #2 and compare it with the liquid in vial #1. They may notice a slight decrease in color intensity in the vial #2 (or they may not, depending upon how much dye the initially used). 7. At this point, the students should calculate the concentration of their new solution in vial #1. If their initial concentration was 0.5 drops/ml, their new concentration would be (0.5 drops/ml) (1/10) = 0.05 drops/ml. 8. Have the students continue with the serial dilution process. Each time they make a new solution, they will take 1 ml from the vial immediately proceeding the current vial (for instance, vial #3 will have 1 ml of solution from vial #2, not from vial #1). They will add 9 ml of pure water. Each serial dilution will reduce the concentration by a factor of 10. Have them continue to record a concentration and color comparison for each solution. 5

6 9. With each serial dilution, the concentration of dye goes down by a factor of 10. By the time the students get to vial #5, students who began with 5 drops of food coloring in vial #1 should be calculating a diluted concentration of drops/ml. 10. Hopefully, by the time the students run out of vials, the dye will be so diluted that the solution will no longer have a visible color. If the students have made solutions in all their vials and still can perceive a visible color, they can empty out previous vials and continue the serial dilution process. For instance, if students have 5 total vials, they can empty vials #1 4, rinse them, and continue diluting, starting with the solution in vial # When the students finally arrive at a solution that appears completely without color, they should note the concentration. At this low concentration level, the dye is no longer present in quantities large enough for their human eyes to see. Troubleshooting Tips: If students are unable to get colorless solutions in a reasonable amount of time, they likely began with too many drops of dye. Rinse all vials and begin again with few drops. In order to most accurately perform serial dilution, the pipette and graduated cylinder should be rinsed after each dilution cycle. Investigating Questions: 1. When the solution is so dilute that it appears colorless, does this mean there is no longer any dye present in the water? Answer: No. Just because we can no longer see a substance with our eyes doesn t mean it isn t there, in some small quantity. We will explore this idea in Activity II of this module. 2. What if we had diluted each solution by a factor of 2, rather than 10? How many ml of dye solution and how many ml of water would we combine in each vial? Answer: If we dilute by a factor of 2, we are cutting the concentration in half with each dilution cycle. Therefore, we would take 5 ml of the previous dye solution and mix it with 5 ml of pure water (a 1:1 or ½ to ½ solution). Assessment: 6

7 1. Ask students to recall one example (or make up one of their own!) of an instance when you they might serial dilution. What is its purpose? 2. a.) If you have a solution of 1 g of sugar dissolved in 1 L of water, how many grams of sugar are contained in each ml of water? Answer: b.) If you have a solution of 1 g of sugar dissolved in 1 L of water, how would you dilute the solution so that each ml contained g of sugar, with a total final volume of 1 L? Answer: We have already calculated that 1 g/l is equal to g/ml. We want to get a concentration that is half that ( = ). So we need to dilute the solution by a dilution factor of 2. Activity Extensions: To make the activity more challenging, try changing the dilution factor from 10 to some other number. For instance, if the dilution factor is 3, students will combine 1 part dye solution with 2 parts pure water in each cycle. A dilution factor of 10 makes it easy to calculate each concentration (the decimal place simply moves one place to the left each cycle). Other dilution factors will require the students to use more mathematics. Author: Matthew D. Cathell Owner: Drexel University GK-12 program, Engineering as a Contextual Vehicle for Science and Mathematics Education, supported in part by National Science Foundation Award No. DGE Copyright: 2008 Drexel University GK-12 program 7

Acids & Bases Around the House Use a ph indicator to find acids and bases

Acids & Bases Around the House Use a ph indicator to find acids and bases Use a ph indicator to find acids and bases Description: Visitors predict whether various household solutions are acids or bases, and test their hypotheses using a universal ph indicator. Then, visitors

More information

Country Club Ichthycide. LESSON 3 Parts per Million Adapted from, Investigating Groundwater: The Fruitvale Story

Country Club Ichthycide. LESSON 3 Parts per Million Adapted from, Investigating Groundwater: The Fruitvale Story Country Club Ichthycide LESSON 3 Parts per Million Adapted from, Investigating Groundwater: The Fruitvale Story TEACHER NOTE: Omit this lesson if students have a working knowledge of ppm. Overview Students

More information

2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials

2C: One in a Million. Part 1: Making solutions. Name: Section: Date: Materials Name: Section: Date: 2C: One in a Million Drinking water can contain up to 1.3 parts per million (ppm) of copper and still be considered safe. What does parts per million mean? Both living things and the

More information

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Note: there is a second document that goes with this one! 2046 - Absorbance Spectrophotometry - Calibration Curve Procedure. The second document

More information

Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions

Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions 2.1 Solutes & Solvents Vocabulary: Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions solvent the larger part of a solution - the part of a solution into which the solutes dissolve solute the smaller

More information

Lumens & Solar Energy Voltage

Lumens & Solar Energy Voltage Drexel-SDP GK-12 ACTIVITY Lumens & Solar Energy Voltage Subject Area(s) Associated Unit Associated Lesson Earth & Space Activity Title Discover The Relationship Between Lumens and Solar Generated Voltage

More information

Vitamin C Content of Fruit Juice

Vitamin C Content of Fruit Juice 1 Vitamin C Content of Fruit Juice Introduction Vitamin C Vitamins are organic compounds that have important biological functions. For instance, in humans they enable a variety of enzymes in the body to

More information

Analyzing the Acid in Vinegar

Analyzing the Acid in Vinegar Analyzing the Acid in Vinegar Purpose: This experiment will analyze the percentage of acetic acid in store bought vinegar using titration. Introduction: Vinegar can be found in almost any home. It can

More information

1 Introduction The Scientific Method (1 of 20) 1 Introduction Observations and Measurements Qualitative, Quantitative, Inferences (2 of 20)

1 Introduction The Scientific Method (1 of 20) 1 Introduction Observations and Measurements Qualitative, Quantitative, Inferences (2 of 20) The Scientific Method (1 of 20) This is an attempt to state how scientists do science. It is necessarily artificial. Here are MY five steps: Make observations the leaves on my plant are turning yellow

More information

Chapter 5, Lesson 3 Why Does Water Dissolve Salt?

Chapter 5, Lesson 3 Why Does Water Dissolve Salt? Chapter 5, Lesson 3 Why Does Water Dissolve Salt? Key Concepts The polarity of water molecules enables water to dissolve many ionically bonded substances. Salt (sodium chloride) is made from positive sodium

More information

Organic Chemistry Calculations

Organic Chemistry Calculations Organic Chemistry Calculations There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations

More information

Fighting the Battles: Conducting a Clinical Assay

Fighting the Battles: Conducting a Clinical Assay Fighting the Battles: Conducting a Clinical Assay 6 Vocabulary: In Vitro: studies in biology that are conducted using components of an organism that have been isolated from their usual biological surroundings

More information

Performing Calculatons

Performing Calculatons Performing Calculatons There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations of them,

More information

Carolina s Solution Preparation Manual

Carolina s Solution Preparation Manual 84-1201 Carolina s Solution Preparation Manual Instructions Carolina Biological Supply Company has created this reference manual to enable you to prepare solutions. Although many types of solutions may

More information

DETERMINING THE DENSITY OF LIQUIDS & SOLIDS

DETERMINING THE DENSITY OF LIQUIDS & SOLIDS DETERMINING THE DENSITY OF LIQUIDS & SOLIDS 17 Density, like color, odor, melting point, and boiling point, is a physical property of matter. Therefore, density may be used in identifying matter. Density

More information

Percentage or Depth of Shade Dyeing using Procion MX or Acid Dyes. There are two concepts that will help you in understanding controlled use of dyes.

Percentage or Depth of Shade Dyeing using Procion MX or Acid Dyes. There are two concepts that will help you in understanding controlled use of dyes. Percentage or Depth of Shade Dyeing using Procion MX or Acid Dyes If you want to achieve reliable, reproducible dyeing results, are interested in dyeing to match or achieve exact results, or wish to produce

More information

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE

PART I: PREPARATION OF SOLUTIONS AND STANDARDIZATION OF A BASE TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS 2009, 1996, 1973 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved

IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved IDENTIFICATION OF POLYMERS 1998 by David A. Katz. All rights reserved David A. Katz Chemist, Educator, Science Communicator, and Consultant 133 N. Desert Stream Dr., Tucson, AZ 85745 Voice/Fax: 520-624-2207

More information

Acids, Bases, and ph

Acids, Bases, and ph CHAPTER 9 1 SECTION Acids, Bases, and Salts Acids, Bases, and ph KEY IDEAS As you read this section, keep these questions in mind: What properties do acids have? What properties do bases have? How can

More information

Experiment #10: Liquids, Liquid Mixtures and Solutions

Experiment #10: Liquids, Liquid Mixtures and Solutions Experiment #10: Liquids, Liquid Mixtures and Solutions Objectives: This experiment is a broad survey of the physical properties of liquids. We will investigate solvent/solute mixtures. We will study and

More information

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

More information

Kool Demo for Acid-Base Reactions

Kool Demo for Acid-Base Reactions Kool Demo for Acid-Base Reactions Kool Demo for Acid-Base Reactions Adapted from : http://www.stevespanglerscience.com/lab/experiments/color-changing-milk-of-magnesia Materials: Red cabbage juice indicator

More information

Essential Maths for Medics and Vets Reference Materials Module 2. Amount and Concentration.

Essential Maths for Medics and Vets Reference Materials Module 2. Amount and Concentration. 2 Amount and concentration: making and diluting solutions 2 Amount and concentration; making and diluting solutions... 2A Rationale... 2B Distinguishing between amount and concentration, g and %w/v...

More information

Water Un-Mix-ology & Purification!

Water Un-Mix-ology & Purification! Water Un-Mix-ology & Purification! Subject Area(s): Associated Unit: Associated Lesson: Activity Title : water, physical properties, temperature, mixing Properties of Water (Grade 4, NYC PS) Water Un-Mix-ology

More information

Solutions and Suspensions

Solutions and Suspensions Science Unit: Lesson 11: Matter Solutions and Suspensions School year: 2005/2006 Developed for: Developed by: Grade level: Duration of Lesson McBride Elementary School, Vancouver School District Catriona

More information

Return to Lab Menu. Acids and Bases in Your House

Return to Lab Menu. Acids and Bases in Your House Return to Lab Menu Acids and Bases in Your House OBJECTIVES Isolate a natural acid-base indicator. Determine the acid-base properties of common household solutions. INTRODUCTION Acids and bases are among

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PRINCIPLES: Once the Rate Law for a reaction has been experimentally established the next step is its explanation in terms

More information

Solubility Product Constants

Solubility Product Constants Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS 1 To measure the molar solubility of a sparingly soluble salt in water.

More information

Lesson 10: Mixtures of Matter - Part 2

Lesson 10: Mixtures of Matter - Part 2 Science Unit: Matter Lesson 10: Mixtures of Matter - Part 2 School year: 2004/2005 Developed for: Developed by: Grade level: Duration of lesson: Notes: Queen Alexandra Elementary School, Vancouver School

More information

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container.

Dissolving of sodium hydroxide generates heat. Take care in handling the dilution container. TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS 2009, 1996, 1973 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright

More information

Luminol Test PROCESS SKILLS SCIENCE TOPICS VOCABULARY

Luminol Test PROCESS SKILLS SCIENCE TOPICS VOCABULARY EXPERIMENT: LUMINOL TEST Luminol Test Visitors mix a solution of luminol with fake blood (hydrogen peroxide) to produce a reaction that gives off blue light. OBJECTIVES: Visitors learn that some chemical

More information

Experiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution

Experiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution Experiment 4 The Relationship of Density and Molarity of an Aqueous Salt Solution Purpose: The purpose of this experiment is to investigate the relationship between the concentration of an aqueous salt

More information

What s in a Mole? Molar Mass

What s in a Mole? Molar Mass LESSON 10 What s in a Mole? Molar Mass OVERVIEW Key Ideas Lesson Type Lab: Groups of 4 Chemists compare moles of substances rather than masses because moles are a way of counting atoms. When considering

More information

Hands-On Labs SM-1 Lab Manual

Hands-On Labs SM-1 Lab Manual EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

More information

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010 Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density

More information

Drexel-SDP GK-12 ACTIVITY

Drexel-SDP GK-12 ACTIVITY Drexel-SDP GK-12 ACTIVITY Subject Area(s): Biology Associated Unit: None Associated Lesson: None Activity Title : Plant or Animal Cell? Grade Level: 7 and 8 (7-9) Activity Dependency: None Time Required:

More information

HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY

HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY HOW TO MAKE STANDARD SOLUTIONS FOR CHEMISTRY Phillip Bigelow Chemists make two common types of "standard solutions": Molar solutions Normal solutions Both of these solutions are concentrations (or strengths

More information

Separation of Dyes by Paper Chromatography

Separation of Dyes by Paper Chromatography Cautions: The FD&C food dyes used are concentrated and may stain clothing and skin. Do not ingest any of the food dyes or food samples used in this lab. Purpose: The purpose of this experiment is to determine

More information

Significant Figures, Propagation of Error, Graphs and Graphing

Significant Figures, Propagation of Error, Graphs and Graphing Chapter Two Significant Figures, Propagation of Error, Graphs and Graphing Every measurement has an error associated with it. If you were to put an object on a balance and weight it several times you will

More information

SCIENCE 20 UNIT A: CHEMICAL CHANGE DISTANCE LEARNING STUDENT GUIDE

SCIENCE 20 UNIT A: CHEMICAL CHANGE DISTANCE LEARNING STUDENT GUIDE SCIENCE 20 UNIT A: CHEMICAL CHANGE DISTANCE LEARNING STUDENT GUIDE Science 20 Distance Learning Student Guide This document is intended for You may find the following Internet sites useful: Students Teachers

More information

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions

More information

The Analytical Balance

The Analytical Balance Chemistry 119: Experiment 1 The Analytical Balance Operation of the Single-Pan Analytical Balance Receive instruction from your teaching assistant concerning the proper operation of the Sartorius BP 210S

More information

Worksheet A Environmental Problems

Worksheet A Environmental Problems Worksheet A Environmental Problems Vocabulary Can you talk about Environmental issues in English? With a partner, try to explain the terms in the diagram below. Why are the words divided into two groups

More information

Experiment 1: Measurement and Density

Experiment 1: Measurement and Density Experiment 1: Measurement and Density Chemistry 140 Learning Objectives Become familiar with laboratory equipment and glassware Begin to see the link between measurement and chemical knowledge Begin to

More information

Plant Growth - Light and Shade

Plant Growth - Light and Shade Science Unit: Lesson 5: Plants Plant Growth - Light and Shade School year: 2004/2005 Developed for: Developed by: Grade level: Duration of lesson: Notes: Queen Alexandra Elementary School, Vancouver School

More information

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND #3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

More information

Acids and Bases. AND a widemouth container of the following solids:

Acids and Bases. AND a widemouth container of the following solids: Acids and Bases GOAL To introduce students to acids and bases. MATERIALS: 3 10oz clear plastic cups 1 4 oz. bottle white vinegar - labeled Acid 1 4 oz. bottle of water - labeled Water 1 4 oz. bottle of

More information

Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1

Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1 Experiment 10 Acetic Acid Content of Vinegar: An Acid-Base Titration E10-1 E10-2 The task The goal of this experiment is to determine accurately the concentration of acetic acid in vinegar via volumetric

More information

Chemistry Ch 15 (Solutions) Study Guide Introduction

Chemistry Ch 15 (Solutions) Study Guide Introduction Chemistry Ch 15 (Solutions) Study Guide Introduction Name: Note: a word marked (?) is a vocabulary word you should know the meaning of. A homogeneous (?) mixture, or, is a mixture in which the individual

More information

Chapter 3: Separating Mixtures (pg. 54 81)

Chapter 3: Separating Mixtures (pg. 54 81) Chapter 3: Separating Mixtures (pg. 54 81) 3.2: Separating Mechanical Mixtures (PB Pg. 40 5 & TB Pg. 58 61): Name: Date: Check Your Understanding & Learning (PB pg. 40 & TB pg. 61): 1. What are four methods

More information

No Solution Equations Let s look at the following equation: 2 +3=2 +7

No Solution Equations Let s look at the following equation: 2 +3=2 +7 5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

DIFFUSION (HYPERTONIC, HYPOTONIC, & ISOTONIC SOLUTIONS) THE GUMMY BEAR LAB PASS

DIFFUSION (HYPERTONIC, HYPOTONIC, & ISOTONIC SOLUTIONS) THE GUMMY BEAR LAB PASS DIFFUSION (HYPERTONIC, HYPOTONIC, & ISOTONIC SOLUTIONS) THE GUMMY BEAR LAB PASS Have you ever wondered why your fingers have wrinkles after soaking in a bath tub? Your students have probably wondered the

More information

Mixtures. reflect. How is seawater different from pure water? How is it different from rocky soil?

Mixtures. reflect. How is seawater different from pure water? How is it different from rocky soil? reflect Everything around us is made out of tiny bits of matter. These particles may combine in different ways to produce new materials. Sometimes we need to separate the parts of a material. If we know

More information

Agarose Gel Electrophoresis with Food Color- Teacher Guide

Agarose Gel Electrophoresis with Food Color- Teacher Guide Page 1 of 7 Project Home Gateway to the Project Laboratory Activities What the Project can do in the classroom Biotechnology Resources Favorite resources online and in print Agarose Gel Electrophoresis

More information

Solutions: Molarity. A. Introduction

Solutions: Molarity. A. Introduction Solutions: Molarity. A. Introduction... 1 B. Molarity... 1 C. Making molar solutions... 2 D. Using molar solutions... 4 E. Other mole-based concentration units [optional]... 6 F. Answers... 7 A. Introduction

More information

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared! Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared! Introduction Vitamin C (also known as ascorbic acid, HC6H7O6) is a necessary ingredient

More information

Dose/Response Experiments on Lettuce Seeds

Dose/Response Experiments on Lettuce Seeds Dose/Response Experiments on Lettuce Seeds Name: Date: Lab# Bioassays: Background Information on Dose/Response Experiments A bioassay involves use of a biological organism to test for chemical toxicity.

More information

KINDERGARTEN CHEMISTRY 1 WEEK LESSON PLANS AND ACTIVITIES

KINDERGARTEN CHEMISTRY 1 WEEK LESSON PLANS AND ACTIVITIES KINDERGARTEN CHEMISTRY 1 WEEK LESSON PLANS AND ACTIVITIES ROCK CYCLE OVERVIEW OF KINDERGARTEN CHEMISTRY WEEK 1. PRE: Distinguishing the four types of matter. LAB: Classifying heavy and light rocks. POST:

More information

Laboratory Math II: Solutions and Dilutions

Laboratory Math II: Solutions and Dilutions Slide 1 Laboratory Math II: Solutions and Dilutions Philip Ryan, PhD Post-Doctoral Fellow National Cancer Institute, NIH Welcome to the National Institutes of Health, Office of Intramural Training & Education

More information

Determination of Citric Acid in Powdered Drink Mixes

Determination of Citric Acid in Powdered Drink Mixes Determination of Citric Acid in Powdered Drink Mixes Citric acid and its salts (sodium citrate and potassium citrate) are found in many foods, drinks, pharmaceuticals, shampoos, and cosmetics. The tartness

More information

Chapter 5 Student Reading

Chapter 5 Student Reading Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

More information

Unit: Understanding Science and Engineering Through Solar Power Lesson 5 Making Observations and Recording Data for Solar Powered Water Pumping

Unit: Understanding Science and Engineering Through Solar Power Lesson 5 Making Observations and Recording Data for Solar Powered Water Pumping Unit: Understanding Science and Engineering Through Solar Power Lesson 5 Making Observations and Recording Data for Solar Powered Water Pumping AUTHOR: Mike Hellis DESCRIPTION: Students use a solar module

More information

WHAT S NEW, CO? Thanks for the opportunity to work with your students. Our goal is to teach developmentally TEACHER S GUIDE

WHAT S NEW, CO? Thanks for the opportunity to work with your students. Our goal is to teach developmentally TEACHER S GUIDE TEACHER S GUIDE WHAT S NEW, CO? GET TO KNOW A CHEMICAL REACTION 2 Thanks for the opportunity to work with your students. Our goal is to teach developmentally appropriate chemistry concepts that support

More information

Lab #10 How much Acetic Acid (%) is in Vinegar?

Lab #10 How much Acetic Acid (%) is in Vinegar? Lab #10 How much Acetic Acid (%) is in Vinegar? SAMPLE CALCULATIONS NEED TO BE DONE BEFORE LAB MEETS!!!! Purpose: You will determine the amount of acetic acid in white vinegar (sold in grocery stores)

More information

Chromatography...Oh Yeah!

Chromatography...Oh Yeah! Chromatography...Oh Yeah! What s In Kool-Aid? An Introduction to Extraction and Chromatography OVERVIEW: The purpose of the experiment is to separate and analyze the components of prepared Kool- Aid using

More information

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility.

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility. THE SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES 2007, 1995, 1991 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included. OBJECTIVE To measure

More information

Isolation of Caffeine from Tea

Isolation of Caffeine from Tea Isolation of Caffeine from Tea Introduction A number of interesting, biologically active compounds have been isolated from plants. Isolating some of these natural products, as they are called, can require

More information

Simple vs. True. Simple vs. True. Calculating Empirical and Molecular Formulas

Simple vs. True. Simple vs. True. Calculating Empirical and Molecular Formulas Calculating Empirical and Molecular Formulas Formula writing is a key component for success in chemistry. How do scientists really know what the true formula for a compound might be? In this lesson we

More information

EXPERIMENT 2 EGG OBSERVATIONS. Contents: Pages 1-4: Teachers Guide Page 5: Student Worksheet. An Osmosis Eggsperiment ACKNOWLEDGEMENTS

EXPERIMENT 2 EGG OBSERVATIONS. Contents: Pages 1-4: Teachers Guide Page 5: Student Worksheet. An Osmosis Eggsperiment ACKNOWLEDGEMENTS EXPERIMENT 2 EGG OBSERVATIONS An Osmosis Eggsperiment Contents: Pages 1-4: Teachers Guide Page 5: Student Worksheet ACKNOWLEDGEMENTS The creation of this experiment and its support materials would not

More information

POTATO FLOAT. Common Preconceptions:

POTATO FLOAT. Common Preconceptions: POTATO FLOAT Unit: Salinity Patterns & the Water Cycle l Grade Level: Middle l Time Required: 30 min. (in class) after solutions are prepared by the teacher l Content Standard: NSES Physical Science, properties

More information

Exp 13 Volumetric Analysis: Acid-Base titration

Exp 13 Volumetric Analysis: Acid-Base titration Exp 13 Volumetric Analysis: Acid-Base titration Exp. 13 video (time: 47:17 minutes) Titration - is the measurement of the volume of a standard solution required to completely react with a measured volume

More information

Lesson Plan: The Building Blocks of Photosynthesis

Lesson Plan: The Building Blocks of Photosynthesis Lesson Plan: The Building Blocks of Photosynthesis Summary In this lesson, students will use colored blocks to represent the elements in photosynthesis and illustrate how they are broken down and reassembled

More information

Measuring Manganese Concentration Using Spectrophotometry

Measuring Manganese Concentration Using Spectrophotometry Measuring Manganese Concentration Using Spectrophotometry Objectives To use spectroscopy to determine the amount of Manganese is an unknown sample. Scenario Your have just joined a "Green Team" at SMC

More information

ph Test #1: Scaling Common Liquids (From a series of 5)

ph Test #1: Scaling Common Liquids (From a series of 5) ph ph Test #1: Scaling Common Liquids (From a series of 5) Adapted from: Acid Tests in Environmental Education in the Schools. Braus, Judy and David Wood. Peace Corps, 1993. Grade Level: basic Duration:

More information

WHAT IS THE SCIENTIFIC METHOD?

WHAT IS THE SCIENTIFIC METHOD? WHAT IS THE SCIENTIFIC METHOD? A lesson to introduce the application of the Scientific Method to High School Chemistry Students Karen Balbierer CCMR RET I August 15, 2003 Lesson Plan Summary Lesson Subject:

More information

EDUCATOR S LESSON PLAN

EDUCATOR S LESSON PLAN EDUCATOR S LESSON PLAN Pharmacy Technician Training Program Student Version Orientation Orientation introduces the student to basic terms and definitions. An introduction to the Pharmacy Technician Certification

More information

Measurement and Calibration

Measurement and Calibration Adapted from: H. A. Neidig and J. N. Spencer Modular Laboratory Program in Chemistry Thompson Learning;, University of Pittsburgh Chemistry 0110 Laboratory Manual, 1998. Purpose To gain an understanding

More information

Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS

Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS Lab #9 Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS Name: Purpose: In this laboratory we will investigate how indicators can be used to test for the presence of acids or bases in a number of common

More information

Commutative Property Grade One

Commutative Property Grade One Ohio Standards Connection Patterns, Functions and Algebra Benchmark E Solve open sentences and explain strategies. Indicator 4 Solve open sentences by representing an expression in more than one way using

More information

Reconstitution of Solutions

Reconstitution of Solutions Chapter 12 Reconstitution of Solutions Reconstitution Process of mixing and diluting solutions Some medications supplied in powder form and must be mixed with liquid before administration Parts of Solutions

More information

Activity Template. Drexel-SDP GK-12 ACTIVITY

Activity Template. Drexel-SDP GK-12 ACTIVITY Activity Template Drexel-SDP GK-12 ACTIVITY Subject Area(s) Earth & Space, Measurement Associated Unit: Astronomy Associated Lesson: Astrolabe Activity Title: Classroom Gazing Grade Level 6 (6-7) Time

More information

Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating)

Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating) Name: Date: Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating) High School Environmental Science AP Module 1 Environmental Lab NGSSS Big Ideas: This module is a laboratory-based

More information

Acids and Bases: Cabbage Juice ph Indicator

Acids and Bases: Cabbage Juice ph Indicator Acids and Bases: Cabbage Juice ph Indicator Student Advanced Version Acids and bases are found in a variety of everyday items, including food and drink, medicine, and cleaning products. In this lab, we

More information

Test Bank - Chapter 3 Multiple Choice

Test Bank - Chapter 3 Multiple Choice Test Bank - Chapter 3 The questions in the test bank cover the concepts from the lessons in Chapter 3. Select questions from any of the categories that match the content you covered with students. The

More information

Science 20. Unit A: Chemical Change. Assignment Booklet A1

Science 20. Unit A: Chemical Change. Assignment Booklet A1 Science 20 Unit A: Chemical Change Assignment Booklet A FOR TEACHER S USE ONLY Summary Teacher s Comments Chapter Assignment Total Possible Marks 79 Your Mark Science 20 Unit A: Chemical Change Assignment

More information

The Influence of Carbon Dioxide on Algae Growth

The Influence of Carbon Dioxide on Algae Growth The Influence of Carbon Dioxide on Algae Growth The first objective of this experiment is to show that increased atmospheric concentrations of carbon dioxide, CO 2, can stimulate algae growth. The second

More information

Laboratory 5: Properties of Enzymes

Laboratory 5: Properties of Enzymes Laboratory 5: Properties of Enzymes Technical Objectives 1. Accurately measure and transfer solutions with pipettes 2. Use a Spectrophotometer to study enzyme action. 3. Properly graph a set of data. Knowledge

More information

Elephant Toothpaste Instructor s Demonstration Notes

Elephant Toothpaste Instructor s Demonstration Notes Overview This lab is an introduction to chemical reactions, an excellent demonstration of how catalysts accelerate those chemical reactions and a clear demonstration of an exothermic reaction that also

More information

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid

(1) Hydrochloric acid reacts with sodium hypochlorite to form hypochlorous acid: NaOCl(aq) + HCl(aq) HOCl(aq) + NaCl(aq) hypochlorous acid The Determination of Hypochlorite in Bleach Reading assignment: Chang, Chemistry 10 th edition, pages 156-159. We will study an example of a redox titration in order to determine the concentration of sodium

More information

Hardness Comparisons

Hardness Comparisons Hardness Comparisons Hardness Adapted from: An original Creek Connections activity. Creek Connections, Box 10, Allegheny College, Meadville, Pennsylvania 16335. Grade Level: all Duration: 50 minutes Setting:

More information

Chlorine, Total. DPD Method 1 Method 10101 0.09 to 5.00 mg/l Cl 2 Test 'N Tube Vials. Test preparation. Instrument-specific information

Chlorine, Total. DPD Method 1 Method 10101 0.09 to 5.00 mg/l Cl 2 Test 'N Tube Vials. Test preparation. Instrument-specific information Chlorine, Total DOC316.53.01028 DPD Method 1 Method 10101 0.09 to 5.00 mg/l Cl 2 Test 'N Tube Vials Scope and application: For testing higher levels of total (free plus combined) chlorine in drinking water,

More information

Lesson 4. Temperature change

Lesson 4. Temperature change 54 Lesson 4 Temperature change T E A C H E R G U I D E Lesson summary Students meet scientist Jason Williams, an industrial chemist who designs the materials and processes for making solar cells. He explains

More information

Experiment C-31 Color Absorption

Experiment C-31 Color Absorption 1 Experiment C-31 Color Absorption Objectives To understand the concepts of light waves and color. To investigate how red, green and blue liquids absorb light of different wavelengths. To learn about colorimeter

More information

Chapter 1: Chemistry: Measurements and Methods

Chapter 1: Chemistry: Measurements and Methods Chapter 1: Chemistry: Measurements and Methods 1.1 The Discovery Process o Chemistry - The study of matter o Matter - Anything that has mass and occupies space, the stuff that things are made of. This

More information

OBJECTIVES: Visitors learn what an antioxidant is and how it behaves. They also learn how to test for the presence of vitamin C..

OBJECTIVES: Visitors learn what an antioxidant is and how it behaves. They also learn how to test for the presence of vitamin C.. Vitamin C Visitors use iodine to compare the reactivity of two starch solutions one with vitamin C added, one without vitamin C. OBJECTIVES: Visitors learn what an antioxidant is and how it behaves. They

More information

Leavener Lineup. Getting started. How do we use chemical reactions in the kitchen? Hands-on experiment. Year levels 4 5. Curriculum Links.

Leavener Lineup. Getting started. How do we use chemical reactions in the kitchen? Hands-on experiment. Year levels 4 5. Curriculum Links. rise and Shine: what Makes Bread Rise? Lesson 2 Leavener Lineup Year levels 4 5 Curriculum Links Science Science knowledge helps people to understand the effect of their actions (Yr 4, ACSHE062). Solids,

More information

This Performance Standards include four major components. They are

This Performance Standards include four major components. They are Eighth Grade Science Curriculum Approved July 12, 2004 The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science at the eighth grade level.

More information