Computer Vision - part II

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Computer Vision - part II"

Transcription

1 Computer Vision - part II Review of main parts of Section B of the course School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland Lecture Name Course Name 1 1

2 2 nd half Vision Course - on one page 3D vision camera calibration stereo single moving camera photometric stereo radiometry Structure from motion VSLAM Feature Extraction Dense - HOG Sparse - SIFT, SURF Classification Training & evaluation (ROC) Feature Selection High dimensional data Applications Recognition, Photosynth, CBIR 2

3 3D vision - Camera Calibration Pinhole Camera model Extrinsics and Intrinsics Zhang s Method Know main mathematical structure of the method Know how it is applied practically 3

4 Stereo Vision Epipolar Geometry Canonical configuration Calculation of Depth Assumptions & Limitations Solving the Correspondence Problem Constraints to apply Bottom up (regions to features) Vs top down (features to regions) Disparity - PMF algorithm + Middlebury stereo vision page vision.middlebury.edu/stereo/ 4

5 VSLAM-Davison Real time - optimise for speed EKF based approach Shi-Thomasi feature extract Patch around keypoint Orientation and warp function assessment Building sparse 3D map EKF update Limit the search space - limit the number of keypoints 5

6 SFM - Pollefeys Offline process - optimise for accuracy Locate keypoints - Shi & Thomasi Solve F matrix - know the steps Use only key frames Solve for close views Find Calibration matrix Dense surface estimation Multi-view linking 3D surface reconstruction & texture 6

7 People tracking with HOG What is a HOG? Human Detection, Dalal and Triggs, CVPR 2005 Break Image in to cells Calculate HOG Normalise in overlapping blocks HOG data used in Classification Support Vector Machine or other classifiers Practical Issues (effect of smoothing, sampling scales, etc) 7

8 People Tracking - HOF Improvement when combined with HOG Motion used in activity recognition Differential Optical Flow Boundary Motion Histogram Internal Motion Histogram 8

9 SIFT Recognise 3D objects in 2D images Challenges that must be overcome Scale, view point, lighting, occlusion, noise SIFT - sparse features Detecting Features in scale space Different Gaussians, at different scales Find features in approximately in scale space Select and precise fit using principal curvatures HOG computed around feature point Rotational Invariance by relative to primary direction Illumination Invariance through normalisation 9

10 SURF Keypoint Approximation of Hessian Filters for Dxx,Dyy, Dxy and Dyx Use of the Integral Image Scale space through scaling filters Non maximal suppression in 3X3X3 region Descriptor Harr wavelet responses in a rotating window Accelerated matching due to contrast measure 10

11 Classification Bayesian Classifiers Model the PDF of the classes KNN Maximum likelihood Mahalanobis Distance Performance Evaluation Overfitting / Selection Bias ROC curve Analysis Cross Validation / Bootstrapping 11

12 Feature Selection The Problem High Dimensional Data, Data Set Imbalance PCA Find the features with the most variance LDA Find the features that are most separable Advanced methods to achieve classification SVM, Manifolds. All about getting good features 12

13 Applications: Recognition Face Recognition Individual recognition Face class recognition Eigen Faces Restrictions on data format 3D object recognition SIFT and SURF Strong features Geometric relationships - matching criterion 13

14 Applications: Photosynth Feature Extraction SIFT Camera Callibration PTLens F - Matrix Calculation RANSAC 3D point cloud hyperlinks between images Image selection based in view angle and scale 14

15 Applications: CBIR Search for images based on Content Feature Extraction Global vs Local Feature Vector Fast comparison histograms Earth Mover Distance Relevance Feedback 15

16 Exam Section A Dr Pitie - 3 questions Section B Dr Lacey - 3 questions Do 4 questions from 6, 2 questions from each section All questions have the same structure: Theory / knowledge part [7 marks] Practical problem solving part [18 marks] 16

17 Previous question Part A Analyse the differences between the SIFT and SURF feature detectors, comparing feature key point methods and methods for achieving scale invariance and orientation invariance. Part B Your new employer, the Dublin Virtual Tourist Board, wants to create an interactive web site that allows users to explore major landmarks in Dublin online. Given recent budget cuts the only equipment they can give you is a good quality SLR camera and a reasonably powerful computer. You need to propose a design that will achieve their objective. Your design should include a detailed description of the steps required to process the images captured and an analysis of any limitations in the performance of the system. Please clearly state any assumptions that you make in the design of the system. 17

18 SIFT Multi-Scale Feature point detection: A Scale space pyramid is created by sub sampling the image to produce images of different sizes...explain Low contrast or poor edge responses are rejected if below a threshold. Long edges are removed by examining the Principal Curvatures at the point if it is strong in one direction and weak in the perpendicular direction these key points are rejected. [2 marks] SURF Feature point detection SURF uses an approximation to the hessian to find key points in the image. The hessian is the matrix of partial derivatives. SURF approximates these partial derivatives using binary masks. The binary masks are convolved with the Integral image to find the features. The integral image is constructed by summing all pixels above and to the left of the current pixel. [1 mark] SURF Multi-Scale Feature point detection Multiscale detection is achieved by scaling up the size of the binary masks. Key points are detected in a 3X3 neighbourhood, if they are also present in the scale above and below they are marked as potential key points [1 mark] SIFT Orientation invariance SIFT calculates the Histogram of orientation gradients in a window around the key point. The gradient strength and the distance from the key point weight the values in the histogram. The histogram is smoothed and threshold. If there are more than one dominant direction in the histogram a second key point is generated with that orientation. [1 mark] SURF Orientation invariance SURF calculates the response of vertical and Harr wavelets in a sliding window around the keypoint. The angle of the sliding window is a configurable parameter. [1 mark] SURF is faster than SIFT and the SURF feature orientation vector is less prone to being corrupted by noise because it calculated over the area of the harr wavelet rather than using a single pixel edge direction. [1 mark] 18

19 Students should highlight two main solutions: 1. Solution based on extracting the 3D surfaces from the images and allowing users to browse the database of photographs based on their location within the 3D model. 2. Solution based on extracting 3D surfaces from the images and also extracting textures from the images and building a fully textured 3D model that can be explored by the user. [2 marks] In both solutions students should cover the following key issues: Camera Calibration: performing a camera calibration of the camera by using a checker board pattern and the approach of Zhang as implemented in OpenCV (this would limit the camera to one focal length). An alternative, and preferred approach would be to exploit the information contained in the JPEG header of the image file and use PTLens to determine the camera intrinsic parameters. A third approach (less favoured) would be to perform selfcalibration again this would lead to a limitation of a single camera focal length. For both camera calibration approaches the single focal length limitation could be counteracted by taking several different sequences using different focal lengths / lenses and combining the separately calculated 3D models. [2 marks] Feature extraction: using a feature extraction system such as Shi-Thomasi, SIFT, SURF, etc. to identify key points between the images. SIFT and SURF would be preferable as the features are capable of being matched at multiple scales and are more unique.[2 marks] Stereo View set up Calculating the F matrix between the images using RANSAC and computing the number of feature points in the image that are inliers. Iterate until high confidence has been achieved. The validity of the stereo calculation needs to be assessed if the baseline between the two views is small (the angle between the views in less than 10deg) then the calculation of the F matrix will be ill conditioned. This can be verified in two ways. 1. Where the estimate of the camera positions is very close reject the match 2. After Polfleys if the stereo match estimated by using the Epipolar lines from the F matrix is better than using a simple 2D planar homography then this is a good stereo pair otherwise reject it. [4 marks] 19

20 Dense 3D point matching Having identified the good stereo pairs dense stereo matching should be performed along the Epi-poalr lines. Images may be rectified into the canonical configuration in order to speed up the matching process. Constraints such as the Disparity Limit, order constraint and other constraints - describe these [3 marks] Multi-View Linking The points generated from multiple 3D images pairs must be merged. Noise and camera calibration errors means that the same physical point may be recorded in different 3D positions in different views. Describe how this works..[3 marks] Depending on the approach taken by the student: 1. 3D model Approach One approach to displaying the images is to build a 3D surface from the 3D point cloud and texture it using the texture information from the 2D images. In order to achieve this the 3D depth math would have to be smoothed to remove the impact of noise. Then a 3D polygonal mesh would have to be built using Delaunay Triangulation or similar. The texture for the polygons..explain how to build a model. [2 marks] 2. 3D browsing of photo database If we take the Photosynth approach the 3D model is used to explore the database of original images. The user sees the image from the database that is closest to the view direction and scale of the current view of the 3D model. If the user change s their view position or zooms. Explain how the photosynth apporach works.[2 marks] 20

21 Use Diagrams where appropriate Use Bullet points where appropriate Use Flowcharts where appropriate Long rambling answers tend not to pick up marks - be concise and to the point Answer all questions in a seperate answerbook 21

22 Best of Luck! School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland Lecture Name Course Name 22 22

Randomized Trees for Real-Time Keypoint Recognition

Randomized Trees for Real-Time Keypoint Recognition Randomized Trees for Real-Time Keypoint Recognition Vincent Lepetit Pascal Lagger Pascal Fua Computer Vision Laboratory École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne, Switzerland Email:

More information

Probabilistic Latent Semantic Analysis (plsa)

Probabilistic Latent Semantic Analysis (plsa) Probabilistic Latent Semantic Analysis (plsa) SS 2008 Bayesian Networks Multimedia Computing, Universität Augsburg Rainer.Lienhart@informatik.uni-augsburg.de www.multimedia-computing.{de,org} References

More information

Terrain Traversability Analysis using Organized Point Cloud, Superpixel Surface Normals-based segmentation and PCA-based Classification

Terrain Traversability Analysis using Organized Point Cloud, Superpixel Surface Normals-based segmentation and PCA-based Classification Terrain Traversability Analysis using Organized Point Cloud, Superpixel Surface Normals-based segmentation and PCA-based Classification Aras Dargazany 1 and Karsten Berns 2 Abstract In this paper, an stereo-based

More information

EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM

EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM EFFICIENT VEHICLE TRACKING AND CLASSIFICATION FOR AN AUTOMATED TRAFFIC SURVEILLANCE SYSTEM Amol Ambardekar, Mircea Nicolescu, and George Bebis Department of Computer Science and Engineering University

More information

Tracking in flussi video 3D. Ing. Samuele Salti

Tracking in flussi video 3D. Ing. Samuele Salti Seminari XXIII ciclo Tracking in flussi video 3D Ing. Tutors: Prof. Tullio Salmon Cinotti Prof. Luigi Di Stefano The Tracking problem Detection Object model, Track initiation, Track termination, Tracking

More information

3D Model based Object Class Detection in An Arbitrary View

3D Model based Object Class Detection in An Arbitrary View 3D Model based Object Class Detection in An Arbitrary View Pingkun Yan, Saad M. Khan, Mubarak Shah School of Electrical Engineering and Computer Science University of Central Florida http://www.eecs.ucf.edu/

More information

Feature Point Selection using Structural Graph Matching for MLS based Image Registration

Feature Point Selection using Structural Graph Matching for MLS based Image Registration Feature Point Selection using Structural Graph Matching for MLS based Image Registration Hema P Menon Department of CSE Amrita Vishwa Vidyapeetham Coimbatore Tamil Nadu - 641 112, India K A Narayanankutty

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

Wii Remote Calibration Using the Sensor Bar

Wii Remote Calibration Using the Sensor Bar Wii Remote Calibration Using the Sensor Bar Alparslan Yildiz Abdullah Akay Yusuf Sinan Akgul GIT Vision Lab - http://vision.gyte.edu.tr Gebze Institute of Technology Kocaeli, Turkey {yildiz, akay, akgul}@bilmuh.gyte.edu.tr

More information

ACCURACY ASSESSMENT OF BUILDING POINT CLOUDS AUTOMATICALLY GENERATED FROM IPHONE IMAGES

ACCURACY ASSESSMENT OF BUILDING POINT CLOUDS AUTOMATICALLY GENERATED FROM IPHONE IMAGES ACCURACY ASSESSMENT OF BUILDING POINT CLOUDS AUTOMATICALLY GENERATED FROM IPHONE IMAGES B. Sirmacek, R. Lindenbergh Delft University of Technology, Department of Geoscience and Remote Sensing, Stevinweg

More information

Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang

Recognizing Cats and Dogs with Shape and Appearance based Models. Group Member: Chu Wang, Landu Jiang Recognizing Cats and Dogs with Shape and Appearance based Models Group Member: Chu Wang, Landu Jiang Abstract Recognizing cats and dogs from images is a challenging competition raised by Kaggle platform

More information

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data

Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear

More information

Point Matching as a Classification Problem for Fast and Robust Object Pose Estimation

Point Matching as a Classification Problem for Fast and Robust Object Pose Estimation Point Matching as a Classification Problem for Fast and Robust Object Pose Estimation Vincent Lepetit Julien Pilet Pascal Fua Computer Vision Laboratory Swiss Federal Institute of Technology (EPFL) 1015

More information

The Visual Internet of Things System Based on Depth Camera

The Visual Internet of Things System Based on Depth Camera The Visual Internet of Things System Based on Depth Camera Xucong Zhang 1, Xiaoyun Wang and Yingmin Jia Abstract The Visual Internet of Things is an important part of information technology. It is proposed

More information

Part-Based Recognition

Part-Based Recognition Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple

More information

Topographic Change Detection Using CloudCompare Version 1.0

Topographic Change Detection Using CloudCompare Version 1.0 Topographic Change Detection Using CloudCompare Version 1.0 Emily Kleber, Arizona State University Edwin Nissen, Colorado School of Mines J Ramón Arrowsmith, Arizona State University Introduction CloudCompare

More information

Universidad de Cantabria Departamento de Tecnología Electrónica, Ingeniería de Sistemas y Automática. Tesis Doctoral

Universidad de Cantabria Departamento de Tecnología Electrónica, Ingeniería de Sistemas y Automática. Tesis Doctoral Universidad de Cantabria Departamento de Tecnología Electrónica, Ingeniería de Sistemas y Automática Tesis Doctoral CONTRIBUCIONES AL ALINEAMIENTO DE NUBES DE PUNTOS 3D PARA SU USO EN APLICACIONES DE CAPTURA

More information

Object Recognition. Selim Aksoy. Bilkent University saksoy@cs.bilkent.edu.tr

Object Recognition. Selim Aksoy. Bilkent University saksoy@cs.bilkent.edu.tr Image Classification and Object Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Image classification Image (scene) classification is a fundamental

More information

Segmentation of building models from dense 3D point-clouds

Segmentation of building models from dense 3D point-clouds Segmentation of building models from dense 3D point-clouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute

More information

Practical Tour of Visual tracking. David Fleet and Allan Jepson January, 2006

Practical Tour of Visual tracking. David Fleet and Allan Jepson January, 2006 Practical Tour of Visual tracking David Fleet and Allan Jepson January, 2006 Designing a Visual Tracker: What is the state? pose and motion (position, velocity, acceleration, ) shape (size, deformation,

More information

Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition

Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image Pre-Processing - Pixel Brightness Transformation - Geometric Transformation - Image Denoising 1 1. Image Pre-Processing

More information

Automatic georeferencing of imagery from high-resolution, low-altitude, low-cost aerial platforms

Automatic georeferencing of imagery from high-resolution, low-altitude, low-cost aerial platforms Automatic georeferencing of imagery from high-resolution, low-altitude, low-cost aerial platforms Amanda Geniviva, Jason Faulring and Carl Salvaggio Rochester Institute of Technology, 54 Lomb Memorial

More information

Distinctive Image Features from Scale-Invariant Keypoints

Distinctive Image Features from Scale-Invariant Keypoints Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe Computer Science Department University of British Columbia Vancouver, B.C., Canada lowe@cs.ubc.ca January 5, 2004 Abstract This paper

More information

MIFT: A Mirror Reflection Invariant Feature Descriptor

MIFT: A Mirror Reflection Invariant Feature Descriptor MIFT: A Mirror Reflection Invariant Feature Descriptor Xiaojie Guo, Xiaochun Cao, Jiawan Zhang, and Xuewei Li School of Computer Science and Technology Tianjin University, China {xguo,xcao,jwzhang,lixuewei}@tju.edu.cn

More information

Automatic 3D Mapping for Infrared Image Analysis

Automatic 3D Mapping for Infrared Image Analysis Automatic 3D Mapping for Infrared Image Analysis i r f m c a d a r a c h e V. Martin, V. Gervaise, V. Moncada, M.H. Aumeunier, M. irdaouss, J.M. Travere (CEA) S. Devaux (IPP), G. Arnoux (CCE) and JET-EDA

More information

CS231M Project Report - Automated Real-Time Face Tracking and Blending

CS231M Project Report - Automated Real-Time Face Tracking and Blending CS231M Project Report - Automated Real-Time Face Tracking and Blending Steven Lee, slee2010@stanford.edu June 6, 2015 1 Introduction Summary statement: The goal of this project is to create an Android

More information

Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall

Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin

More information

Edge-based Template Matching and Tracking for Perspectively Distorted Planar Objects

Edge-based Template Matching and Tracking for Perspectively Distorted Planar Objects Edge-based Template Matching and Tracking for Perspectively Distorted Planar Objects Andreas Hofhauser, Carsten Steger, and Nassir Navab TU München, Boltzmannstr. 3, 85748 Garching bei München, Germany

More information

G E N E R A L A P P R O A CH: LO O K I N G F O R D O M I N A N T O R I E N T A T I O N I N I M A G E P A T C H E S

G E N E R A L A P P R O A CH: LO O K I N G F O R D O M I N A N T O R I E N T A T I O N I N I M A G E P A T C H E S G E N E R A L A P P R O A CH: LO O K I N G F O R D O M I N A N T O R I E N T A T I O N I N I M A G E P A T C H E S In object categorization applications one of the main problems is that objects can appear

More information

CS 534: Computer Vision 3D Model-based recognition

CS 534: Computer Vision 3D Model-based recognition CS 534: Computer Vision 3D Model-based recognition Ahmed Elgammal Dept of Computer Science CS 534 3D Model-based Vision - 1 High Level Vision Object Recognition: What it means? Two main recognition tasks:!

More information

Evaluation of Interest Point Detectors

Evaluation of Interest Point Detectors International Journal of Computer Vision 37(2), 151 172, 2000 c 2000 Kluwer Academic Publishers. Manufactured in The Netherlands. Evaluation of Interest Point Detectors CORDELIA SCHMID, ROGER MOHR AND

More information

GUIDE TO POST-PROCESSING OF THE POINT CLOUD

GUIDE TO POST-PROCESSING OF THE POINT CLOUD GUIDE TO POST-PROCESSING OF THE POINT CLOUD Contents Contents 3 Reconstructing the point cloud with MeshLab 16 Reconstructing the point cloud with CloudCompare 2 Reconstructing the point cloud with MeshLab

More information

Projection Center Calibration for a Co-located Projector Camera System

Projection Center Calibration for a Co-located Projector Camera System Projection Center Calibration for a Co-located Camera System Toshiyuki Amano Department of Computer and Communication Science Faculty of Systems Engineering, Wakayama University Sakaedani 930, Wakayama,

More information

A Comparative Study between SIFT- Particle and SURF-Particle Video Tracking Algorithms

A Comparative Study between SIFT- Particle and SURF-Particle Video Tracking Algorithms A Comparative Study between SIFT- Particle and SURF-Particle Video Tracking Algorithms H. Kandil and A. Atwan Information Technology Department, Faculty of Computer and Information Sciences, Mansoura University,El-Gomhoria

More information

Poker Vision: Playing Cards and Chips Identification based on Image Processing

Poker Vision: Playing Cards and Chips Identification based on Image Processing Poker Vision: Playing Cards and Chips Identification based on Image Processing Paulo Martins 1, Luís Paulo Reis 2, and Luís Teófilo 2 1 DEEC Electrical Engineering Department 2 LIACC Artificial Intelligence

More information

Galaxy Morphological Classification

Galaxy Morphological Classification Galaxy Morphological Classification Jordan Duprey and James Kolano Abstract To solve the issue of galaxy morphological classification according to a classification scheme modelled off of the Hubble Sequence,

More information

Computer Graphics and Image Processing Introduction

Computer Graphics and Image Processing Introduction Computer Graphics and Image Processing Introduction Part 1 Lecture 1 1 COMPSCI 373 Lecturers: A. Prof. Patrice Delmas (303.391) Week 1-4 Contact details: p.delmas@auckland.ac.nz Office: 303-391 (3 rd level

More information

V-PITS : VIDEO BASED PHONOMICROSURGERY INSTRUMENT TRACKING SYSTEM. Ketan Surender

V-PITS : VIDEO BASED PHONOMICROSURGERY INSTRUMENT TRACKING SYSTEM. Ketan Surender V-PITS : VIDEO BASED PHONOMICROSURGERY INSTRUMENT TRACKING SYSTEM by Ketan Surender A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Electrical Engineering)

More information

siftservice.com - Turning a Computer Vision algorithm into a World Wide Web Service

siftservice.com - Turning a Computer Vision algorithm into a World Wide Web Service siftservice.com - Turning a Computer Vision algorithm into a World Wide Web Service Ahmad Pahlavan Tafti 1, Hamid Hassannia 2, and Zeyun Yu 1 1 Department of Computer Science, University of Wisconsin -Milwaukee,

More information

Automatic Labeling of Lane Markings for Autonomous Vehicles

Automatic Labeling of Lane Markings for Autonomous Vehicles Automatic Labeling of Lane Markings for Autonomous Vehicles Jeffrey Kiske Stanford University 450 Serra Mall, Stanford, CA 94305 jkiske@stanford.edu 1. Introduction As autonomous vehicles become more popular,

More information

Bayes and Naïve Bayes. cs534-machine Learning

Bayes and Naïve Bayes. cs534-machine Learning Bayes and aïve Bayes cs534-machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule

More information

A Genetic Algorithm-Evolved 3D Point Cloud Descriptor

A Genetic Algorithm-Evolved 3D Point Cloud Descriptor A Genetic Algorithm-Evolved 3D Point Cloud Descriptor Dominik Wȩgrzyn and Luís A. Alexandre IT - Instituto de Telecomunicações Dept. of Computer Science, Univ. Beira Interior, 6200-001 Covilhã, Portugal

More information

Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur

Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur An Experiment in Motion from Blur Giacomo Boracchi, Vincenzo Caglioti, Alessandro Giusti Objective From a single image, reconstruct:

More information

Solution Guide III-C. 3D Vision. Building Vision for Business. MVTec Software GmbH

Solution Guide III-C. 3D Vision. Building Vision for Business. MVTec Software GmbH Solution Guide III-C 3D Vision MVTec Software GmbH Building Vision for Business Machine vision in 3D world coordinates, Version 10.0.4 All rights reserved. No part of this publication may be reproduced,

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 torsten@sfu.ca www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

More information

Introduction. C 2009 John Wiley & Sons, Ltd

Introduction. C 2009 John Wiley & Sons, Ltd 1 Introduction The purpose of this text on stereo-based imaging is twofold: it is to give students of computer vision a thorough grounding in the image analysis and projective geometry techniques relevant

More information

THE development of methods for automatic detection

THE development of methods for automatic detection Learning to Detect Objects in Images via a Sparse, Part-Based Representation Shivani Agarwal, Aatif Awan and Dan Roth, Member, IEEE Computer Society 1 Abstract We study the problem of detecting objects

More information

Cloud tracking with optical flow for short-term solar forecasting

Cloud tracking with optical flow for short-term solar forecasting Cloud tracking with optical flow for short-term solar forecasting Philip Wood-Bradley, José Zapata, John Pye Solar Thermal Group, Australian National University, Canberra, Australia Corresponding author:

More information

Adaptive Learning of Statistical Appearance Models for 3D Human Tracking

Adaptive Learning of Statistical Appearance Models for 3D Human Tracking Adaptive Learning of Statistical Appearance Models for 3D Human Tracking Timothy J. Roberts, Stephen J. McKenna, Ian W. Ricketts Department of Applied Computing University of Dundee, Scotland, DD1 4HN

More information

PHYSIOLOGICALLY-BASED DETECTION OF COMPUTER GENERATED FACES IN VIDEO

PHYSIOLOGICALLY-BASED DETECTION OF COMPUTER GENERATED FACES IN VIDEO PHYSIOLOGICALLY-BASED DETECTION OF COMPUTER GENERATED FACES IN VIDEO V. Conotter, E. Bodnari, G. Boato H. Farid Department of Information Engineering and Computer Science University of Trento, Trento (ITALY)

More information

Current status of image matching for Earth observation

Current status of image matching for Earth observation Current status of image matching for Earth observation Christian Heipke IPI - Institute for Photogrammetry and GeoInformation Leibniz Universität Hannover Secretary General, ISPRS Content Introduction

More information

An Iterative Image Registration Technique with an Application to Stereo Vision

An Iterative Image Registration Technique with an Application to Stereo Vision An Iterative Image Registration Technique with an Application to Stereo Vision Bruce D. Lucas Takeo Kanade Computer Science Department Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 Abstract

More information

Taking Inverse Graphics Seriously

Taking Inverse Graphics Seriously CSC2535: 2013 Advanced Machine Learning Taking Inverse Graphics Seriously Geoffrey Hinton Department of Computer Science University of Toronto The representation used by the neural nets that work best

More information

AUTOMATED MODELING OF THE GREAT BUDDHA STATUE IN BAMIYAN, AFGHANISTAN

AUTOMATED MODELING OF THE GREAT BUDDHA STATUE IN BAMIYAN, AFGHANISTAN AUTOMATED MODELING OF THE GREAT BUDDHA STATUE IN BAMIYAN, AFGHANISTAN A.Gruen, F.Remondino, L.Zhang Institute of Geodesy and Photogrammetry ETH Zurich, Switzerland e-mail: @geod.baug.ethz.ch

More information

2.2 Creaseness operator

2.2 Creaseness operator 2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared

More information

ECE 533 Project Report Ashish Dhawan Aditi R. Ganesan

ECE 533 Project Report Ashish Dhawan Aditi R. Ganesan Handwritten Signature Verification ECE 533 Project Report by Ashish Dhawan Aditi R. Ganesan Contents 1. Abstract 3. 2. Introduction 4. 3. Approach 6. 4. Pre-processing 8. 5. Feature Extraction 9. 6. Verification

More information

Image Stitching based on Feature Extraction Techniques: A Survey

Image Stitching based on Feature Extraction Techniques: A Survey Image Stitching based on Feature Extraction Techniques: A Survey Ebtsam Adel Information System Dept. Faculty of Computers and Information, Mansoura University, Egypt Mohammed Elmogy Information Technology

More information

Handbook of Robotics. Chapter 22 - Range Sensors

Handbook of Robotics. Chapter 22 - Range Sensors Handbook of Robotics Chapter 22 - Range Sensors Robert B. Fisher School of Informatics University of Edinburgh rbf@inf.ed.ac.uk Kurt Konolige Artificial Intelligence Center SRI International konolige@ai.sri.com

More information

3D Vehicle Extraction and Tracking from Multiple Viewpoints for Traffic Monitoring by using Probability Fusion Map

3D Vehicle Extraction and Tracking from Multiple Viewpoints for Traffic Monitoring by using Probability Fusion Map Electronic Letters on Computer Vision and Image Analysis 7(2):110-119, 2008 3D Vehicle Extraction and Tracking from Multiple Viewpoints for Traffic Monitoring by using Probability Fusion Map Zhencheng

More information

Online Learning for Offroad Robots: Using Spatial Label Propagation to Learn Long Range Traversability

Online Learning for Offroad Robots: Using Spatial Label Propagation to Learn Long Range Traversability Online Learning for Offroad Robots: Using Spatial Label Propagation to Learn Long Range Traversability Raia Hadsell1, Pierre Sermanet1,2, Jan Ben2, Ayse Naz Erkan1, Jefferson Han1, Beat Flepp2, Urs Muller2,

More information

Image Classification for Dogs and Cats

Image Classification for Dogs and Cats Image Classification for Dogs and Cats Bang Liu, Yan Liu Department of Electrical and Computer Engineering {bang3,yan10}@ualberta.ca Kai Zhou Department of Computing Science kzhou3@ualberta.ca Abstract

More information

So which is the best?

So which is the best? Manifold Learning Techniques: So which is the best? Todd Wittman Math 8600: Geometric Data Analysis Instructor: Gilad Lerman Spring 2005 Note: This presentation does not contain information on LTSA, which

More information

Spatio-Temporally Coherent 3D Animation Reconstruction from Multi-view RGB-D Images using Landmark Sampling

Spatio-Temporally Coherent 3D Animation Reconstruction from Multi-view RGB-D Images using Landmark Sampling , March 13-15, 2013, Hong Kong Spatio-Temporally Coherent 3D Animation Reconstruction from Multi-view RGB-D Images using Landmark Sampling Naveed Ahmed Abstract We present a system for spatio-temporally

More information

FastKeypointRecognitioninTenLinesofCode

FastKeypointRecognitioninTenLinesofCode FastKeypointRecognitioninTenLinesofCode Mustafa Özuysal Pascal Fua Vincent Lepetit Computer Vision Laboratory École Polytechnique Fédérale de Lausanne(EPFL) 115 Lausanne, Switzerland Email: {Mustafa.Oezuysal,

More information

3D Human Face Recognition Using Point Signature

3D Human Face Recognition Using Point Signature 3D Human Face Recognition Using Point Signature Chin-Seng Chua, Feng Han, Yeong-Khing Ho School of Electrical and Electronic Engineering Nanyang Technological University, Singapore 639798 ECSChua@ntu.edu.sg

More information

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007 Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total

More information

Protein Protein Interaction Networks

Protein Protein Interaction Networks Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics

More information

Who are you? Learning person specific classifiers from video

Who are you? Learning person specific classifiers from video Who are you? Learning person specific classifiers from video Josef Sivic, Mark Everingham 2 and Andrew Zisserman 3 INRIA, WILLOW Project, Laboratoire d Informatique de l Ecole Normale Superieure, Paris,

More information

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide

More information

Image Content-Based Email Spam Image Filtering

Image Content-Based Email Spam Image Filtering Image Content-Based Email Spam Image Filtering Jianyi Wang and Kazuki Katagishi Abstract With the population of Internet around the world, email has become one of the main methods of communication among

More information

Stitching of X-ray Images

Stitching of X-ray Images IT 12 057 Examensarbete 30 hp November 2012 Stitching of X-ray Images Krishna Paudel Institutionen för informationsteknologi Department of Information Technology Abstract Stitching of X-ray Images Krishna

More information

Data Clustering. Dec 2nd, 2013 Kyrylo Bessonov

Data Clustering. Dec 2nd, 2013 Kyrylo Bessonov Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main

More information

Mean-Shift Tracking with Random Sampling

Mean-Shift Tracking with Random Sampling 1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of

More information

RECOGNIZING SIMPLE HUMAN ACTIONS USING 3D HEAD MOVEMENT

RECOGNIZING SIMPLE HUMAN ACTIONS USING 3D HEAD MOVEMENT Computational Intelligence, Volume 23, Number 4, 2007 RECOGNIZING SIMPLE HUMAN ACTIONS USING 3D HEAD MOVEMENT JORGE USABIAGA, GEORGE BEBIS, ALI EROL, AND MIRCEA NICOLESCU Computer Vision Laboratory, University

More information

Colorado School of Mines Computer Vision Professor William Hoff

Colorado School of Mines Computer Vision Professor William Hoff Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Introduction to 2 What is? A process that produces from images of the external world a description

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

2003-2012 MVTec Software GmbH.

2003-2012 MVTec Software GmbH. 1 MVTec Software GmbH is a leading international manufacturer of software for machine vision used in all demanding areas of imaging: semi-conductor industry, web inspection, quality control and inspection

More information

How does the Kinect work? John MacCormick

How does the Kinect work? John MacCormick How does the Kinect work? John MacCormick Xbox demo Laptop demo The Kinect uses structured light and machine learning Inferring body position is a two-stage process: first compute a depth map (using structured

More information

Audience Analysis System on the Basis of Face Detection, Tracking and Classification Techniques

Audience Analysis System on the Basis of Face Detection, Tracking and Classification Techniques Audience Analysis System on the Basis of Face Detection, Tracking and Classification Techniques Vladimir Khryashchev, Member, IAENG, Alexander Ganin, Maxim Golubev, and Lev Shmaglit Abstract A system of

More information

lop Building Machine Learning Systems with Python en source

lop Building Machine Learning Systems with Python en source Building Machine Learning Systems with Python Master the art of machine learning with Python and build effective machine learning systems with this intensive handson guide Willi Richert Luis Pedro Coelho

More information

Traffic Monitoring Systems. Technology and sensors

Traffic Monitoring Systems. Technology and sensors Traffic Monitoring Systems Technology and sensors Technology Inductive loops Cameras Lidar/Ladar and laser Radar GPS etc Inductive loops Inductive loops signals Inductive loop sensor The inductance signal

More information

Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics

Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Part I: Factorizations and Statistical Modeling/Inference Amnon Shashua School of Computer Science & Eng. The Hebrew University

More information

Introduction to Pattern Recognition

Introduction to Pattern Recognition Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

Signature Segmentation and Recognition from Scanned Documents

Signature Segmentation and Recognition from Scanned Documents Signature Segmentation and Recognition from Scanned Documents Ranju Mandal, Partha Pratim Roy, Umapada Pal and Michael Blumenstein School of Information and Communication Technology, Griffith University,

More information

Open issues and research trends in Content-based Image Retrieval

Open issues and research trends in Content-based Image Retrieval Open issues and research trends in Content-based Image Retrieval Raimondo Schettini DISCo Universita di Milano Bicocca schettini@disco.unimib.it www.disco.unimib.it/schettini/ IEEE Signal Processing Society

More information

T-61.3050 : Email Classification as Spam or Ham using Naive Bayes Classifier. Santosh Tirunagari : 245577

T-61.3050 : Email Classification as Spam or Ham using Naive Bayes Classifier. Santosh Tirunagari : 245577 T-61.3050 : Email Classification as Spam or Ham using Naive Bayes Classifier Santosh Tirunagari : 245577 January 20, 2011 Abstract This term project gives a solution how to classify an email as spam or

More information

Signature Segmentation from Machine Printed Documents using Conditional Random Field

Signature Segmentation from Machine Printed Documents using Conditional Random Field 2011 International Conference on Document Analysis and Recognition Signature Segmentation from Machine Printed Documents using Conditional Random Field Ranju Mandal Computer Vision and Pattern Recognition

More information

Interactive Offline Tracking for Color Objects

Interactive Offline Tracking for Color Objects Interactive Offline Tracking for Color Objects Yichen Wei Jian Sun Xiaoou Tang Heung-Yeung Shum Microsoft Research Asia, Beijing, China {yichenw,jiansun,xitang,hshum}@microsoft.com Abstract In this paper,

More information

3D/4D acquisition. 3D acquisition taxonomy 22.10.2014. Computer Vision. Computer Vision. 3D acquisition methods. passive. active.

3D/4D acquisition. 3D acquisition taxonomy 22.10.2014. Computer Vision. Computer Vision. 3D acquisition methods. passive. active. Das Bild kann zurzeit nicht angezeigt werden. 22.10.2014 3D/4D acquisition 3D acquisition taxonomy 3D acquisition methods passive active uni-directional multi-directional uni-directional multi-directional

More information

Robot Perception Continued

Robot Perception Continued Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

More information

Computational Optical Imaging - Optique Numerique. -- Deconvolution --

Computational Optical Imaging - Optique Numerique. -- Deconvolution -- Computational Optical Imaging - Optique Numerique -- Deconvolution -- Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method

More information

An Experimental Comparison of Online Object Tracking Algorithms

An Experimental Comparison of Online Object Tracking Algorithms An Experimental Comparison of Online Object Tracking Algorithms Qing Wang a, Feng Chen a, Wenli Xu a, and Ming-Hsuan Yang b a Tsinghua University, Beijing, China b University of California at Merced, Calfironia,

More information

3-D Scene Data Recovery using Omnidirectional Multibaseline Stereo

3-D Scene Data Recovery using Omnidirectional Multibaseline Stereo Abstract 3-D Scene Data Recovery using Omnidirectional Multibaseline Stereo Sing Bing Kang Richard Szeliski Digital Equipment Corporation Cambridge Research Lab Microsoft Corporation One Kendall Square,

More information

The Scientific Data Mining Process

The Scientific Data Mining Process Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In

More information

OpenFOAM Optimization Tools

OpenFOAM Optimization Tools OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov h.rusche@wikki-gmbh.de and a.jemcov@wikki.co.uk Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation

More information

3D Annotation and Manipulation of Medical Anatomical Structures

3D Annotation and Manipulation of Medical Anatomical Structures 3D Annotation and Manipulation of Medical Anatomical Structures Dime Vitanovski, Christian Schaller, Dieter Hahn, Volker Daum, Joachim Hornegger Chair of Pattern Recognition, Martensstr. 3, 91058 Erlangen,

More information

Optical Digitizing by ATOS for Press Parts and Tools

Optical Digitizing by ATOS for Press Parts and Tools Optical Digitizing by ATOS for Press Parts and Tools Konstantin Galanulis, Carsten Reich, Jan Thesing, Detlef Winter GOM Gesellschaft für Optische Messtechnik mbh, Mittelweg 7, 38106 Braunschweig, Germany

More information

RANDOM PROJECTIONS FOR SEARCH AND MACHINE LEARNING

RANDOM PROJECTIONS FOR SEARCH AND MACHINE LEARNING = + RANDOM PROJECTIONS FOR SEARCH AND MACHINE LEARNING Stefan Savev Berlin Buzzwords June 2015 KEYWORD-BASED SEARCH Document Data 300 unique words per document 300 000 words in vocabulary Data sparsity:

More information

SAFE/T Tool for Analyzing Driver Video Data

SAFE/T Tool for Analyzing Driver Video Data SAFE/T Tool for Analyzing Driver Video Data Part 2: Software Development Carol Martell, Rob Foss UNC Highway Safety Research Center Ken Gish, Loren Staplin TransAnalytics Objective Overall: Develop analytic

More information