Querying Joint Probability Distributions
|
|
|
- Gloria James
- 9 years ago
- Views:
Transcription
1 Querying Joint Probability Distributions Sargur Srihari 1
2 Queries of Interest Probabilistic Graphical Models (BNs and MNs) represent joint probability distributions over multiple variables Their use is to answer queries of interest This is called inference What types of queries are there? Illustrate it with the Student Example 2
3 Student Bayesian Network Represents joint probability distribution over multiple variables BNs represent them in terms of graphs and conditional probability distributions(cpds) Resulting in great savings in no of parameters needed 3
4 Joint distribution from Student BN CPDs: P(X i pa(x i )) Joint Distribution: P(X) = P(X 1,..X n ) N P(X) = P(X i pa(x i )) i=1 P(D, I,G,S, L) = P(D)P(I)P(G D, I)P(S I)P(L G) 4
5 Query Types 1. Probability Queries Given L and S give distribution of I 2. MAP Queries Maximum a posteriori probability Also called MPE (Most Probable Explanation) What is the most likely setting of D,I, G, S, L Marginal MAP Queries When some variables are known 5
6 Probability Queries Most common type of query is a probability query Query has two parts Evidence: a subset E of variables and their instantiation e Query Variables: a subset Y of random variables in network Inference Task: P(Y E=e) Posterior probability distribution over values y of Y Conditioned on the fact E=e Can be viewed as Marginal over Y in distribution we obtain by conditioning on e Marginal Probability Estimation P(Y = y i E = e) = P(Y = y i, E = e) P(E = e) 6
7 Example of Probability Query P(Y = y i E = e) = P(Y = y i, E = e) P(E = e) Posterior Marginal Probability of Evidence Posterior Marginal Estimation: P(I=i 1 L=l 0,S=s 1 )=? Probability of Evidence: P(L=l 0,s=s 1 )=? Here we are asking for a specific probability rather than a full distribution 7
8 MAP Queries (Most Probable Explanation) Finding a high probability assignment to some subset of variables Most likely assignment to all non-evidence variables W=χ Y MAP(W e) = arg max w P(w,e) Value of w for which P(w,e) is maximum Difference from probability query Instead of a probability we get the most likely value for all remaining variables 8
9 Example of MAP Queries P(Diseases) a 0 a 1 0,4 0.6 A Disease Medical Diagnosis Problem Diseases (A) cause Symptoms (B) Two possible diseases Mono and Flu Two possible symptoms Headache, Fever B Symptom P(Symptom Disease) P(B A) b 0 b 1 a a Q1: Most likely disease P(A)? A1: Flu (Trivially determined for root node) Q2: Most likely disease and symptom P(A,B)? A2: Q3: Most likely symptom P(B)? A3: 9
10 Example of MAP Query Disease Symptom a 0 a 1 0,4 0.6 A B MAP(A) = arg max a MAP(A, B) = arg max a, b A = a 1 P(A, B)=arg max a, b A1: Flu =arg max a, b {0.04, 0.36, 0.3, 0.3}=a0, b 1 P(A)P(B A) A2: Mono and Fever Note that individually most likely value a 1 is not in the most likely joint assignment P(B A) b 0 b 1 a a
11 Marginal MAP Query Diseases a 0 a 1 0,4 0.6 A We looked for highest joint probability assignment of disease and symptom Can look for most likely assignment of disease variable only Query is not all remaining variables but a subset of them Y is query, evidence is E=e Task is to find most likely assignment to Y: MAP(Y e)=arg max P(Y e) B Symptoms If Z=X-Y-E MAP(Y e) = arg max Y Z P(Y,Z e) A b 0 b 1 a a
12 Example of Marginal MAP Query Disease a 0 a 1 0,4 0.6 A MAP(A, B) = arg max a, b P(A, B)=arg max a, b =arg max a, b {0.04, 0.36, 0.3, 0.3}=a0, b 1 P(A)P(B A) A2: Mono and Fever Symptom B P(B A) b 0 b 1 a a MAP(B) = arg max b =arg max b P(B)=arg max b {0.34, 0.66}=b 1 A P(A, B) A3: Fever P(A,B) b 0 b 1 a a
13 Marginal MAP Assignments They are not monotonic Most likely assignment MAP(Y 1 e) might be completely different from assignment to Y 1 in MAP({Y 1,Y 2 } e) Q1: Most likely disease P(A)? A1: Flu Q2: Most likely disease and symptom P(A,B)? A2: Mono and Fever Thus we cannot use a MAP query to give a correct answer to a marginal map query 13
14 Marginal MAP more Complex than MAP Contains both summations (like in probability queries) and maximizations (like in MAP queries) MAP(B) = arg max b =arg max b P(B)=arg max b {0.34, 0.66}=b 1 A P(A, B) 14
15 Computing the Probability of Evidence Probability Distribution of Evidence P(L,S) = D,I,G P(D, I,G, L,S) = P(D) P(I)P(G D, I)P(L G)P(S I) D,I,G Probability of Evidence P(L = l 0,s = s 1 ) = P(D)P(I)P(G D, I)P(L = l 0 G)P(S = s 1 I) More Generally D,I,G n P(E = e) = P(X i pa(x i )) E =e X \ E i=1 An intractable problem #P complete Sum Rule of Probability Tractable when tree-width is less than 25 Most real-world applications have higher tree-width Approximations are usually sufficient (hence sampling) When P(Y=y E=e)= , approximation yields 0.3 From the Graphical Model 15
Bayesian Networks. Read R&N Ch. 14.1-14.2. Next lecture: Read R&N 18.1-18.4
Bayesian Networks Read R&N Ch. 14.1-14.2 Next lecture: Read R&N 18.1-18.4 You will be expected to know Basic concepts and vocabulary of Bayesian networks. Nodes represent random variables. Directed arcs
Big Data, Machine Learning, Causal Models
Big Data, Machine Learning, Causal Models Sargur N. Srihari University at Buffalo, The State University of New York USA Int. Conf. on Signal and Image Processing, Bangalore January 2014 1 Plan of Discussion
Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1
Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields
Life of A Knowledge Base (KB)
Life of A Knowledge Base (KB) A knowledge base system is a special kind of database management system to for knowledge base management. KB extraction: knowledge extraction using statistical models in NLP/ML
CHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
3. The Junction Tree Algorithms
A Short Course on Graphical Models 3. The Junction Tree Algorithms Mark Paskin [email protected] 1 Review: conditional independence Two random variables X and Y are independent (written X Y ) iff p X ( )
Bayesian Networks. Mausam (Slides by UW-AI faculty)
Bayesian Networks Mausam (Slides by UW-AI faculty) Bayes Nets In general, joint distribution P over set of variables (X 1 x... x X n ) requires exponential space for representation & inference BNs provide
Bayesian probability theory
Bayesian probability theory Bruno A. Olshausen arch 1, 2004 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using probability. The foundations
The Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
What Is Probability?
1 What Is Probability? The idea: Uncertainty can often be "quantified" i.e., we can talk about degrees of certainty or uncertainty. This is the idea of probability: a higher probability expresses a higher
Course: Model, Learning, and Inference: Lecture 5
Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 [email protected] Abstract Probability distributions on structured representation.
Statistical Machine Learning from Data
Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Gaussian Mixture Models Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique
CONTINGENCY (CROSS- TABULATION) TABLES
CONTINGENCY (CROSS- TABULATION) TABLES Presents counts of two or more variables A 1 A 2 Total B 1 a b a+b B 2 c d c+d Total a+c b+d n = a+b+c+d 1 Joint, Marginal, and Conditional Probability We study methods
Relational Dynamic Bayesian Networks: a report. Cristina Manfredotti
Relational Dynamic Bayesian Networks: a report Cristina Manfredotti Dipartimento di Informatica, Sistemistica e Comunicazione (D.I.S.Co.) Università degli Studi Milano-Bicocca [email protected]
An Introduction to the Use of Bayesian Network to Analyze Gene Expression Data
n Introduction to the Use of ayesian Network to nalyze Gene Expression Data Cristina Manfredotti Dipartimento di Informatica, Sistemistica e Comunicazione (D.I.S.Co. Università degli Studi Milano-icocca
Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
1 Learning Goals Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1. Be able to apply Bayes theorem to compute probabilities. 2. Be able to identify
Machine Learning. CS 188: Artificial Intelligence Naïve Bayes. Example: Digit Recognition. Other Classification Tasks
CS 188: Artificial Intelligence Naïve Bayes Machine Learning Up until now: how use a model to make optimal decisions Machine learning: how to acquire a model from data / experience Learning parameters
Introduction to Markov Chain Monte Carlo
Introduction to Markov Chain Monte Carlo Monte Carlo: sample from a distribution to estimate the distribution to compute max, mean Markov Chain Monte Carlo: sampling using local information Generic problem
Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014
Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about
Informatics 2D Reasoning and Agents Semester 2, 2015-16
Informatics 2D Reasoning and Agents Semester 2, 2015-16 Alex Lascarides [email protected] Lecture 29 Decision Making Under Uncertainty 24th March 2016 Informatics UoE Informatics 2D 1 Where are we? Last
Introduction to Detection Theory
Introduction to Detection Theory Reading: Ch. 3 in Kay-II. Notes by Prof. Don Johnson on detection theory, see http://www.ece.rice.edu/~dhj/courses/elec531/notes5.pdf. Ch. 10 in Wasserman. EE 527, Detection
Basics of Statistical Machine Learning
CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu [email protected] Modern machine learning is rooted in statistics. You will find many familiar
Lecture 4: BK inequality 27th August and 6th September, 2007
CSL866: Percolation and Random Graphs IIT Delhi Amitabha Bagchi Scribe: Arindam Pal Lecture 4: BK inequality 27th August and 6th September, 2007 4. Preliminaries The FKG inequality allows us to lower bound
Message-passing sequential detection of multiple change points in networks
Message-passing sequential detection of multiple change points in networks Long Nguyen, Arash Amini Ram Rajagopal University of Michigan Stanford University ISIT, Boston, July 2012 Nguyen/Amini/Rajagopal
Naive-Bayes Classification Algorithm
Naive-Bayes Classification Algorithm 1. Introduction to Bayesian Classification The Bayesian Classification represents a supervised learning method as well as a statistical method for classification. Assumes
Statistics in Geophysics: Introduction and Probability Theory
Statistics in Geophysics: Introduction and Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/32 What is Statistics? Introduction Statistics is the
Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.
Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()
Part III: Machine Learning. CS 188: Artificial Intelligence. Machine Learning This Set of Slides. Parameter Estimation. Estimation: Smoothing
CS 188: Artificial Intelligence Lecture 20: Dynamic Bayes Nets, Naïve Bayes Pieter Abbeel UC Berkeley Slides adapted from Dan Klein. Part III: Machine Learning Up until now: how to reason in a model and
Structured Learning and Prediction in Computer Vision. Contents
Foundations and Trends R in Computer Graphics and Vision Vol. 6, Nos. 3 4 (2010) 185 365 c 2011 S. Nowozin and C. H. Lampert DOI: 10.1561/0600000033 Structured Learning and Prediction in Computer Vision
Bayesian Network Development
Bayesian Network Development Kenneth BACLAWSKI College of Computer Science, Northeastern University Boston, Massachusetts 02115 USA [email protected] Abstract Bayesian networks are a popular mechanism
Learning Instance-Specific Predictive Models
Journal of Machine Learning Research 11 (2010) 3333-3369 Submitted 3/09; Revised 7/10; Published 12/10 Learning Instance-Specific Predictive Models Shyam Visweswaran Gregory F. Cooper Department of Biomedical
), 35% use extra unleaded gas ( A
. At a certain gas station, 4% of the customers use regular unleaded gas ( A ), % use extra unleaded gas ( A ), and % use premium unleaded gas ( A ). Of those customers using regular gas, onl % fill their
STA 256: Statistics and Probability I
Al Nosedal. University of Toronto. Fall 2014 1 2 3 4 5 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Experiment, outcome, sample space, and
Chapter 28. Bayesian Networks
Chapter 28. Bayesian Networks The Quest for Artificial Intelligence, Nilsson, N. J., 2009. Lecture Notes on Artificial Intelligence, Spring 2012 Summarized by Kim, Byoung-Hee and Lim, Byoung-Kwon Biointelligence
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments
Simple Decision Making
Decision Making Under Uncertainty Ch 16 Simple Decision Making Many environments have multiple possible outcomes Some of these outcomes may be good; others may be bad Some may be very likely; others unlikely
Role of Automation in the Forensic Examination of Handwritten Items
Role of Automation in the Forensic Examination of Handwritten Items Sargur Srihari Department of Computer Science & Engineering University at Buffalo, The State University of New York NIST, Washington
A Bayesian Network Model for Diagnosis of Liver Disorders Agnieszka Onisko, M.S., 1,2 Marek J. Druzdzel, Ph.D., 1 and Hanna Wasyluk, M.D.,Ph.D.
Research Report CBMI-99-27, Center for Biomedical Informatics, University of Pittsburgh, September 1999 A Bayesian Network Model for Diagnosis of Liver Disorders Agnieszka Onisko, M.S., 1,2 Marek J. Druzdzel,
Model-based Synthesis. Tony O Hagan
Model-based Synthesis Tony O Hagan Stochastic models Synthesising evidence through a statistical model 2 Evidence Synthesis (Session 3), Helsinki, 28/10/11 Graphical modelling The kinds of models that
Approximating the Partition Function by Deleting and then Correcting for Model Edges
Approximating the Partition Function by Deleting and then Correcting for Model Edges Arthur Choi and Adnan Darwiche Computer Science Department University of California, Los Angeles Los Angeles, CA 995
Towards running complex models on big data
Towards running complex models on big data Working with all the genomes in the world without changing the model (too much) Daniel Lawson Heilbronn Institute, University of Bristol 2013 1 / 17 Motivation
Bayesian Tutorial (Sheet Updated 20 March)
Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that
Conditional Random Fields: An Introduction
Conditional Random Fields: An Introduction Hanna M. Wallach February 24, 2004 1 Labeling Sequential Data The task of assigning label sequences to a set of observation sequences arises in many fields, including
Bounded Treewidth in Knowledge Representation and Reasoning 1
Bounded Treewidth in Knowledge Representation and Reasoning 1 Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien Luminy, October 2010 1 Joint work with G.
What is the purpose of this document? What is in the document? How do I send Feedback?
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Statistics
Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
Compression algorithm for Bayesian network modeling of binary systems
Compression algorithm for Bayesian network modeling of binary systems I. Tien & A. Der Kiureghian University of California, Berkeley ABSTRACT: A Bayesian network (BN) is a useful tool for analyzing the
An Empirical Evaluation of Bayesian Networks Derived from Fault Trees
An Empirical Evaluation of Bayesian Networks Derived from Fault Trees Shane Strasser and John Sheppard Department of Computer Science Montana State University Bozeman, MT 59717 {shane.strasser, john.sheppard}@cs.montana.edu
Knowledge-Based Probabilistic Reasoning from Expert Systems to Graphical Models
Knowledge-Based Probabilistic Reasoning from Expert Systems to Graphical Models By George F. Luger & Chayan Chakrabarti {luger cc} @cs.unm.edu Department of Computer Science University of New Mexico Albuquerque
Reject Inference in Credit Scoring. Jie-Men Mok
Reject Inference in Credit Scoring Jie-Men Mok BMI paper January 2009 ii Preface In the Master programme of Business Mathematics and Informatics (BMI), it is required to perform research on a business
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
Graphs. Exploratory data analysis. Graphs. Standard forms. A graph is a suitable way of representing data if:
Graphs Exploratory data analysis Dr. David Lucy [email protected] Lancaster University A graph is a suitable way of representing data if: A line or area can represent the quantities in the data in
Homework 8 Solutions
CSE 21 - Winter 2014 Homework Homework 8 Solutions 1 Of 330 male and 270 female employees at the Flagstaff Mall, 210 of the men and 180 of the women are on flex-time (flexible working hours). Given that
Elements of probability theory
2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted
Study Manual. Probabilistic Reasoning. Silja Renooij. August 2015
Study Manual Probabilistic Reasoning 2015 2016 Silja Renooij August 2015 General information This study manual was designed to help guide your self studies. As such, it does not include material that is
CONSUMER PREFERENCES THE THEORY OF THE CONSUMER
CONSUMER PREFERENCES The underlying foundation of demand, therefore, is a model of how consumers behave. The individual consumer has a set of preferences and values whose determination are outside the
A Few Basics of Probability
A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study
L3: Statistical Modeling with Hadoop
L3: Statistical Modeling with Hadoop Feng Li [email protected] School of Statistics and Mathematics Central University of Finance and Economics Revision: December 10, 2014 Today we are going to learn...
A Comparison of Novel and State-of-the-Art Polynomial Bayesian Network Learning Algorithms
A Comparison of Novel and State-of-the-Art Polynomial Bayesian Network Learning Algorithms Laura E. Brown Ioannis Tsamardinos Constantin F. Aliferis Vanderbilt University, Department of Biomedical Informatics
Running Head: STRUCTURE INDUCTION IN DIAGNOSTIC REASONING 1. Structure Induction in Diagnostic Causal Reasoning. Development, Berlin, Germany
Running Head: STRUCTURE INDUCTION IN DIAGNOSTIC REASONING 1 Structure Induction in Diagnostic Causal Reasoning Björn Meder 1, Ralf Mayrhofer 2, & Michael R. Waldmann 2 1 Center for Adaptive Behavior and
Bayes Theorem. Bayes Theorem- Example. Evaluation of Medical Screening Procedure. Evaluation of Medical Screening Procedure
Bayes Theorem P(C A) P(A) P(A C) = P(C A) P(A) + P(C B) P(B) P(E B) P(B) P(B E) = P(E B) P(B) + P(E A) P(A) P(D A) P(A) P(A D) = P(D A) P(A) + P(D B) P(B) Cost of procedure is $1,000,000 Data regarding
Probability for Estimation (review)
Probability for Estimation (review) In general, we want to develop an estimator for systems of the form: x = f x, u + η(t); y = h x + ω(t); ggggg y, ffff x We will primarily focus on discrete time linear
Latent variable and deep modeling with Gaussian processes; application to system identification. Andreas Damianou
Latent variable and deep modeling with Gaussian processes; application to system identification Andreas Damianou Department of Computer Science, University of Sheffield, UK Brown University, 17 Feb. 2016
Part III. Lecture 3: Probability and Stochastic Processes. Stephen Kinsella (UL) EC4024 February 8, 2011 54 / 149
Part III Lecture 3: Probability and Stochastic Processes Stephen Kinsella (UL) EC4024 February 8, 2011 54 / 149 Today Basics of probability Empirical distributions Properties of probability distributions
Finding the M Most Probable Configurations Using Loopy Belief Propagation
Finding the M Most Probable Configurations Using Loopy Belief Propagation Chen Yanover and Yair Weiss School of Computer Science and Engineering The Hebrew University of Jerusalem 91904 Jerusalem, Israel
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
Neural Networks for Machine Learning. Lecture 13a The ups and downs of backpropagation
Neural Networks for Machine Learning Lecture 13a The ups and downs of backpropagation Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed A brief history of backpropagation
In Proceedings of the Eleventh Conference on Biocybernetics and Biomedical Engineering, pages 842-846, Warsaw, Poland, December 2-4, 1999
In Proceedings of the Eleventh Conference on Biocybernetics and Biomedical Engineering, pages 842-846, Warsaw, Poland, December 2-4, 1999 A Bayesian Network Model for Diagnosis of Liver Disorders Agnieszka
Unit 19: Probability Models
Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,
Bayesian networks - Time-series models - Apache Spark & Scala
Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly
Statistical Models in Data Mining
Statistical Models in Data Mining Sargur N. Srihari University at Buffalo The State University of New York Department of Computer Science and Engineering Department of Biostatistics 1 Srihari Flood of
Probability & Probability Distributions
Probability & Probability Distributions Carolyn J. Anderson EdPsych 580 Fall 2005 Probability & Probability Distributions p. 1/61 Probability & Probability Distributions Elementary Probability Theory Definitions
Statistical Machine Translation: IBM Models 1 and 2
Statistical Machine Translation: IBM Models 1 and 2 Michael Collins 1 Introduction The next few lectures of the course will be focused on machine translation, and in particular on statistical machine translation
Distributed Structured Prediction for Big Data
Distributed Structured Prediction for Big Data A. G. Schwing ETH Zurich [email protected] T. Hazan TTI Chicago M. Pollefeys ETH Zurich R. Urtasun TTI Chicago Abstract The biggest limitations of learning
STA 371G: Statistics and Modeling
STA 371G: Statistics and Modeling Decision Making Under Uncertainty: Probability, Betting Odds and Bayes Theorem Mingyuan Zhou McCombs School of Business The University of Texas at Austin http://mingyuanzhou.github.io/sta371g
Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
CAB TRAVEL TIME PREDICTI - BASED ON HISTORICAL TRIP OBSERVATION
CAB TRAVEL TIME PREDICTI - BASED ON HISTORICAL TRIP OBSERVATION N PROBLEM DEFINITION Opportunity New Booking - Time of Arrival Shortest Route (Distance/Time) Taxi-Passenger Demand Distribution Value Accurate
Topic 4. 4.3 Dempster-Shafer Theory
Topic 4 Representation and Reasoning with Uncertainty Contents 4.0 Representing Uncertainty 4.1 Probabilistic methods 4.2 Certainty Factors (CFs) 4.3 Dempster-Shafer theory 4.4 Fuzzy Logic Dempster-Shafer
ECE302 Spring 2006 HW3 Solutions February 2, 2006 1
ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in
Graphical Models, Exponential Families, and Variational Inference
Foundations and Trends R in Machine Learning Vol. 1, Nos. 1 2 (2008) 1 305 c 2008 M. J. Wainwright and M. I. Jordan DOI: 10.1561/2200000001 Graphical Models, Exponential Families, and Variational Inference
