# Short-Run Production and Costs

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Short-Run Production and Costs The purpose of this section is to discuss the underlying work of firms in the short-run the production of goods and services. Why is understanding production important to understanding firm behavior? Recall that firms are profit maximizers. We learned in the last chapter that profit equals the difference between total revenue and total costs. As you will learn below, production affects costs. Hence, the first part of this chapter discusses production in the short-run while in the second part we discuss how production affects costs and what those costs consist of in the shortrun. I. Production in the Short-Run Recall that the short-run is a period of time during which the firm may be able to change some of its inputs but cannot change all of them. At least one input, often capital but not always, is fixed in the short-run, which limits the choices that firms may make. In this section, we will discuss in detail how production works in the short-run. A. The Production Function Recall that in the previous chapter we discussed the production function, which illustrates the relationship between output () and inputs (L, K, N, E): = f(l, K, N, E) (1) The main point of this section is to discuss the exact nature of the relationship between the inputs and the output. To do that, we must first simplify the production function. The first step of the simplification is to assume that we are talking about a very simple production process. The one we will use is cleaning out irrigation ditches. Cleaning irrigation ditches is a production process that I was involved in as a teenager and requires only two inputs capital (shovels) and labor (teenagers). Since we are in the short-run, at least one input must be fixed. For our example, we will assume that the number of shovels is fixed while the firm can change the amount of labor. Thus, our production function becomes: = f(l,k) (2) The bar over the capital sign (K) indicates that this input while present and used in production cannot be changed in the short-run. The production function in this simple example, where labor is the only input that can be changed, is sometimes referred to as the total product of labor (TP L ). 1 1 Some books refer to the production function as the total physical product of Labor or TPP L. These two terms, TP L and TPP L, are interchangeable. Both simply refer to the short-run production function in equation 2. 1

2 Now that we only have two variables that can change, labor (L) and output (), we can discuss the relationship between the two. It seems reasonable that using more labor results in more output so perhaps the production function simply looks like the one presented in Graph 1.? _ = f(l, K) The production function in Graph 1 is simply an upward sloping line. While this may seem reasonable, the question mark L in Graph 1 is present because we have not yet really determined whether or not the Graph 1 production function is really this simple use more labor, get more output. In order to determine whether or not the production function is as shown in Graph 1, we must first discuss a new concept, marginal productivity. B. The Marginal Product of Labor Recall from our discussion of consumers and utility, we had already defined one marginal concept marginal utility. During that discussion we pointed out that such marginal concepts are both numerous in economics and quite important. Marginal Product of Labor (MP L ) is the second, but certainly will not be the last, marginal concept presented in microeconomics principles. We noted previously that all marginal values have a definition that is similar, although not exactly the same, to marginal utility. An actor in the market, typically a household or a firm, is engaging in an activity. The activity yields or causes some other variable to change. For marginal utility, households are engaging in consumption, which causes their total utility to change. The marginal concept simply measures the extra amount of the variable, such as utility, caused by a one-unit change in the activity, such as consumption of a good. For marginal product of labor, the firm is engaged in hiring labor in order to change output. Thus, marginal product of labor simply equals the extra amount of output gained by the firm by hiring one more unit of labor. Furthermore, recall that mathematically marginal utility was given by: TU Marginal Utility = (3) That is, the marginal concept mathematically equals the change in the variable affected by the activity divided by the change in the activity itself. Since utility is affected by the change in the activity, consumption, marginal utility equals the ratio of the change in utility to change in consumption. For marginal production of labor, the activity is hiring labor whereas hiring labor causes output to change. Thus, marginal product of labor is given by: Marginal Product of Labor(MPL ) = (4) L We can see these concepts the most clearly simply by looking at an example: 2

3 Table 1 Total and Marginal Output from hiring Labor Labor Hired Total Product of Labor () Marginal Product of Labor (/ L) Notice that even though output rises from 0 to 200, marginal product is only 100. This is because the firm hired two more workers and we want to know how much output would rise if they only hired one additional worker. C. The Law of Diminishing Returns Let s now address the issue of what the two concepts we ve introduced so far, total product and marginal product of labor, look like graphically. To understand these issues we will focus on marginal productivity. To understand this concept simply consider the production process from our example above, cleaning out ditches. We only have two inputs, teenagers (labor) and shovels (capital). However, because we are in the short-run the number of shovels is fixed let s suppose that the firm has five, and only five, shovels on hand to clean ditches. We can change the number of teenagers we hire, however. What happens to marginal product of labor as the amount of labor hired increases? Clearly, when we hire no workers then we get no output ditches don t get cleaned with shovels alone. Thus, with the first worker marginal product of labor must be positive (as was shown in Table 1 above). What happens when we hire the second worker? One of the possibilities is that the amount this second worker produces (her marginal product of labor) may actually be larger than the amount produced by the first worker. That is, marginal product may actually rise as the firm hires more teenagers. This increase in marginal product of labor often happens because of specialization of labor. As we discussed at the beginning of the course, specialization of labor workers who specialize in only one part of the production process often allows those workers to increase their productivity. Recall that this was one of the reasons why Henry Ford became wealthy. He recognized the potential gains from specialization by using an assembly line to manufacture cars. How long do returns to specialization last as the firm hires more labor? Well, this depends entirely upon the particular situation of the firm its technology, its workers, its production process, etc. Thus, the third worker might produce even more and the fourth worker even more. 3

4 But what must happen eventually in the short-run as the firm hires more and more labor? Remember that the short-run means that the amount of capital we have is limited; in our example we only have five shovels. Suppose we hire a sixth worker so that now there are not enough shovels given the number of workers. Perhaps the sixth worker specializes in management and directs the work of the other workers, increasing marginal product even more. But as more and more workers are added, still with only five shovels, the firm eventually has workers standing around, perhaps even congesting the workplace and reducing the productivity of workers with shovels. Thus, even though marginal product may initially rise due to specialization it must eventually fall due to this type of congestion. This result is known as the law of diminishing returns (or the law of diminishing marginal productivity): Eventually as the use of a resource increases, the marginal product of that resource must eventually fall, ceteris paribus. Holding everything else constant (ceteris paribus) in our example means that we are in short-run where only labor can change. MP L Graph 2 shows us what the marginal product of labor looks like, graphically. Initially, the marginal product rises as the Labor firm hires labor because of the returns to Graph 2 specialization. Eventually, however, diminishing returns begin to take effect and the marginal product falls as labor increases. In fact, the marginal product may even be negative for high enough levels of labor, as shown in the graph. D. Average Product of Labor For most students, understanding the concept of average product is much easier than marginal product. We all are used to calculating averages in our lives. For example, we know how to calculate the average height of people in a room. Simply measure each person, add up the height of each person and then divide by the number of people in the room. Average product of labor is a similar concept. However, rather than measuring the height of each person we are measuring how much they produce. When we add these all up we get the total output given by the production function. Again, we divide by the total number of people, the total number of workers the firm has hired. Thus, average product of labor is simply given by: Average Product of Labor (APL ) = (5) L Table 2 illustrates the calculation of average product of labor using another example. MP L 4

5 Table 2 Total, Marginal, and Average Product of Labor Labor Hired TP L () MP L (/ L) AP L (/L)

6 E. The Relationship between MP L, AP L, and TP L The relationship between MP L and AP L is fairly straightforward and can be simply illustrated using our example of height. We find the average height of a group of people by adding up each person s height and dividing by the number of people. What is the marginal height? If we add one more person to the group, that person s height is the marginal height. Suppose that the group s average height is 5 8. Now, a person is added to the group who is 6 4 tall. What happens to the average height? Clearly, if a person who is taller than the average were included in the group, then the average height would rise. Just as clearly, if a person who is shorter than the average joins the group, then the group s average height would fall. A similar relationship exists between marginal and average productivity. If MP L > AP L AP L as Labor If MP L < AP L AP L as Labor If MP L = AP L AP L as Labor We can see this relationship between average and marginal product of labor in Table 2. Graphically, just as is shown in Table 2, average and marginal product are initially the same but marginal product rises faster and is greater than average product. Hence, average product rises but eventually falls. The relationship between average product and marginal product is shown in Graph 3. Notice that average product is at a maximum when it equals marginal product. Prior to that point, average product is rising because marginal product is higher. After that point, just the opposite occurs, marginal product is below average product so average product is falling as the firm hires more labor. Recall that one of the purposes of investigating marginal product of labor and diminishing returns was to illustrate the relationship between the amount of labor a firm hires and its total output. That is, we want to know what the production function the total product of labor looks like graphically. But how does diminishing returns help us understand the total product of labor curve? Mathematically, the marginal product of labor is given by equation 4 above; the Labor change in total output is divided by the Graph 3 change in the amount of labor hired by the firm. However, as Graph 1 illustrates, the production function is simply the relationship between labor and total output. Thus, the marginal product of labor is the slope of the production function. Thus, as Graph 3 illustrates, when the marginal product is positive this means that total output rises as the firm hires more labor. However, when the marginal product is negative total output falls as the firm hires more labor. Graph 4 shows the relationship between the total product, the marginal product and the average product curves. Notice, that just as shown in Graph 3, total output rises and falls when marginal product curve is positive and negative. MPL, AP L MP L > 0 as L MP L < 0 as L MP L AP L 6

7 Also notice that when returns to specialization occur prior to the first dotted line the production function is getting steeper. That simply makes sense because, after all, the marginal product is getting larger and it is the slope of the production function. When the slope of a curve gets larger this simply means that the curve is getting steeper. Likewise when diminishing returns sets in, marginal product is falling, meaning that the slope of the production function should be getting smaller. That is, the production function is getting flatter. Sure enough, we observe exactly this phenomenon in graph 4 in the area between the two dotted lines. Notice also that when the marginal product is equal to zero that the production function is at its maximum. Thereafter, since the marginal product is negative, the production function decreases with increases in the amount of labor hired by the firm. Labour Graph 4 is an important graph to remember Graph 4 and understand. We will use it many times through the course of the semester. Students should carefully study both Graph 4 and Table 2. Both show the same relationships between the three production curves total, marginal, and average product of labor. II. Production Costs in the Short-Run Given that firms are profit maximizers, our interest in the costs of production is easy to understand. Below we will carefully define what we mean by the various types of costs and develop the graphical measures of costs that we will later use to help us understand the behavior of profit maximizing firms. A. What are production costs? Recall from the previous topic that the total costs of production are simply what the firm must pay for the resources that it uses in the production of its goods. These costs may be explicit, paid for directly, or implicit, not paid for directly but estimated via opportunity costs. Even in the short-run, total costs remain the sum of explicit and implicit costs. However, in the short-run it is actually more useful to divide total costs into two other types of costs because there are two different types of inputs in the short run: variable inputs that the firm can change and fixed inputs that the firm cannot change. Total Variable Costs (TVC) = the cost of the variable inputs that the firm uses in production. These costs may be explicit or implicit. Total Fixed Costs (TFC) = the cost of the fixed inputs that the firm uses in production. Again, these costs may be explicit or implicit. One of the important equations that we will use throughout this discussion relates these 7 MP L, AP L 1 2 MP L _ = f(l, K) Labour AP L

8 three different types of costs, total costs (TC), total variable costs and total fixed costs. TC TVC + TFC (6) Equation 6 uses an identity sign, the three horizontal lines in the equation, to relate total costs to total variable and total fixed costs. An identity sign has the same properties as an equal sign to find total cost one adds up total variable costs and total fixed costs. However, the identity also means that this relationship between the different types of total costs is always true. We will use the identity in equation 6 below to understand costs in more detail. B. What do the cost curves look like graphically? Now, we want to graph the impact of extra production,, on the three types TC of total costs, TFC, TVC, and TC. The \$ easiest total cost to graph is total fixed TV C cost. Recall that fixed costs are paying for the fixed inputs fixed means exactly that, the fixed inputs do not change in the short-run. Hence, the payment for those fixed inputs does not TFC change either, regardless of how much output is being produced. If TFC equals 100 dollars when quantity equals ten it also equals 100 dollars when quantity equals 100, 1000, or even zero. TFC, then, is simply a horizontal line at the Graph 5 level of fixed costs as shown in Graph 5. Total Cost is also relatively easy to calculate; it s just the sum of TFC and TVC. Hence, once one has calculated = f(l, K = 5) both of these curves simply adding them up for each level of production yields total costs. But what does total variable cost look like graphically? 20 Graph 5 illustrates the three types of costs based upon the assumption that TVC simply rises by the same amount whenever output increases by one unit. Is this a reasonable assumption about 10 L variable costs? The answer as it turns out is no, it is not. To see why TVC and, Graph 6 hence, TC, does not look as shown in Graph 5 we must return to both our definition of total variable costs and our short-run production function. The simple short-run production function, where the firm uses only two inputs with labor being the variable input and capital the fixed input at five units, is shown in Graph 6. Graph 6 shows what happens to output as the firm hires more or less of the variable input, labor. What we want to show in a graph similar to Graph 5, is what happens to the cost of that labor, known as total variable cost, as the firm produces more or less output. How do we get from what we already known in Graph 6 to what we want to measure in 8

9 Graph 5? In other words, we need to know how to translate the amount of labor the firm hires into the amount of money the firm pays for the labor they hire. Of course, that is quite simple to do; simply multiply the amount of labor we hire by the price paid to each unit of labor, the wage rate. Total Variable Cost = w L (7) Thus, if the wage rate equals 50 dollars, then the cost of producing 20 units of output as shown in graph 6 is 500 dollars, 50 times the 10 workers hired to produce the output. The easiest way to see the relationship between total variable costs and output is to simply assume that the wage rate is equal TV C (w=\$1) to one dollar. In that case, the amount of labor hired to produce a given output is equal to the total variable costs. In this 20 case, the relationship between output and total variable costs is the same as the relationship between labor and output, the production function. Suppose that the wage rate doubles to \$2 per unit of labor. In this case, as shown by graph 7, the cost of producing any given level output doubles but the shape of the \$ Graph 7 TV C = wl total variable cost curve remains the same. Graph 7 and our discussion clearly demonstrate that the total variable cost and total cost curves originally shown in Graph 5 are not correct. TV C (w=\$2) Given the above discussion, what do all the cost curves look like? There are two steps we must take to show what the cost curves look like. First, we must switch the axes. That is in Graph 7, where we are showing the total variable cost curve, the curve has costs on the horizontal axis and output on the vertical axis. However, what we want to show is just TV C the reverse costs on the vertical axis and output on the horizontal axis as in Graph 5. Second, we must also include both total costs and total fixed costs with total variable costs. Switching the two axes results in a total variable cost curve as shown in Graph 8. Graph 8 shows exactly the same relationship between output and total variable costs as is shown in Graph 7, except that the two axes have been switched. Generally speaking, we will ignore the top part of total variable costs, where TVC rise and quantity falls Graph 8 because firms will never operate in this are of the cost curves. Recall that this portion of the TVC curve occurs because output falls as firms hire more labor. We now know what the TFC and TVC curves look like. Given that TFC and TVC must sum up to total costs, we can also calculate the total cost curve as well. These three curves are 9

10 shown in Graph 9. The TC curve has the same shape as the TVC curve just moved up by the amount of Total Fixed Costs. C. Average and Marginal Costs We now define four more costs, three types of average costs associated with the three different types of total costs, and marginal costs. TFC The average costs are fairly straightforward. We just want to know how much each of the different types of total costs total costs, total variable costs, and total fixed costs cost the firm on average per unit of output. That is, if a Graph 9 firm is currently producing 100 units of output and its total costs equal \$2,000, how much is the firm spending on average for each unit of output? Clearly, the answer equals \$20 and is found by dividing total costs of \$2000 by output of 100 units. In fact, each average cost is found similarly by dividing the associated total cost by the output the firm is currently producing. Thus: TC AverageTot al Cost (ATC) = (8) TVC Average Variable Cost (AVC) = (9) TFC Average Fixed Cost (AFC) = (10) Marginal cost (MC) is similar to the other marginal concepts that have previously been introduced and equals the extra cost the firm incurs by increasing their output by one additional unit. Mathematically, marginal cost is given by: Marginal Cost (MC) \$ TC TC TVC = = (11) Why is marginal cost equal to both a change in total cost divided by a change in quantity and a change in total variable cost divided by a change in quantity? Actually, the reason is quite straightforward. We know from our discussion above, see equation 6 above that total costs consist of the sum of total variable costs and total fixed costs. Thus, total costs can only change if either of these two, TVC or TFC, changes. But we also know from our discussion above, see Graph 5, that TFC never changes. Thus, the only possible source for a change in total costs is a change in total variable costs. Table 3 presents all of the production and cost numbers for the example originally presented in Table 2. TV C 10

11 Table 3 The relationship between Productivity and Costs - An Example L AP L MP L TVC TFC TC AVC AFC ATC MC (TP L ) (/L) (/ L) (w*l) (TVC+TFC) (TVC/) (TFC/) (TC/) ( TC/) D. The Average and Marginal Cost Curves Graphically Graph 10 presents the average and marginal cost curves that are first presented in Table 3. An examination of Table 3 and Graph 10 illustrates Graph 10 Average and Marginal Costs that marginal cost and two \$15.00 associated with Table 3 of the three average cost curves, AVC and ATC, are u-shaped. That is, initially as output increases, these \$10.00 costs fall but eventually they begin to rise. Average AVC AFC fixed costs, on the other hand, always falls as output rises. Students should carefully study \$5.00 ATC MC Graph 10; it will be used \$0.00 repeatedly in the following chapters discussing the behavior of profit Output maximizing firms. Costs 11

12 The main purpose of this section is to develop an understanding of the average and marginal cost curves depicted in Graph 10. Why do they look as they do; what are their interrelationships? In order to understand these issues, the following discussion will focus on answering four important questions about Graph 10. Why is average fixed cost always declining? To understand why average fixed costs always decline one must simply recall two important facts. First, as illustrated in Table 3 and Graph 9 total fixed costs are always constant regardless of the level of output. Second, equation 10 illustrates that to calculate average fixed costs we simply divide total fixed costs by output. Hence, as the firm s output rises we are dividing the same number total fixed costs by an everlarger output. The result, average fixed cost, must fall as output rises. Why are the remaining cost curves u-shaped? While it is relatively easy to understand why average fixed costs fall as output rises, why are the remaining cost curves u-shaped? To understand why these cost curves are u- shaped, we must refer back to productivity. The reason why we discussed productivity previously was to be able to discuss the firm s costs. Recall that costs are important because, eventually, our purpose will be to discuss the firm s profits, which equals the difference between the firm s total revenue and total costs. What is the relationship between productivity and costs? Essentially, as productivity rises this enables the firm to produce more with the same amount of resources or, to produce the same level of output; the firm will need fewer resources. Given that using fewer resources translates into lower costs, we can see that the relationship between productivity and costs must be an inverse relationship. As productivity rises, costs will fall and the reverse. Thus, the cost curves are u-shaped because the productivity curves, AP L and MP L, have an inverted u-shape as illustrated in Graphs 3 and 4. Recall why the productivity curves have this inverted u-shape the law of diminishing returns. As with productivity the shape of the cost curves in Graph 10 is determined by the law of diminishing returns. Initially, productivity rises, which means that initially the cost curves fall. However, eventually diminishing returns begin and productivity declines, meaning that the cost curves begin to increase. How are the average cost curves related? Recall from equation 6 that total cost equals the sum of total variable cost and total fixed cost. Dividing both sides of equation 6 by quantity yields the following relationship: TC TVC + TFC TVC TFC = = + (12) Notice that according to our original definitions of the three types of average costs (see equations 8 through 10) that equation 12 actually becomes: ATC = AVC + AFC (13) That is, the three average cost curves are related in a similar manner to the three total cost curves; variable and fixed costs sum up to total costs. Because this was true for the total costs it is also true for the average costs. An examination of both Table 3 and Graph 10 clearly demonstrates that this relationship is correct. Thus, if we know any 12

13 two of the average costs, then we can also calculate the third average cost. Moreover, notice that ATC and AVC get closer and closer together as output rises. This is because the difference between these two curves equals AFC and as output rises AFC is getting closer and closer to zero. Given equation 13 it is easy to calculate any of the average cost curves if one knows the other two average cost curves. As a result, in our discussion of profit maximizing firms in the following chapters below we follow the common convention of only showing two of the three average cost curves, ATC and AVC. How are the average cost curves related to marginal cost? Both Graph 10 and Table 3 illustrate, as discussed above, that AFC always declines as output rises. It doesn t matter whether MC is rising or falling, AFC is always falling. Thus, MC and AFC are simply not related. The one has no impact on the other. However, MC is related to ATC and AVC. These relationships exist because MC is calculated from either TC or TVC as discussed above in equation 11. We calculate MC by taking the change in either TC or TVC and dividing that change by the change in output. Recall that above, we discussed the relationship between MP L and AP L and pointed out that it follows the same relationship as is true between any marginal variable and its related average. If the marginal is above the average, the average must rise. However, if the marginal is below the average, the average must fall. This same relationship holds between MC and its related averages, ATC and AVC. Thus: If MC > ATC (AVC) ATC (AVC) as If MC < ATC (AVC) ATC (AVC) as If MC = ATC (AVC) ATC (AVC) as We see these relationships in both Table 3 and Graph 10. When the MC is below either ATC or AVC, then that curve is falling. The MC curve crosses both ATC and AVC at their minimum points. Finally, when the MC is above either ATC or AVC, then that curve is rising. E. Relating Costs to Production Formally Recall our discussion above of why the cost curves in Graph 10 were u-shaped. We noted that they were u-shaped because the cost curves were related to productivity; when productivity rises initially due to the returns to specialization, costs fall and when productivity eventually falls due to diminishing returns, costs must rise. In our discussion we relied upon an intuitive understanding of the relationship between productivity and costs. Now, however, a more formal approach will be used to expand our understanding of this relationship. Recall that in our simple model we are using only labor and capital to produce the output with labor the variable input and capital the fixed input. Thus, TVC are simply the firm s labor costs while TFC equal the firm s capital costs. As shown by equation 7, labor costs simply equal the wage rate (the price of labor) times the number of units of labor hired. We also know that AVC, per equation 9, equals TVC divided by output. Thus we know that: TVC wl AVC = = or = L w 13

14 However, what does L/ equal? From equation 5, we know that the average product of labor equals its inverse, /L. Thus, L/ equals the inverse of the AP L. As a result, we can conclude that: TVC wl L w AVC = = or = w = (14) AP L The algebraic result developed in equation 14 clearly illustrates the relationship between AVC and AP L, they are inversely related. The inverse relationship between AVC and APP L is also illustrated in Table 3. As AP L rises initially, AVC is falling. When AP L reaches its maximum, then AVC reaches its minimum. Finally, as AP L eventually falls, then AVC is rising. A similar algebraic manipulation illustrates the relationship between MC and MP L. Recall that TVC equals the wage times the amount of labor the firm hires and that MC equals the change in TVC divided by the change in output. As a result: MC = TVC = (wl) or L = w However, what does of labor equals its inverse, result, we can conclude that: L equal? From equation 4, we know that the marginal product. Thus, L L equals the inverse of the MP L. As a TVC (wl) L w MC = = or = w = (15) MP L Again, equation 15 clearly illustrates the inverse relationship between productivity and costs. As the MP L initially rises, as it does in Table 3, then MC must fall. Likewise, when MP L reaches its maximum then MC must reach its minimum. Finally, when MP L eventually falls due to diminishing returns, then MC must be increasing. Both equations 14 and 15 clearly illustrate, as does Table 3, that our intuition was correct. The relationship between costs and productivity is an inverse one; increases in productivity cause costs to fall while decreases in productivity cause costs to rise. 14

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 10 - Output and Costs - Sample Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The short run is a period of time in which A)

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Firms that survive in the long run are usually those that A) remain small. B) strive for the largest

### OUTPUT AND COSTS. Chapter. Decision Time Frames

Chapter 10 OUTPUT AND COSTS Decision Time Frames Topic: Short Run 1) The short run is a period of time in which A) the quantities of some resources the firm uses are fixed. B) the amount of output is fixed.

### Number of Workers Number of Chairs 1 10 2 18 3 24 4 28 5 30 6 28 7 25

Intermediate Microeconomics Economics 435/735 Fall 0 Answers for Practice Problem Set, Chapters 6-8 Chapter 6. Suppose a chair manufacturer is producing in the short run (with its existing plant and euipment).

### Chapter 22 The Cost of Production Extra Multiple Choice Questions for Review

Chapter 22 The Cost of Production Extra Multiple Choice Questions for Review 1. Implicit costs are: A) equal to total fixed costs. B) comprised entirely of variable costs. C) "payments" for self-employed

### Economics 10: Problem Set 3 (With Answers)

Economics 1: Problem Set 3 (With Answers) 1. Assume you own a bookstore that has the following cost and revenue information for last year: - gross revenue from sales \$1, - cost of inventory 4, - wages

### Technology, Production, and Costs

Chapter 10 Technology, Production, and Costs 10.1 Technology: An Economic Definition 10.1 LEARNING OBJECTIVE Learning Objective 1 Define technology and give examples of technological change. A firm s technology

### CHAPTER 7 THE COST OF PRODUCTION

CHAPTER 7 THE COST OF PRODUCTION EXERCISES 1. Assume a computer firm s marginal costs of production are constant at \$1,000 per computer. However, the fixed costs of production are equal to \$10,000. a.

### Learning Objectives. Essential Concepts

Learning Objectives After reading Chapter 8 and working the problems for Chapter 8 in the textbook and in this Student Workbook, you should be able to: Essential Concepts Understand the information given

### Economics 101 Fall 2013 Answers to Homework 5 Due Tuesday, November 19, 2013

Economics 101 Fall 2013 Answers to Homework 5 Due Tuesday, November 19, 2013 Directions: The homework will be collected in a box before the lecture. Please place your name, TA name and section number on

### Elasticity. I. What is Elasticity?

Elasticity I. What is Elasticity? The purpose of this section is to develop some general rules about elasticity, which may them be applied to the four different specific types of elasticity discussed in

### Econ 101: Principles of Microeconomics

Econ 101: Principles of Microeconomics Chapter 12 - Behind the Supply Curve - Inputs and Costs Fall 2010 Herriges (ISU) Ch. 12 Behind the Supply Curve Fall 2010 1 / 30 Outline 1 The Production Function

### Learning Objectives. After reading Chapter 11 and working the problems for Chapter 11 in the textbook and in this Workbook, you should be able to:

Learning Objectives After reading Chapter 11 and working the problems for Chapter 11 in the textbook and in this Workbook, you should be able to: Discuss three characteristics of perfectly competitive

### ECON 600 Lecture 3: Profit Maximization Π = TR TC

ECON 600 Lecture 3: Profit Maximization I. The Concept of Profit Maximization Profit is defined as total revenue minus total cost. Π = TR TC (We use Π to stand for profit because we use P for something

### Review of Production and Cost Concepts

Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology RECITATION NOTES #3 Review of Production and Cost Concepts Thursday - September 23, 2004 OUTLINE OF TODAY S RECITATION 1.

### chapter Behind the Supply Curve: >> Inputs and Costs Section 2: Two Key Concepts: Marginal Cost and Average Cost

chapter 8 Behind the Supply Curve: >> Inputs and Costs Section 2: Two Key Concepts: Marginal Cost and Average Cost We ve just seen how to derive a firm s total cost curve from its production function.

### Notes 10: An Equation Based Model of the Macroeconomy

Notes 10: An Equation Based Model of the Macroeconomy In this note, I am going to provide a simple mathematical framework for 8 of the 9 major curves in our class (excluding only the labor supply curve).

### SHORT-RUN PRODUCTION

TRUE OR FALSE STATEMENTS SHORT-RUN PRODUCTION 1. According to the law of diminishing returns, additional units of the labour input increase the total output at a constantly slower rate. 2. In the short-run

### N. Gregory Mankiw Principles of Economics. Chapter 13. THE COSTS OF PRODUCTION

N. Gregory Mankiw Principles of Economics Chapter 13. THE COSTS OF PRODUCTION Solutions to Problems and Applications 1. a. opportunity cost; b. average total cost; c. fixed cost; d. variable cost; e. total

### Cosumnes River College Principles of Microeconomics Problem Set 6 Due Tuesday, March 24, 2015

Name: Solutions Cosumnes River College Principles of Microeconomics Problem Set 6 Due Tuesday, March 24, 2015 Spring 2015 Prof. Dowell Instructions: Write the answers clearly and concisely on these sheets

### CHAPTER SEVEN THE THEORY AND ESTIMATION OF COST

CHAPTER SEVEN THE THEORY AND ESTIMATION OF COST The production decision has to be based not only on the capacity to produce (the production function) but also on the costs of production (the cost function).

### 11 PERFECT COMPETITION. Chapt er. Key Concepts. What is Perfect Competition?

Chapt er 11 PERFECT COMPETITION Key Concepts What is Perfect Competition? Perfect competition is an industry with many firms, each selling an identical good; many buyers; no restrictions on entry into

### Economics 2106 Principles of Microeconomics Exam 2 Feb 28, 2002 Professor Robert Collins

Economics 2106 Principles of Microeconomics Exam 2 Feb 28, 2002 Professor Robert Collins 1) The price elasticity of demand measures A) the responsiveness of quantity demanded to a change in price. B) the

### Chapter 13 Perfect Competition and the Supply Curve

Goldwasser AP Microeconomics Chapter 13 Perfect Competition and the Supply Curve BEFORE YOU READ THE CHAPTER Summary This chapter develops the model of perfect competition and then uses this model to discuss

### Chapter 7. Costs. C = FC + VC Marginal cost MC = C/ q Note that FC will not change, so marginal cost also means marginal variable cost.

Chapter 7. Costs Short-run costs Long-run costs Lowering costs in the long-run 0. Economic cost and accounting cost Opportunity cost : the highest value of other alternative activities forgone. To determine

### Chapter 4. under Per. erfect Competition 4.1 PERFECT COMPETITION: DEFINING FEATURES

Chapter 4 The Theory y of the Firm under Per erfect Competition In the previous chapter, we studied concepts related to a firm s production function and cost curves The focus of this chapter is different

### Unit 5.3: Perfect Competition

Unit 5.3: Perfect Competition Michael Malcolm June 18, 2011 1 Market Structures Economists usually talk about four market structures. From most competitive to least competitive, they are: perfect competition,

### The Cost of Production

The Cost of Production 1. Opportunity Costs 2. Economic Costs versus Accounting Costs 3. All Sorts of Different Kinds of Costs 4. Cost in the Short Run 5. Cost in the Long Run 6. Cost Minimization 7. The

### Pre-Test Chapter 20 ed17

Pre-Test Chapter 20 ed17 Multiple Choice Questions 1. In the above diagram it is assumed that: A. some costs are fixed and other costs are variable. B. all costs are variable. C. the law of diminishing

### Price Theory Lecture 4: Production & Cost

Price Theory Lecture 4: Production & Cost Now that we ve explained the demand side of the market, our goal is to develop a greater understanding of the supply side. Ultimately, we want to use a theory

### I. Output Decisions by Firms

University of Pacific-Economics 53 Lecture Notes #8B I. Output Decisions by Firms Now that we have examined firm costs in great detail, we can now turn to the question of how firms decide how much output

### 11 PERFECT COMPETITION. Chapter. Key Concepts. Perfectly Competitive Firm s Demand Curve

Chapter 11 PERFECT COMPETITION Key Concepts FIGURE 11.1 Perfectly Competitive Firm s Demand Curve Competition Perfect competition is an industry with many firms, each selling an identical good; many buyers;

### Microeconomics Topic 6: Be able to explain and calculate average and marginal cost to make production decisions.

Microeconomics Topic 6: Be able to explain and calculate average and marginal cost to make production decisions. Reference: Gregory Mankiw s Principles of Microeconomics, 2 nd edition, Chapter 13. Long-Run

### AP Microeconomics Review

AP Microeconomics Review 1. Firm in Perfect Competition (Long-Run Equilibrium) 2. Monopoly Industry with comparison of price & output of a Perfectly Competitive Industry 3. Natural Monopoly with Fair-Return

### COST THEORY. I What costs matter? A Opportunity Costs

COST THEORY Cost theory is related to production theory, they are often used together. However, the question is how much to produce, as opposed to which inputs to use. That is, assume that we use production

### False_ If there are no fixed costs, then average cost cannot be higher than marginal cost for all output levels.

LECTURE 10: SINGLE INPUT COST FUNCTIONS ANSWERS AND SOLUTIONS True/False Questions False_ When a firm is using only one input, the cost function is simply the price of that input times how many units of

### PART A: For each worker, determine that worker's marginal product of labor.

ECON 3310 Homework #4 - Solutions 1: Suppose the following indicates how many units of output y you can produce per hour with different levels of labor input (given your current factory capacity): PART

### CHAPTER 8 PROFIT MAXIMIZATION AND COMPETITIVE SUPPLY

CHAPTER 8 PROFIT MAXIMIZATION AND COMPETITIVE SUPPLY REVIEW QUESTIONS 1. Why would a firm that incurs losses choose to produce rather than shut down? Losses occur when revenues do not cover total costs.

### Monopoly. Recall that in the previous chapter on perfect competition we also defined monopoly as follows:

I. What is a monopoly market? Monopoly Recall that in the previous chapter on perfect competition we also defined monopoly as follows: 1. Lots of buyers only one seller 2. Single firm is the market. 3.

### Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date:. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A price floor on corn would have the effect of a. creating excess supply

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question on the accompanying scantron.

Principles of Microeconomics, Quiz #5 Fall 2007 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question on the accompanying scantron. 1) Perfect competition

### Competitive Market Equilibrium

Chapter 14 Competitive Market Equilibrium We have spent the bulk of our time up to now developing relationships between economic variables and the behavior of agents such as consumers, workers and producers.

### a. What is the total revenue Joe can earn in a year? b. What are the explicit costs Joe incurs while producing ten boats?

Chapter 13 1. Joe runs a small boat factory. He can make ten boats per year and sell them for 25,000 each. It costs Joe 150,000 for the raw materials (fibreglass, wood, paint, and so on) to build the ten

### CHAPTER 8 COSTS OF PRODUCTION

CHAPTER 8 COSTS OF PRODUCTION Chapter in a Nutshell This chapter gives an in-depth look at the costs of production for firms, both in the short run and in the long run. Although production techniques may

### Where are we? To do today: finish the derivation of the demand curve using indifference curves. Go on then to chapter Production and Cost

Where are we? To do today: finish the derivation of the demand curve using indifference curves Go on then to chapter Production and Cost Utility and indifference curves The point is to find where on the

### The Macroeconomy in the Long Run The Classical Model

PP556 Macroeconomic Questions The Macroeconomy in the ong Run The Classical Model what determines the economy s total output/income how the prices of the factors of production are determined how total

### DEMAND AND SUPPLY IN FACTOR MARKETS

Chapter 14 DEMAND AND SUPPLY IN FACTOR MARKETS Key Concepts Prices and Incomes in Competitive Factor Markets Factors of production (labor, capital, land, and entrepreneurship) are used to produce output.

### PART 1: MULTIPLE CHOICE

ECN 201, Winter 1999 NAME: Prof. Bruce Blonigen SS#: MIDTERM 2 - Version A Tuesday, February 23 **************************************************************************** Directions: This test is comprised

economicsentrance.weebly.com Basic Exercises Micro Economics AKG 09 Table of Contents MICRO ECONOMICS Budget Constraint... 4 Practice problems... 4 Answers... 4 Supply and Demand... 7 Practice Problems...

### Chapter 6. Non-competitive Markets 6.1 SIMPLE MONOPOLY IN THE COMMODITY MARKET

Chapter 6 We recall that perfect competition was theorised as a market structure where both consumers and firms were price takers. The behaviour of the firm in such circumstances was described in the Chapter

### or, put slightly differently, the profit maximizing condition is for marginal revenue to equal marginal cost:

Chapter 9 Lecture Notes 1 Economics 35: Intermediate Microeconomics Notes and Sample Questions Chapter 9: Profit Maximization Profit Maximization The basic assumption here is that firms are profit maximizing.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 11 Perfect Competition - Sample Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Perfect competition is an industry with A) a

### Production and Cost Analysis

Production and Cost Analysis The entire production process begins with the supply of factors of production or inputs used towards the production of a final good we all consume in the final good market.

### Practice Multiple Choice Questions Answers are bolded. Explanations to come soon!!

Practice Multiple Choice Questions Answers are bolded. Explanations to come soon!! For more, please visit: http://courses.missouristate.edu/reedolsen/courses/eco165/qeq.htm Market Equilibrium and Applications

### and Efficiency Chapter Introduction Profit Maximization and the Competitive Firm

Chapter 9 Perfect Competition and Efficiency Introduction Microeconomics assumes that consumers, in demanding goods, attempt to maximize their satisfaction. Furthermore, we assume that, in supplying goods,

### Chapter 7: The Costs of Production QUESTIONS FOR REVIEW

HW #7: Solutions QUESTIONS FOR REVIEW 8. Assume the marginal cost of production is greater than the average variable cost. Can you determine whether the average variable cost is increasing or decreasing?

### Chapter 8: Theory of Cost

Chapter 8: Theory of Input s Classification Minimization Shifts in Curves Explicit and Implicit s Fixed and Variable s Profit Long Run Short Run Input Price Change New Technologies Positive Feedback Normal

### Q = ak L + bk L. 2. The properties of a short-run cubic production function ( Q = AL + BL )

Learning Objectives After reading Chapter 10 and working the problems for Chapter 10 in the textbook and in this Student Workbook, you should be able to: Specify and estimate a short-run production function

### Chapter 17: Aggregation

Chapter 17: Aggregation 17.1: Introduction This is a technical chapter in the sense that we need the results contained in it for future work. It contains very little new economics and perhaps contains

### MODULE 70: THE MARKETS FOR

MODULE 70: THE MARKETS FOR LAND & CAPITAL SCHMIDTY SCHOOL OF ECONOMICS THE PURPOSE OF THIS MODULE IS TO SHOW HOW WE CAN USE SUPPLY AND DEMAND TO MODEL THE MARKETS FOR THE LAND AND CAPITAL INPUTS. Learning

### Economics 165 Winter 2002 Problem Set #2

Economics 165 Winter 2002 Problem Set #2 Problem 1: Consider the monopolistic competition model. Say we are looking at sailboat producers. Each producer has fixed costs of 10 million and marginal costs

### Review of Fundamental Mathematics

Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

### Chapter 8 Profit Maximization and Competitive Supply

Chapter 8 Profit Maximization and Competitive Supply Teaching Notes This chapter begins by explaining what economists mean by a competitive market and why it makes sense to assume that firms try to maximize

### Agenda. Productivity, Output, and Employment, Part 1. The Production Function. The Production Function. The Production Function. The Demand for Labor

Agenda Productivity, Output, and Employment, Part 1 3-1 3-2 A production function shows how businesses transform factors of production into output of goods and services through the applications of technology.

### The Revenue of a Competitive In perfect competition, average revenue equals the price of the good. Total revenue Average Revenue = = The Revenue of a

In this chapter, look for the answers to these questions: What is a perfectly competitive market? What is marginal revenue? How is it related to total and average revenue? How does a competitive firm determine

### MERSİN UNIVERSITY FACULTY OF ECONOMICS AND ADMINISTRATIVE SCİENCES DEPARTMENT OF ECONOMICS MICROECONOMICS MIDTERM EXAM DATE 18.11.

MERSİN UNIVERSITY FACULTY OF ECONOMICS AND ADMINISTRATIVE SCİENCES DEPARTMENT OF ECONOMICS MICROECONOMICS MIDTERM EXAM DATE 18.11.2011 TİIE 12:30 STUDENT NAME AND NUMBER MULTIPLE CHOICE. Choose the one

### 11 PERFECT COMPETITION. Chapter. Competition

Chapter 11 PERFECT COMPETITION Competition Topic: Perfect Competition 1) Perfect competition is an industry with A) a few firms producing identical goods B) a few firms producing goods that differ somewhat

### Econ 101: Principles of Microeconomics

Econ 101: Principles of Microeconomics Chapter 13 - Perfect Competition and the Supply Curve Fall 2010 Herriges (ISU) Ch. 13 Perfect Competition and Supply Fall 2010 1 / 27 Outline 1 Perfect Competition

### An increase in the number of students attending college. shifts to the left. An increase in the wage rate of refinery workers.

1. Which of the following would shift the demand curve for new textbooks to the right? a. A fall in the price of paper used in publishing texts. b. A fall in the price of equivalent used text books. c.

### Chapter 12. The Costs of Produc4on

Chapter 12 The Costs of Produc4on Copyright 214 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. What will you learn

### Chapter 7 Production Costs

Chapter 7 Production s MULTIPLE CHOICE Exhibit 1 Production of pizza data Workers Pizzas 1 4 2 1 3 15 4 18 5 19 Exhibit 1 shows the change in the production of pizzas as more workers are hired. The marginal

### ECON 103, 2008-2 ANSWERS TO HOME WORK ASSIGNMENTS

ECON 103, 2008-2 ANSWERS TO HOME WORK ASSIGNMENTS Due the Week of June 9 Chapter 6 WRITE [4] Gomez runs a small pottery firm. He hires one helper at \$12,000 per year, pays annual rent of \$5,000 for his

### EXAM TWO REVIEW: A. Explicit Cost vs. Implicit Cost and Accounting Costs vs. Economic Costs:

EXAM TWO REVIEW: A. Explicit Cost vs. Implicit Cost and Accounting Costs vs. Economic Costs: Economic Cost: the monetary value of all inputs used in a particular activity or enterprise over a given period.

### THE COST OF PRODUCTION

Chulalongkorn University: BBA International Program, Faculty of Commerce and Accountancy 2900 (Section ) Chairat Aemkulwat Economics I: Microeconomics Spring 205 Solution to Selected Questions: CHAPTER

### THE AGGREGATE DEMAND AGGREGATE SUPPLY MODEL

THE AGGREGATE DEMAND AGGREGATE SUPPLY MODEL Previously The original Solow model focused on capital investment as the main source of economic growth. Modern growth theory now recognizes that institutions

### Labour is a factor of production, and labour, like other factors, such as capital (machinery, etc) are demanded by firms for production purposes.

Labour Demand Labour is a factor of production, and labour, like other factors, such as capital (machinery, etc) are demanded by firms for production purposes. The quantity of labour demanded depends on

### CHAPTER 8 PROFIT MAXIMIZATION AND COMPETITIVE SUPPLY

CHAPTER 8 PROFIT MAXIMIZATION AND COMPETITIVE SUPPLY TEACHING NOTES This chapter begins by explaining what we mean by a competitive market and why it makes sense to assume that firms try to maximize profit.

### Eco 200 Group Activity 4 Key Chap 13 & 14 & 15

Eco 200 Group Activity 4 Key Chap 13 & 14 & 15 Chapter 13: 1. 4 th Edition: p. 285, Problems and Applications, Q4 3 rd Edition: p. 286, Problems and Applications, Q4 a. The following table shows the marginal

### g. Less h. More i. Price j. Price k. Purchase a product l. Quantity supplied

Section 1 Word list a. Ability & willingness b. Chart form c. Decrease d. Demand e. Graph form f. Increase g. Less h. More i. Price j. Price k. Purchase a product l. Quantity supplied m. Responsiveness

### The session previously discussed important variables such as inflation, unemployment and GDP. We also alluded to factors that cause economic growth

The session previously discussed important variables such as inflation, unemployment and GDP. We also alluded to factors that cause economic growth enabling us to produce more and more to achieve higher

### Chapter. Perfect Competition CHAPTER IN PERSPECTIVE

Perfect Competition Chapter 10 CHAPTER IN PERSPECTIVE In Chapter 10 we study perfect competition, the market that arises when the demand for a product is large relative to the output of a single producer.

### Chapter 12 Production and Cost

Chapter 12 Production and Cost 12.1 Economic Cost and Profit 1) The primary goal of a business firm is to A) promote fairness. B) make a quality product. C) promote workforce job satisfaction. D) maximize

### MATH MODULE 5. Total, Average, and Marginal Functions. 1. Discussion M5-1

MATH MODULE Total, Average, and Marginal Functions 1. Discussion A very important skill for economists is the ability to relate total, average, and marginal curves. Much of standard microeconomics involves

### Economics 101 Spring 2011 Homework #4 Due Tuesday, March 29

Economics 101 Spring 2011 Homework #4 Due Tuesday, March 29 Directions: The homework will be collected in a box before the lecture. Staple your homework before handing it in. Please place your name, TA

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice for Perfect Competition Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following is a defining characteristic of a

### Chapter 04 Firm Production, Cost, and Revenue

Chapter 04 Firm Production, Cost, and Revenue Multiple Choice Questions 1. A key assumption about the way firms behave is that they a. Minimize costs B. Maximize profit c. Maximize market share d. Maximize

### Monopoly and Monopsony Labor Market Behavior

Monopoly and Monopsony abor Market Behavior 1 Introduction For the purposes of this handout, let s assume that firms operate in just two markets: the market for their product where they are a seller) and

### c. Given your answer in part (b), what do you anticipate will happen in this market in the long-run?

Perfect Competition Questions Question 1 Suppose there is a perfectly competitive industry where all the firms are identical with identical cost curves. Furthermore, suppose that a representative firm

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MPP 801 Perfect Competition K. Wainwright Study Questions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Refer to Figure 9-1. If the price a perfectly

### Cost-Volume-Profit Analysis

Cost-Volume-Profit Analysis Cost-volume-profit (CVP) analysis is used to determine how changes in costs and volume affect a company's operating income and net income. In performing this analysis, there

### Aggregate Demand & Aggregate Supply

Aggregate Demand & Aggregate Supply (the basics) slope of the aggregate supply (AS) curve aggregate supply (AS) - The total quantity of goods and services that firms are willing to supply at varying price

### 1. An economic institution that combines factors of production into outputs for consumers is a(n): A) industry. B) plant. C) firm. D) multinational.

Miami Dade College ECO 2023 Principles of Microeconomics Summer B 2014 Practice Test #3 1. An economic institution that combines factors of production into outputs for consumers is a(n): A) industry. B)

### Market for cream: P 1 P 2 D 1 D 2 Q 2 Q 1. Individual firm: W Market for labor: W, S MRP w 1 w 2 D 1 D 1 D 2 D 2

Factor Markets Problem 1 (APT 93, P2) Two goods, coffee and cream, are complements. Due to a natural disaster in Brazil that drastically reduces the supply of coffee in the world market the price of coffee

### Outline of model. Factors of production 1/23/2013. The production function: Y = F(K,L) ECON 3010 Intermediate Macroeconomics

ECON 3010 Intermediate Macroeconomics Chapter 3 National Income: Where It Comes From and Where It Goes Outline of model A closed economy, market-clearing model Supply side factors of production determination

### Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay

(Refer Slide Time: 00:39) Managerial Economics Prof. Trupti Mishra S.J.M. School of Management Indian Institute of Technology, Bombay Lecture - 3 Introduction to Managerial Economics (Contd ) So, welcome

### Unit 2.3 - Theory of the Firm Unit Overview

Unit 2.3.1 - Introduction to Market Structures and Cost Theory Intro to Market Structures Pure competition Monopolistic competition Oligopoly Monopoly Cost theory Types of costs: fixed costs, variable

### Perfect Competition. Chapter 12

CHAPTER CHECKLIST Perfect Competition Chapter 12 1. Explain a perfectly competitive firm s profit maximizing choices and derive its supply curve. 2. Explain how output, price, and profit are determined