A Simple Economic Model about the Teamwork Pedagogy

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A Simple Economic Model about the Teamwork Pedagogy"

Transcription

1 Appled Mathematcal Scences, Vol. 6, 01, no. 1, 13-0 A Smple Economc Model about the Teamwork Pedagog Gregor L. Lght Department of Management, Provdence College Provdence, Rhode Island 0918, USA Abstract Ths note apples the construct of the elastct of substtuton n economcs to an analss of the teachng effectveness n usng the team approach n classrooms. We present examples as based on the well-known constant-elastct-of-substtuton CES producton functon, whch we further specalze nto the partcular cases of zero, one, and nfnte elastctes of substtuton between an two members of a team of three students. We construct a par-wse CES producton functon of three nputs, whch can easl be extended nto n nputs. We hghlght the mportant role of the elastct of substtuton n an producton and thus shed lght ncdentall back onto the state of the econom. Mathematcs Subject Classfcaton: 97D60, 91B38, 53A07, 97D40, 97C70 Kewords: CES producton functon, level set geometr, surface curvatures, elastct of substtuton, factor substtutablt 1 Introducton In man felds of studes the use of team projects n classroom assgnments s ether encouraged or consdered as a smple routne. Even n the feld of mathematcs known for ts abstractness, educators n recent ears have advocated such a pedagog. One tpcal argument n favor of ths approach of teachng and learnng s that of developng students abltes n teamwork so that n ther later work places the wll functon cooperatvel and productvel wth ther co-workers. To be sure, the setup of commttees to engage n group decsons s a ubqutous phenomenon; clearl there has to be some underlng premse for ths, and t appears to be that collectve wsdom and work s superor to that of an ndvdual. We, as classroom nstructors however, are alwas

2 14 G. L. Lght concerned about the problem of substtutablt among group members n an assgned task;.e., Student does less work because Student 1 does more. We wll appl the dea of the well-known CES constant elastct of substtuton producton functon n economcs to a modelng of students teamwork for a smlar treatment, cf. [6]. Students wll be regarded as the producton nputs and ther common score from a project wll be treated as the output. Secton below wll frst ntroduce our model as based on the CES producton functon and then present three llustratve examples showng the sgnfcant effect of nput substtutablt on the producton output. Secton 3 wll conclude wth a summar remark. The Model Consder the followng par-wse CES producton functon = f x 1,x,x 3 of three nputs cf. [10] for blateral elastctes of substtuton among multple nputs, and [4] for the prevalent use of the CES producton functon n economcs: : = , where 1 1 A {1,} a 1 x ρ a x ρ 1 s/ρ 1, 13 A {1,3} a 1 x ρ a 3 x ρ 13 3 s/ρ 13, 3 A {,3} a x ρ 3 + a 3 x ρ 3 3 s/ρ 3, A {,j} an nteracton coeffcent between and j n the producton of, a k a contrbuton factor b x k n the producton of, and ρ j, 1] {0} s a factor related to the substtutablt between and j n the producton of, to be explaned later, and s>0 s the elastct of scale measurng the percentage ncrease n due to a one-percent ncrease n all the nputs. We now dspla the followng standard textbook results: 1 the margnal product n j of x or x j, j x = s j x j = s j x j x j a x ρ j a x ρ j a j x ρ j j a x ρ j + a j x ρ j j + a j x ρ j j, and ; 3 the par-wse rate of techncal substtuton RT S j/ n0=d j =

3 Team pedagog 15 j j x dx + x j dx j, so that RT S j/ : = dx j dx = a xj a j a a j j x j x r 1 ρ j j/ 4 x j 1 ρj 5 notaton: r j/ x j x, 6 drt S j/ dr j/ = a a j 1 ρ ρj r j j/ ; 7 3 the par-wse elastct of substtuton between, j as defned b settng A k = A jk = 0 cf. e.g., [1, 9], for the sgnfcance of the construct of elastct of substtuton n economcs, ˆσ j/ := dr j/ r j/ = drt S j/ RT S j/ 1 1 ρ j [0, {1} ; 8 4 the output elastct of nput x so that 3 x =1 x 1 x x = s +s j k a x ρ j a x ρ j + a j x ρ j j a 1 x ρ 1 1 a 1 x ρ a 1 x ρ 1 a x ρ 1 a 1 x ρ a 1 x ρ 1 a x ρ k 13 a x ρ k + a k x ρ k k, 9 a 1 x ρ 13 1 a 1 x ρ a 1 x ρ 13 3 a x ρ 3 a x ρ 3 + a 3 x ρ 3 3 = s + s 1 3 +s + s 13 a 3 x ρ a 3 x ρ 3 +s a 1 x ρ a 1 x ρ 3 + s 13 3 a x ρ 3 + a 3 x ρ 3 3 = s the elastct of scale, as expected. 10

4 16 G. L. Lght Example 1 For the above par-wse CES producton functon Equaton 1, set A {1,} = A {1,3} = A {,3} =10, 11 a 1 = 0.6, a =0.3, a 3 =0.1, 1 ρ 1 = ρ 13 = ρ 3 =0.5, so that ˆσ j =,, j, and 13 s = Then we have [ = x x +0.6 x x x +0.1 x 3 ]. 15 Suppose that Then we have =1 x 1 =9, x =4, and x 3 =1. 16 = 98.6, 17 x 1 x 1 = 0.785, 18 x x = 0.189, and 19 x 3 x 3 = 0.06, so that 0 3 x x = 1 = s, as expected. 1 One ma nterpret the example here as Student 1,, and 3 respectvel spent 9, 4, and 1 hours n a team project and the obtaned a common score of 98.6 whch would be dstrbuted n accordance wth economc theor as however. Example Consder the same par-wse CES producton functon Equaton 1 and set A {1,} = A {1,3} = A {,3} =10, a 1 = 0.75, a =0.5, a 3 =0.1, 3 ρ 13 = ρ 3 = so that ˆσ 3/1 =ˆσ 3/ =0, 4 ρ 1 = 0 so that ˆσ /1 s et to be defned below, 5 s = 1, x 1 =81, x =16, and x 3 = ɛ 0. 6

5 Team pedagog 17 Then Smlarl, 13 = lm ρ 13 81ρ ɛ ρ 13 1/ρ 13 ρ 13 = 10 lm ρ ɛρ 13 1/ρ ɛ = 10ɛ 0. 7 It then follows that := , and ρ =10ɛ lm 10 ρ xρ x ρ 1 1/ρ 1,or 9 1 ρ1 0.75x ρ x ρ 1 0 = lm cf. [11], p ρ 1 = ln ln x ln x,.e., 31 1 =10x x = = Here we ma magne that the three students got 540/1000 = 54% out of a term project, for whch Student 1,, and 3 spent respectvel 81, 16, and nearl 0 hours; et snce ˆσ 3/1 =ˆσ 3/ =0, nether Student 1 nor Student could substtute for Student 3 s nput x 3 n the producton of, whch greatl lowered ther jont score. In passng, we note that the above well-known Cobb- Douglas producton functon Equaton 3 has ˆσ /1 = 1 1 ρ 1 =1. 34 Furthermore, consder the followng constraned optmzaton for the dfferental geometr nvolved n a constraned optmzaton and the topc of surface regulartes, cf. e.g., [, 3, 5, 7]: Mn x 1 + w x, s.t. 10x x 0.5 = 1, 35 x 1,x where,w, 1 are the gven parameters wth w the cost of x and 1 a pre-set output quantt. In our present context, Student 1 and have put respectvel ther tme costs of and w to be spent n dong the project, and the together seek to mnmze ther total tme cost ncurred for the work but

6 18 G. L. Lght subject to the attanment of ther desred score 1. Then we have the followng frst-order condtons: w = 1/ x 1 / x 1 = x x1 0.5 =, and 36 x x x x w =10 x w = 10 x ;.e., the crtcal nput 37 1 = 10x x 0.5 x 0.75 x = x 1 = w, and w w 0.5 = 1 3w Assumng that = w and 1 = 950, then ther optmal nput hours are x 1 = and x = 1 3 x 1 = Equaton 36, 40 where the unequal optmal nput quanttes are attrbuted to the fact that Student 1 has a hgher output elastct of a 1 =0.75 than that of Student of a =0.5. That s, a 1% ncrease n x 1 s to result n a 0.75% ncrease n 1. Example 3 Fnall we llustrate the case of ˆσ /1 = 1 = for the 1 ρ 1 sgnfcance of a zero or nfnte elastct of substtuton, see, e.g., [8] b settng ρ 1 =1but otherwse keepng all the same gven nformaton as n the precedng Example. Then we have x x =7.5x 1 +.5x 41 = = Here t s nterestng to note that due to the perfect substtutablt between x 1 and x, to obtan the same score of 1 = 950 Student 1 alone can acheve the outcome b spendng x 1 = 950 / hours n the project, compared wth the prevous x 1 15 n combnaton wth x 4 from the Cobb-Douglas technolog n the precedng Example.

7 Team pedagog 19 3 Summar Remark In ths paper, we have modeled teamwork or group decson-makng b a parwse CES producton functon from economcs. Although our llustraton here used onl three nputs students, one could easl extend our model nto n nputs b a sum of n terms of the same form of Aj a x ρ j + a j x ρ j s/ρj j. One ma also var an of the parameters to derve addtonal nsghts nto the matter. As mentoned n the begnnng, our work here contrbutes not onl to classroom pedagog but also to beond, snce the smple fact s that nput substtutablt n output s a common unversal concern. In partcular, f we dentf Student 1,, and 3 n our above examples wth captal, labor, and natural resources, then we have shown that a dmnshng non-renewable natural resource that s not substtutable s to lower the overall producton of the econom and that a large substtutablt between captal and labor ma result n large unemploment. Returnng to educatonal methodolog, we recommend nstructors desgn team projects that have hgh level of complementart. References [1] P. Bertolett, Elastctes of substtuton and complementart: a snthess, J. Productv. Anal., 4 No. 005, [] R.M. Freund, On the prmal-dual geometr of level sets n lnear and conc optmzaton, Sam J. Optm., 13 No , [3] J.S. Km, The structure of hpersurfaces wth some curvature condtons, Proc. Amer. Math. Soc. 15 No , [4] R. Klump and H. Pressler, CES producton functons and economc growth, Scand. J. Econ., 10 No , [5] W.V. Lovtt, A tpe of sngular ponts for a transformaton of three varables, Trans. Amer. Math. Soc., , [6] M. Medoff, The nput relatonshp between co-authors n economcs: a producton functon approach, Amer. J. Econ. Soc., 66 No. 007, [7] Y. Nevergelt, Wh Lagrange multplers wth extreme magntudes gve extrema of defnte Hermtan forms on quadrc surfaces, Sam J. Matrx Anal. Appl., 31 No ,

8 0 G. L. Lght [8] K. Nshmura and A. Vendtt, Captal deprecaton, factor substtutablt and ndetermnac, J. Dfference Eq. Appl., 10 No , [9] D.B. Renolds, Entrop and dmnshng elastct of substtuton, Resources Pol., 5 No , [10] H. Thompson, Substtuton elastctes wth man nputs, Appl. Math. Lett., 10 No , [11] H.R. Varan, Mcroeconomc Analss, Norton, New York, Receved: Jul, 011

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60 BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true

More information

Questions that we may have about the variables

Questions that we may have about the variables Antono Olmos, 01 Multple Regresson Problem: we want to determne the effect of Desre for control, Famly support, Number of frends, and Score on the BDI test on Perceved Support of Latno women. Dependent

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

QUANTUM MECHANICS, BRAS AND KETS

QUANTUM MECHANICS, BRAS AND KETS PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented

More information

Multivariate EWMA Control Chart

Multivariate EWMA Control Chart Multvarate EWMA Control Chart Summary The Multvarate EWMA Control Chart procedure creates control charts for two or more numerc varables. Examnng the varables n a multvarate sense s extremely mportant

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Marginal Returns to Education For Teachers

Marginal Returns to Education For Teachers The Onlne Journal of New Horzons n Educaton Volume 4, Issue 3 MargnalReturnstoEducatonForTeachers RamleeIsmal,MarnahAwang ABSTRACT FacultyofManagementand Economcs UnverstPenddkanSultan Idrs ramlee@fpe.ups.edu.my

More information

Ring structure of splines on triangulations

Ring structure of splines on triangulations www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon

More information

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001. Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

Study on CET4 Marks in China s Graded English Teaching

Study on CET4 Marks in China s Graded English Teaching Study on CET4 Marks n Chna s Graded Englsh Teachng CHE We College of Foregn Studes, Shandong Insttute of Busness and Technology, P.R.Chna, 264005 Abstract: Ths paper deploys Logt model, and decomposes

More information

The Mathematical Derivation of Least Squares

The Mathematical Derivation of Least Squares Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

More information

New bounds in Balog-Szemerédi-Gowers theorem

New bounds in Balog-Szemerédi-Gowers theorem New bounds n Balog-Szemeréd-Gowers theorem By Tomasz Schoen Abstract We prove, n partcular, that every fnte subset A of an abelan group wth the addtve energy κ A 3 contans a set A such that A κ A and A

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

9.1 The Cumulative Sum Control Chart

9.1 The Cumulative Sum Control Chart Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s

More information

Communication Networks II Contents

Communication Networks II Contents 8 / 1 -- Communcaton Networs II (Görg) -- www.comnets.un-bremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP

More information

Chapter 7. Random-Variate Generation 7.1. Prof. Dr. Mesut Güneş Ch. 7 Random-Variate Generation

Chapter 7. Random-Variate Generation 7.1. Prof. Dr. Mesut Güneş Ch. 7 Random-Variate Generation Chapter 7 Random-Varate Generaton 7. Contents Inverse-transform Technque Acceptance-Rejecton Technque Specal Propertes 7. Purpose & Overvew Develop understandng of generatng samples from a specfed dstrbuton

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008 Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

A Computer Technique for Solving LP Problems with Bounded Variables

A Computer Technique for Solving LP Problems with Bounded Variables Dhaka Unv. J. Sc. 60(2): 163-168, 2012 (July) A Computer Technque for Solvng LP Problems wth Bounded Varables S. M. Atqur Rahman Chowdhury * and Sanwar Uddn Ahmad Department of Mathematcs; Unversty of

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

Online Learning from Experts: Minimax Regret

Online Learning from Experts: Minimax Regret E0 370 tatstcal Learnng Theory Lecture 2 Nov 24, 20) Onlne Learnng from Experts: Mn Regret Lecturer: hvan garwal crbe: Nkhl Vdhan Introducton In the last three lectures we have been dscussng the onlne

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

1 Approximation Algorithms

1 Approximation Algorithms CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons

More information

Solutions to First Midterm

Solutions to First Midterm rofessor Chrstano Economcs 3, Wnter 2004 Solutons to Frst Mdterm. Multple Choce. 2. (a) v. (b). (c) v. (d) v. (e). (f). (g) v. (a) The goods market s n equlbrum when total demand equals total producton,.e.

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

Activity Scheduling for Cost-Time Investment Optimization in Project Management

Activity Scheduling for Cost-Time Investment Optimization in Project Management PROJECT MANAGEMENT 4 th Internatonal Conference on Industral Engneerng and Industral Management XIV Congreso de Ingenería de Organzacón Donosta- San Sebastán, September 8 th -10 th 010 Actvty Schedulng

More information

Chapter 7: Answers to Questions and Problems

Chapter 7: Answers to Questions and Problems 19. Based on the nformaton contaned n Table 7-3 of the text, the food and apparel ndustres are most compettve and therefore probably represent the best match for the expertse of these managers. Chapter

More information

Section B9: Zener Diodes

Section B9: Zener Diodes Secton B9: Zener Dodes When we frst talked about practcal dodes, t was mentoned that a parameter assocated wth the dode n the reverse bas regon was the breakdown voltage, BR, also known as the peak-nverse

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

Capital asset pricing model, arbitrage pricing theory and portfolio management

Capital asset pricing model, arbitrage pricing theory and portfolio management Captal asset prcng model, arbtrage prcng theory and portfolo management Vnod Kothar The captal asset prcng model (CAPM) s great n terms of ts understandng of rsk decomposton of rsk nto securty-specfc rsk

More information

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson

More information

Graph Theory and Cayley s Formula

Graph Theory and Cayley s Formula Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method. Introduction. 0/1 Knapsack Problem The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

More information

2.4 Bivariate distributions

2.4 Bivariate distributions page 28 2.4 Bvarate dstrbutons 2.4.1 Defntons Let X and Y be dscrete r.v.s defned on the same probablty space (S, F, P). Instead of treatng them separately, t s often necessary to thnk of them actng together

More information

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS

IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

greatest common divisor

greatest common divisor 4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no

More information

5. Simultaneous eigenstates: Consider two operators that commute: Â η = a η (13.29)

5. Simultaneous eigenstates: Consider two operators that commute:  η = a η (13.29) 5. Smultaneous egenstates: Consder two operators that commute: [ Â, ˆB ] = 0 (13.28) Let  satsfy the followng egenvalue equaton: Multplyng both sdes by ˆB  η = a η (13.29) ˆB [  η ] = ˆB [a η ] = a

More information

DECOMPOSING ALLOCATIVE EFFICIENCY FOR MULTI-PRODUCT PRODUCTION SYSTEMS

DECOMPOSING ALLOCATIVE EFFICIENCY FOR MULTI-PRODUCT PRODUCTION SYSTEMS DECOMPOSING ALLOCATIVE EFFICIENCY FOR MULTI-PRODUCT PRODUCTION SYSTEMS EKONOMIKA A MANAGEMENT Tao Zhang Introducton Data envelopment analyss (DEA, the non-parametrc approach to measurng effcency, was frst

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.

Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem. Producer Theory Producton ASSUMPTION 2.1 Propertes of the Producton Set The producton set Y satsfes the followng propertes 1. Y s non-empty If Y s empty, we have nothng to talk about 2. Y s closed A set

More information

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6)

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6) Passve Flters eferences: Barbow (pp 6575), Hayes & Horowtz (pp 360), zzon (Chap. 6) Frequencyselectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called

More information

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

Traditional versus Online Courses, Efforts, and Learning Performance

Traditional versus Online Courses, Efforts, and Learning Performance Tradtonal versus Onlne Courses, Efforts, and Learnng Performance Kuang-Cheng Tseng, Department of Internatonal Trade, Chung-Yuan Chrstan Unversty, Tawan Shan-Yng Chu, Department of Internatonal Trade,

More information

Chapter 4 Financial Markets

Chapter 4 Financial Markets Chapter 4 Fnancal Markets ECON2123 (Sprng 2012) 14 & 15.3.2012 (Tutoral 5) The demand for money Assumptons: There are only two assets n the fnancal market: money and bonds Prce s fxed and s gven, that

More information

1E6 Electrical Engineering AC Circuit Analysis and Power Lecture 12: Parallel Resonant Circuits

1E6 Electrical Engineering AC Circuit Analysis and Power Lecture 12: Parallel Resonant Circuits E6 Electrcal Engneerng A rcut Analyss and Power ecture : Parallel esonant rcuts. Introducton There are equvalent crcuts to the seres combnatons examned whch exst n parallel confguratons. The ssues surroundng

More information

Descriptive Models. Cluster Analysis. Example. General Applications of Clustering. Examples of Clustering Applications

Descriptive Models. Cluster Analysis. Example. General Applications of Clustering. Examples of Clustering Applications CMSC828G Prncples of Data Mnng Lecture #9 Today s Readng: HMS, chapter 9 Today s Lecture: Descrptve Modelng Clusterng Algorthms Descrptve Models model presents the man features of the data, a global summary

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

The covariance is the two variable analog to the variance. The formula for the covariance between two variables is

The covariance is the two variable analog to the variance. The formula for the covariance between two variables is Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.

More information

The Probit Model. Alexander Spermann. SoSe 2009

The Probit Model. Alexander Spermann. SoSe 2009 The Probt Model Aleander Spermann Unversty of Freburg SoSe 009 Course outlne. Notaton and statstcal foundatons. Introducton to the Probt model 3. Applcaton 4. Coeffcents and margnal effects 5. Goodness-of-ft

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

Results from the Dixit/Stiglitz monopolistic competition model

Results from the Dixit/Stiglitz monopolistic competition model Results from the Dxt/Stgltz monopolstc competton model Rchard Foltyn February 4, 2012 Contents 1 Introducton 1 2 Constant elastcty sub-utlty functon 1 2.1 Preferences and demand..............................

More information

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network 700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School

More information

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Regresson a means of predctng a dependent varable based one or more ndependent varables. -Ths s done by fttng a lne or surface to the data ponts that mnmzes the total error. -

More information

LETTER IMAGE RECOGNITION

LETTER IMAGE RECOGNITION LETTER IMAGE RECOGNITION 1. Introducton. 1. Introducton. Objectve: desgn classfers for letter mage recognton. consder accuracy and tme n takng the decson. 20,000 samples: Startng set: mages based on 20

More information

Descriptive Statistics (60 points)

Descriptive Statistics (60 points) Economcs 30330: Statstcs for Economcs Problem Set 2 Unversty of otre Dame Instructor: Julo Garín Sprng 2012 Descrptve Statstcs (60 ponts) 1. Followng a recent government shutdown, Mnnesota Governor Mark

More information

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 610-519-4390,

More information

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are: polar Juncton Transstor rcuts Voltage and Power Amplfer rcuts ommon mtter Amplfer The crcut shown on Fgure 1 s called the common emtter amplfer crcut. The mportant subsystems of ths crcut are: 1. The basng

More information

H 1 : at least one is not zero

H 1 : at least one is not zero Chapter 6 More Multple Regresson Model The F-test Jont Hypothess Tests Consder the lnear regresson equaton: () y = β + βx + βx + β4x4 + e for =,,..., N The t-statstc gve a test of sgnfcance of an ndvdual

More information

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background: SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and

More information

"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *

Research Note APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES * Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789-794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC

More information

An Interest-Oriented Network Evolution Mechanism for Online Communities

An Interest-Oriented Network Evolution Mechanism for Online Communities An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

Ibon Galarraga, Luis M. Abadie and Alberto Ansuategi. 5 th Atlantic Workshop on Energy and Environmental Economics A Toxa, 2012

Ibon Galarraga, Luis M. Abadie and Alberto Ansuategi. 5 th Atlantic Workshop on Energy and Environmental Economics A Toxa, 2012 ECONOMIC EFFICIENCY, ENVIRONMENTAL EFFECTIVENESS AND POLITICAL FEASIBILITY OF ENERGY EFFICIENCY REBATES: THE CASE OF THE SPANISH ENERGY EFFICIENCY RENOVE PLAN. Ibon Galarraga, Lus M. Abade and Alberto

More information

Financial Mathemetics

Financial Mathemetics Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,

More information

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative. Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When

More information

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN EE201 Crcut Theory I 2015 Sprng Dr. Yılmaz KALKAN 1. Basc Concepts (Chapter 1 of Nlsson - 3 Hrs.) Introducton, Current and Voltage, Power and Energy 2. Basc Laws (Chapter 2&3 of Nlsson - 6 Hrs.) Voltage

More information

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators-> normalzaton, orthogonalty completeness egenvalues and

More information

Compilers. 3 rd year Spring term. Mick O Donnell: Alfonso Ortega: Topic 5: Semantic analysis

Compilers. 3 rd year Spring term. Mick O Donnell: Alfonso Ortega: Topic 5: Semantic analysis Complers 3 rd year Sprng term Mck O Donnell: mchael.odonnell@uam.es Alfonso Ortega: alfonso.ortega@uam.es Topc 5: Semantc analyss 5.0 Introducton 1 Semantc analyss What s the Semantc Analyser? Set of routnes

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information

Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process

Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process Dsadvantages of cyclc TDDB47 Real Tme Systems Manual scheduler constructon Cannot deal wth any runtme changes What happens f we add a task to the set? Real-Tme Systems Laboratory Department of Computer

More information

Multicomponent Distillation

Multicomponent Distillation Multcomponent Dstllaton need more than one dstllaton tower, for n components, n-1 fractonators are requred Specfcaton Lmtatons The followng are establshed at the begnnng 1. Temperature, pressure, composton,

More information

Joint Scheduling of Processing and Shuffle Phases in MapReduce Systems

Joint Scheduling of Processing and Shuffle Phases in MapReduce Systems Jont Schedulng of Processng and Shuffle Phases n MapReduce Systems Fangfe Chen, Mural Kodalam, T. V. Lakshman Department of Computer Scence and Engneerng, The Penn State Unversty Bell Laboratores, Alcatel-Lucent

More information

MAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date

MAPP. MERIS level 3 cloud and water vapour products. Issue: 1. Revision: 0. Date: 9.12.1998. Function Name Organisation Signature Date Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

Economic Models for Cloud Service Markets

Economic Models for Cloud Service Markets Economc Models for Cloud Servce Markets Ranjan Pal and Pan Hu 2 Unversty of Southern Calforna, USA, rpal@usc.edu 2 Deutsch Telekom Laboratores, Berln, Germany, pan.hu@telekom.de Abstract. Cloud computng

More information

Lesson 2 Chapter Two Three Phase Uncontrolled Rectifier

Lesson 2 Chapter Two Three Phase Uncontrolled Rectifier Lesson 2 Chapter Two Three Phase Uncontrolled Rectfer. Operatng prncple of three phase half wave uncontrolled rectfer The half wave uncontrolled converter s the smplest of all three phase rectfer topologes.

More information

1. Introduction. 2. The modified Gini index

1. Introduction. 2. The modified Gini index . ntroducton The n coeffcent s a popular and wdel-used ndex for measurng nequalt (Lerman and Ytzha, 984. Evdence for the OECD countres ndcates that there has been a sgnfcant and wdespread ncrease n ncome

More information

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure

More information

Rotation Kinematics, Moment of Inertia, and Torque

Rotation Kinematics, Moment of Inertia, and Torque Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

More information

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the

More information

The eigenvalue derivatives of linear damped systems

The eigenvalue derivatives of linear damped systems Control and Cybernetcs vol. 32 (2003) No. 4 The egenvalue dervatves of lnear damped systems by Yeong-Jeu Sun Department of Electrcal Engneerng I-Shou Unversty Kaohsung, Tawan 840, R.O.C e-mal: yjsun@su.edu.tw

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

INTRODUCTION. governed by a differential equation Need systematic approaches to generate FE equations

INTRODUCTION. governed by a differential equation Need systematic approaches to generate FE equations WEIGHTED RESIDUA METHOD INTRODUCTION Drect stffness method s lmted for smple D problems PMPE s lmted to potental problems FEM can be appled to many engneerng problems that are governed by a dfferental

More information

Identifying Workloads in Mixed Applications

Identifying Workloads in Mixed Applications , pp.395-400 http://dx.do.org/0.4257/astl.203.29.8 Identfyng Workloads n Mxed Applcatons Jeong Seok Oh, Hyo Jung Bang, Yong Do Cho, Insttute of Gas Safety R&D, Korea Gas Safety Corporaton, Shghung-Sh,

More information

CHULMLEIGH ACADEMY TRUST INDUCTION AND DEVELOPMENT OF DIRECTORS POLICY

CHULMLEIGH ACADEMY TRUST INDUCTION AND DEVELOPMENT OF DIRECTORS POLICY CHULMLEIGH ACADEMY TRUST INDUCTION AND DEVELOPMENT OF DIRECTORS POLICY Adopted by BoD:30 May 2012 Polcy Statement The Drectors of Chulmlegh Academy Trust beleve all Drectors brng an equally valued range

More information

Examples of Multiple Linear Regression Models

Examples of Multiple Linear Regression Models ECON *: Examples of Multple Regresson Models Examples of Multple Lnear Regresson Models Data: Stata tutoral data set n text fle autoraw or autotxt Sample data: A cross-sectonal sample of 7 cars sold n

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

A frequency decomposition time domain model of broadband frequency-dependent absorption: Model II

A frequency decomposition time domain model of broadband frequency-dependent absorption: Model II A frequenc decomposton tme doman model of broadband frequenc-dependent absorpton: Model II W. Chen Smula Research Laborator, P. O. Box. 134, 135 Lsaker, Norwa (1 Aprl ) (Proect collaborators: A. Bounam,

More information

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information