Design Methodology for Small Brush and Brushless DC Motors

Size: px
Start display at page:

Download "Design Methodology for Small Brush and Brushless DC Motors"

Transcription

1 Design Methodology for Small Brush and Brushless DC Motors Jérôme Cros, Mehdi Taghizadeh Kakhki, Geraldo C.R. Sincero, Carlos A. Martins, Philippe Viarouge INTRODUCTION Manufacturers of components and sub-systems for large scale applications are constantly improving the quality of their products in order to ensure customer satisfaction. They are facing severe competition constraints and this is particularly true for automotive industry. The offer of new services and functionalities goes well together with the increasing use of electronics and electrical actuators which provide auxiliary functions in a vehicle, improving the functional performances. Given this context, and the constant need for improving the electrical machines, the present chapter focuses on the design methodology for brushed or brushless DC machines as the two mostly used motor types in small accessories for vehicles. This methodology is also applicable to many other machine types. We discuss various winding configurations for the machine armature and the advantages of new motor designs using a concentrated winding. We present a method for the selection of an efficient motor and an analytical dimensioning process using a non-linear constrained optimization approach. Finally, we discuss the application of finite element and time-simulation methods for the validation of the optimal solution. SMALL ELECTRIC MOTORS IN MODERN VEHICLES An electrical actuator is a device designed for moving or controlling another mechanism or system. Table 1 shows a list of automotive accessories using small power actuators, (Cho and Johnston, 1999). Small rotating electric motors are an important part of the electrical system and are used in several feature accessories in a modern car. Over 100 motors are used in a well equipped luxury vehicle (Thiemer, 2001). These machines have very different requirements in terms of power, speed, torque, volume, form and size. The energy conversion from electrical to mechanical in a rotating electrical motor is the result of an interaction between two magnetic fields, one created by permanent magnets (PM) or electromagnets and the other generated by current-carrying conductors (armature AcademyPublish.org - Vehicle Engineering 207

2 winding). The number of magnetic poles in the magnetic field is referred to as machine poles. The current-carrying conductors are mounted in the armature core openings which are referred to as armature slots. Table 1. List of automotive accessories using small power actuators (Cho and Johnston, 1999). starter motor, alternator, radiator motor-fan, air conditioning Power train compressor drive, idle speed control, engine throttle control, transmission shifter, electrically variable transmission, engine coolant pump motor, electrical valve, and ECR actuators. electric power steering system, electro-hydraulic power steering, ABS Chassis systems, brake-by-wire actuators, active suspension actuator, and 2-4 wheels drive actuator. windshield wipers, window lifts, seat adjuster, seat vibrators, sunroof Body actuators, sliding door closers, door lock mechanisms, headlamp adjuster, mirror adjusters, steering column adjuster, HVAC blower, cruise control, headlight wiper motors, power antenna, headlight doors, trunk closer, and auto-leveling system. The two mostly used motor types in small accessories are PM brushed dc motor and PM brushless dc motor. In a PM brushed dc machine, the permanent magnets are mounted on the stationary part of the machine (stator) and the armature is the rotating part of the machine (rotor). DC voltage is applied to the commutator copper segments through carbon brushes pressing against these segments (Hamdi, 1994). The commutator segments are mounted on a cylinder on the rotor shaft and are insulated from each other and also from the rotor shaft. The commutator segments are wired to the ends of the armature coils. In fact, the set formed by the commutator and the brush assembly acts as a mechanical rotary switch. This allows reversing the coil current in the rotating armature maintaining the torque production. Fig. 1 shows a brushed dc machine used as a radiator cooling motor fan. In a PM dc brushless machine, the permanent magnets are mounted on the rotor and the armature is stationary. The armature coils are fed with a power electronic converter and the coil current waveform must be synchronized with the rotor position. These motors are often fed with square-wave currents or voltages when a simplified control system is required. However, similar motors fed with sinusoidal currents and voltages are also becoming increasingly popular since the cost of electronics (including microcontrollers) is rapidly decreasing. Employing a sinusoidal current waveform is more advantageous since it generates less noise and vibration. However, it requires several current sensors and increases the complexity of the control system. The power converter acts, therefore, as an electronic commutator and is generally integrated inside the motor. It avoids the problems associated with a mechanical brushcommutator assembly including the mechanical wear and EMI compatibility (Torrey and Kokernak, 2002) and results in a more efficient and reliable machine. The cost of 208 AcademyPublish.org - Vehicle Engineering

3 production for PM brushless machine is higher compared to the brushed dc machine but it allows for variable speed operation without an additional electronic converter. It is usually used in more expensive luxury cars. Fig. 2 shows a 5-phase brushless dc machine with an external rotor for a radiator cooling motor fan. Fig.1. Brushed DC motor for a radiator cooling motor fan Brush assembly Armature (rotor) Permanent magnet poles (stator) Commutator Fig.2. Brushless DC motor for a radiator cooling motor fan Armature (stator) Permanent magnet poles (rotor) Power electronic converter AcademyPublish.org - Vehicle Engineering 209

4 Table 2 and 3 show examples of PM brushed dc motors and PM brushless dc motors for different applications in vehicles. Starter Motor Poles Slots Brushes Speed 2565 rpm Power 150 W 500 W Input Voltage 1000 rpm 2000 rpm 500 W 1.5 kw 2000 rpm 1820 rpm 1800 rpm 120 W 120 W 1.2 kw 12 V 12 V 12 V 12 V 12 V 12 V Table 2. Structure of PM dc motors applied on some of vehicle accessories Electrohydraulihydraulic blower Electro- Heater Radiator Wiper Application Fan ABS Power Fan Table 3. Structure of PM brushless dc motors applied on some vehicle accessories Application Electrohydraulic Water Radiator Radiator Heater Fan Fan blower Power Pump Fan Steering Poles Slots Number of Phases Speed 2500 rpm 2000 rpm rpm rpm rpm Power 250 W 350 W 120 W 1500 W 500 W Dc Bus Voltage 12 V 12 V 12 V 42 V 42 V Trends in Small Motor Design for Automotive Applications In the current economic context and due to severe competition, all kinds of electrical machines should be constantly improved to reduce their costs and improve their performance. This evolution has become possible thanks to more efficient and precise calculation methods which allow the designer to further elaborate the optimization of the structures. This is also due to technological advancements in materials, electronics, manufacturing techniques and new technical specifications that lead to new developments and new designs. For instance, the 42V Powernet voltage modification has important consequences on existing electrical equipment, mainly for brushed dc motors present in many systems and 210 AcademyPublish.org - Vehicle Engineering

5 accessories. The higher input voltage may lead to current commutation problems, electromagnetic interferences and, even, ring fire on brushed dc motors, among other problems (Thiemer, 2001; Torrey and Kokernak, 2002; Hamdi, 1994). In this context, many existing motors need to be improved. It is also interesting to evaluate new design solutions that might be more appropriate for the new electrical system specifications. Integration of the equipment in a new car design adds new constraints and should meet new requirements. Designers will have to pay attention to a number of aspects such as frame size, cost, noise, lifetime, ambient conditions, and quantities which vary from one vehicle model to another. New designs of electrical motors can benefit from new manufacturing techniques, for example, new winding methods which reduce the copper volume and copper losses in significant proportions. The use of new materials may have important consequences on the machine structure. For instance, the design of electromagnetic devices with soft magnet composite (SMC) materials can offer several advantages over conventional laminated materials. It can facilitate the implementation of new structures with fewer parts, reduced size and weight (Hultman and Jack, 2003). DESIGN METHODOLOGY The design methodology allows the designer to find a compromise between material properties, device dimensions, the cost of production and assembling processes, and application constraints. It begins with the analysis of the application specifications and a topological research to find a machine structure well-adapted for the given application. The topological research is, in fact, the process of the pre-selection of machine structures which have the best potential to meet the requirements of a given application. It allows the designer to limit the number of solutions before proceeding to a dimensional and geometrical optimization. Fig. 3 shows a general flowchart for this type of methodology. Topological Research This approach relies on the designers knowledge and experience (expert rules) and does not need any particular Computer Aided Design (CAD) tools other than analytical models. This approach enables the designer to find geometries of electrical machines which take advantage of particular properties and performance of magnetic materials or windings. This helps also in reducing the size of the optimization problem. For example, Soft Magnetic Composite (SMC) materials may be an interesting choice for the type of magnetic material, however, they may impose some specific constraints for the motor geometry in regard to the pressing process. Nevertheless, compared to laminated material, SMC materials have isotropic properties which allows the design of original structures of magnetic circuits with different mechanical assemblies. This may improve AcademyPublish.org - Vehicle Engineering 211

6 the production process. This type of decision can not be easily formulated in an optimization problem and all possible options should be studied individually. The selection of a winding configuration, the choice of the number of poles and slots in a machine, or brush and commutator segment numbers in the case of a brushed dc machine, are also other examples of parameters to determine in a topological research before proceeding to a dimensional and geometrical optimization. Fig.3. Design optimization methodology Analysis of application specifications Topological Research Selection of the structure Axial or radial air-gap, number of poles, number of slots, winding configuration, etc. Global optimization of a given structure Dimensioning Multi-physical modeling Optimization Prototypes and Tests Classical Machine Dimensioning Method In this classical approach, the main dimensions of the machine are derived directly from the application specifications using simplified analytical formulas and expert factors determined by experimental data from many years of design experience (Hamdi, 1994). It may also employ Computer-Aided-Design (CAD) tools like Finite Element (FE) magnetic field calculations to complete the analysis and to validate the structure. Fig. 4 shows the diagram of a complete CAD environment for electrical machine design. It should bring together a multitude of coupled physical models to reproduce all the physical phenomena typically appearing in an electrical machine. It is also possible to perform several iterations with this CAD procedure. However, this is generally done by the designer when comparing and analyzing different solutions without using a specific 212 AcademyPublish.org - Vehicle Engineering

7 optimization method. In fact, this classical methodology is often confined to the comparison of all the solutions resulting from a topological design approach. Fig.4. Computer-Aided- CAD Environment Design (CAD) with Environment coupling with ofcoupling physical of physical models models. Thermal Modeling Heating transfer Dilation, dissipation Mechanical Modeling Assembly, parts movement Joule Losses Iron Losses Strength, Vibration B(H) curve Electrical Circuit Modeling Current & voltage waveforms Flux densities Magnetic Modeling Magnetic flux Global Optimization The aim of global optimization is to find the optimal dimensions for a suggested structure taking into account all kind of application constraints and material properties. The term Global refers to the fact that this approach takes into account all different physical phenomena and their interactions. A Global optimization approach needs also physical models, but unlike the classical approach, it uses the dimensional parameters as design variables and the application specifications are considered as constraints. The main challenge is to define an optimization problem with a given objective, variables, and linear and non-linear constraints (geometrical, electrical, thermal and mechanical). The choice of an optimization tool and optimization method (such as gradient-based methods, evolutionary algorithms, etc.) does not depend on the optimization problem. Any method could be used as far as convergence towards a solution is possible and all constraints are validated using modeling methods. Both analytical and finite element models could be used to evaluate the performance of the electrical machine. Optimization with Analytical Models Analytical models are widely used in a global optimization process since they allow us to take into account many physical phenomena and their mutual interactions. They are simple to implement and fast in terms of simulation time. However, they need simplifying assumptions which affect their accuracy and limit their utility in applications with complex geometry and material non-linearities. Optimization with Analytical Models Corrected with Finite Element Models Finite Element (FE) models are used to analyze the performance of the electromagnetic structures before their final realization. They are more precise than analytical models and AcademyPublish.org - Vehicle Engineering 213

8 are generally used as a reference for the validation of analytical models. Finite element models are used for field calculation, thermal and mechanical modeling, etc. Optimization schemes with analytical models corrected by finite element models are becoming increasingly popular since they benefit from advantages associated with both analytical models and field calculation tools. In this approach, for each intermediate optimal design solution, the electrical parameters generated by the analytical model are compared to those obtained by a 2D or 3D finite element computation (Cros et al., 2008). If there is a significant difference between these two sets of parameters, correction factors are applied to the analytical models to improve their accuracy. Figure 5 shows the flowchart for a design methodology using this approach. Optimization with Finite Element Models (Direct Method) Two dimensional (2D) and three dimensional (3D) finite element based methods may lead to more efficient tools for field calculation, allowing for a more precise evaluation of the machine characteristics. Currently, however, an iterative optimization process using finite element models may result in unpractical computation times in the case of electrical machine design. With the new technological advancements in data processing and computation speed increase, this approach will be progressively more interesting and will become possibly predominant in the future. Fig.5. Flowchart of the design methodology Load and power specifications Torque-speed characteristic and energy requirements Selection of motor main parameters Slot and pole numbers Brush and commutator segment numbers Selection of a winding configuration Position of phase coils in armature slots Iterative geometric design calculation 2D FE magnetic computations Analytic electrical equivalent model Correction factors for electrical model Performance calculation and validation Commutator model for time simulation 214 AcademyPublish.org - Vehicle Engineering

9 ARMATURE WINDING CONFIGURATION In conventional DC motors, three main types of rotor armature windings may be identified: lap winding, wave winding, and frog-legs winding (Hamdi, 1994). These windings are made with simple coil elements which are always interleaved. The ratio between the axial length of the end-windings and the axial length of the armature magnetic circuit is then relatively high. All these winding types differ primarily on the method used to connect the terminals of the simple coils to the commutator. For a lap winding, the number of parallel paths is equal to the number of poles. A wave winding has only two paths in parallel, regardless of the number of poles. The frog-leg winding method combines lap winding and a wave winding placed on the same armature, in the same slots, and connected to the same commutator bars. Figure 6 presents a conventional lap winding armature of a permanent magnet brush DC motor used in an automotive application. One can notice that the yoke has a relatively high number of slots and is made of laminations. The significant copper volume of the end-windings is typical of a lap winding with a small axial motor length. To avoid the interleaving of the coils, it is possible to directly wind the armature simple coils around each tooth of the rotor magnetic circuit (Cros and Viarouge, 2002). This kind of winding is called a concentrated winding but may be also called a non-superposed winding. As shown in Fig. 6, this technique considerably reduces the copper volume of the endwinding, the total copper losses and the total axial length of the motor (Cros and Viarouge, 2003). In small power applications using permanent magnet motors with reduced axial length, concentrated windings are progressively replacing other types of armature windings. Fig.6. Comparison of armature end-windings a) lap winding b) concentrated winding Armatures with concentrated windings have always a small number of slots with wide openings and large tooth sections. They can be realized with a laminated material but they are also well adapted to the use of soft magnetic composite (SMC) materials due to the reduced mechanical constraints during the molding process. With such materials, it is possible to insert the end-windings in the active part of the rotor magnetic circuit and expand the tooth tips to perform an axial concentration of the air-gap magnetic flux into AcademyPublish.org - Vehicle Engineering 215

10 the teeth. Such modification takes advantages of the isotropic properties of magnetic composite materials and partially compensates its low permeability. This axial insertion of the end-windings reduces the volume of copper and the total axial length of the motor. Concentrated Armature Windings of Brushed DC Motors The concentrated winding technique is too often associated and restricted to windings with a short pitch, i.e. windings with lower performances than those of classical winding structures. The concentrated windings with a short pitch are then limited to sub-fractional power applications with low voltage supply, where the performance in terms of torque to current ratio is not critical. In the case of the brushed DC motor, the simplest motor widely used for mirror adjustment and door latch is using a concentrated winding armature because its production cost is very low. This motor has 2 poles, 3 armature slots, 2 brushes, 3 commutator bars and a winding with a short pitch of 120 electrical degrees. Fig. 7(left) shows the diagram of a developed surface of this drum armature. This developed diagram is made by unrolling the periphery of the armature and commutator into a plane. This motor, which is well adapted for low voltage and low power applications, presents several drawbacks: the current commutation is not efficient, because the number of segments on the commutator and the number of coils per parallel path are very small (Fig.7, right). The commutation voltage between two consecutive segments is relatively high r in important Electro-Magnetic Interferences (EMI). because the internal voltages in the parallel paths of the winding are unbalanced, the path currents are different and there is a circulating current in the armature which is generated by the third harmonic of the no-load emf in each coil. This current decreases the motor efficiency and increases the noise and the torque ripple. the winding coefficient associated to a short pitch of 120 electrical degrees is small and equal to. The performance in terms of torque to weight ratio and torque ripple is low. Fig.7. Diagram of an armature with 3 slots, 2 poles and a single layer concentrated winding with a short pitch of 120 electrical degrees (3 coils); Diagram of the parallel coil paths (right) N S V V 216 AcademyPublish.org - Vehicle Engineering

11 Fig. 8 (left) shows an evolution of the machine of Fig. 7 by using a multi-layer concentrated winding. This new winding configuration increases the number of commutator bars and of armature coils. In Fig. 8 (right), each coil has been identified by 2 numbers. The coils having the same first number (e.g., coils 1.1 and 1.2) are wound around the same tooth and have the same no-load voltage. These coils are connected to different bars of the commutator to get coil paths perfectly balanced. The current commutation in the coils wound on a same tooth is achieved, simultaneously, by different brushes. Consequently, the multi-layer winding improves the commutation when compared to a single layer winding because the number of turns per coil and the coil inductance are reduced for the same operating point (same values of DC supply voltage, DC current and rated speed). Employing an armature with a multi-layer concentrated winding is an interesting solution for applications which need more power and higher voltages. Fig.8. DC motor with 3 slots, 2 poles and a multi-layer concentrated winding using 6 coils (left); Diagram of the parallel coil paths (right). 3.1, , , N N S V V Comparison: Lap Winding versus Concentrated Winding The drive of an automotive electrical motor fan, which is a typical application of the permanent magnet brushed DC motor, is chosen to compare a conventional lap winding armature with a multilayer concentrated winding one. The conventional motor has 20 armature slots with 20 simple coils, 4 stator poles and 4 brushes. This type of motor has been adopted by a lot of manufacturers in the world. The winding of the rotor is overlapped with a short pitch of 1 to 5. Fig. 9 shows the developed diagram of this structure with coil connections on the 20 commutator segments. The coils having the same first number (e.g., coils 1.1 and 1.2) have the same no-load emf and are in phase. Fig. 10 shows the parallel coil paths for the same machine. Manufacturers sometimes make simplifications to minimize the cost. For example, the number of brushes can be reduced while adding equalizer connections on the commutator as shown in Fig. 11. AcademyPublish.org - Vehicle Engineering 217

12 Fig.9. Diagram of a lap winding machine having 20 rotor slots, 4 stator poles and a lap winding and a short pitch from 1 to N S N S V Fig.10. Diagram of parallel coil path connections for the machine presented in Fig V It is possible to design an equivalent motor using a multilayer concentrated winding armature by using the same permanent magnet stator, the same commutator and the same number of brushes (2 or 4 brushes). In fact, one avoids the interleaving of the endwindings by regrouping simple coils which have the same emf phase on the same tooth of the armature. This leads to a new armature with only 5 big teeth and 4 simple coils superposed on the same tooth (Fig. 12). The simple coils can be concentrated around the tooth to minimize turn length and the copper volume in the end-winding. The connections of the terminals of the simple coils to the commutator segments and the parallel coil paths are always identical in both machines (i.e. machines in Fig. 9 and Fig. 12). The width of 218 AcademyPublish.org - Vehicle Engineering

13 the tooth tip influences the electromotive force and can be modified to obtain the same pattern of the no-load magnetic field in the air-gap. Fig.11. Diagram of a machine with 20 rotor slots, 4 stator poles, 20 commutator segments, 2 brushes with a lap winding and a short pitch from 1 to N S N S N S N S V Fig.12. Diagram of a multilayer concentrated winding machine with 5 rotor slots, 4 stator poles, 20 commutator segments 5.1, , , , , , , , , , N S N S V It is also possible to make such a concentrated winding armature with only 2 brushes by using equalized connections on the commutator as shown in the conventional armature of Fig. 11. In this case, the number of coils can be also reduced to facilitate the manufacturing process (Fig.13). Fig. 14 (right) shows a new concentrated winding armature made of a soft magnetic composite (SMC) material that can replace a 20 slots lap winding armature (Fig 14, left) made of a stack of laminations in a 180 W/12V motor fan application. The stator, the brushes and the commutator are the same for both motors. These machines have similar performance (torque and efficiency) and Table 4 summarizes a comparative analysis on the material weights. The use of a concentrated winding provides an important weight AcademyPublish.org - Vehicle Engineering 219

14 reduction of 58 % when compared to the lap winding armature. The armature winding resistance and the overall armature weight are nearly equal. The magnetic material weight of the soft magnetic composite armature is increased because the tooth tips are axially expanded to concentrate the air-gap magnetic flux into the teeth. Fig.13. Diagram of a machine with 5 rotor slots, 4 stator poles, 20 commutator segments and 2 brushes with a rotor winding made of concentrated windings wound around the teeth 5.1, , , , , N S N S V The superior performance of the multi-layer concentrated winding (for current commutation) has also been confirmed in another study in the case of a 36V supply (Cros and Viarouge, 2003). The long duration experimental tests at rated operation have shown that there is no degradation of the commutator and brushes. Fig 14: 180 W Motor fan with 4 stator poles: lap winding, 20 rotor slots (left); concentrated winding, 5 rotor slots (right) 220 AcademyPublish.org - Vehicle Engineering

15 Table 4. Comparative characteristics of 180W DC radiator cooling motor (Cros and Viarouge, 2003) Armature winding structure Lap winding Concentrated winding Number of rotor slots Number of stator poles Number of brushes Commutator segments Brushes Magnetic circuit material Weight Laminations 422 g SMC 480 g Copper Weight 130 g 55 g Total Weight without Shaft and commutator 552 g 535 g Synthesis of Efficient Brushed Dc Motor Structures with a Concentrated Winding The main requirement for an efficient winding armature is the maximization of the winding coefficient kb which can be defined as the ratio between the fundamental component of the magnetic flux embraced by a coil and the total magnetic flux per pole. This coefficient must be near to unity to maximize the no-load emf amplitude with the lowest number of turns (cros et al., 2002). Its value is less or equal to unity. Fig. 15 shows the winding coefficient value of several armatures versus the number of slots per pole. Fig.15. Variation of the winding coefficient for structures with a concentrated winding winding coefficient (kb) 1 0,95 0,9 0,85 0,8 0,75 0,7 0,65 0,6 0,55 0,5 0,45 0,6 0,8 1 1,2 1,4 1,6 1,8 Number of slots per pole (s/2p) One can see that the structures which offer the best winding coefficients are those which have a number of slots nearly equal to the number of poles. It is always preferable to choose a high number of stator poles to reduce the mass, however, this number should be chosen based on a compromise considering the external diameter and the speed. The pole AcademyPublish.org - Vehicle Engineering 221

16 number has an impact on the number of commutator segments and also on the number of armature coils. To obtain an efficient brushed DC motor with concentrated winding, we must select a machine of 2p stator poles and S rotor teeth which respects the following condition: S 2 p a with a 1or 1or 2 or 3 (1) With brushed DC motors with concentrated windings, the use a number of commutator segments (Z) greater than the number of slots is better to minimize current commutation problems. In this case, there is a plurality of simple coils wound around the same tooth. The terminals of each coil are connected to different segments for simultaneous commutation by different brushes. This type of coil arrangement will allow perfectly balanced parallel paths and avoids any circulating current between these parallel circuits. The number of segments (Z) is generally equal to the Least Common Multiple (LCM) of S and 2p: Z LCM ( S,2 p) (2) Generally, the number of brushes (2B) is equal to the number of stator poles (2p), as shown by Eq. 3 and N of coils are wound around each tooth (Eq. 4). Consequently, the number of coils per parallel path N pa is obtained by Eq. 5. 2B 2 p Z N S N pa Z 2 p (3) (4) (5) In automotive applications the performance of the motor is sometimes compromised in order to minimize the manufacturing costs. For example, it may be interesting to reduce the number of brushes (2B) and the number of coils per tooth (N), particularly in cases of higher number of stator poles. By employing equalizer connections, this simplification could be easily realized and the winding would be always well balanced. However, this modification will affect the life expectancy of the brushes because the current to be commutated by each brush will increase. Table 5 presents the main parameters of brushed DC machines for small power applications which respect the former expressions. The possible simplifications for each structure are shown in gray-colored cells. 222 AcademyPublish.org - Vehicle Engineering

17 Table 5. Main parameters for DC motor structures with a well balanced concentrated winding 2P Poles number S slots Z commutator segments N coils per tooth Npa coils/path B brushes kb winding coefficient Another possible simplification is to divide the number of commutator segments Z by two (Eq. 6) and to reduce the number of coils per tooth. This simplification will result in an unbalanced emf in the different coil paths between brushes but the level of this unbalance is inversely proportional to the number of coils in each parallel path. The main parameters of this kind of machine are presented in table 6. LCM ( S,2 p) Z 2 (6) Table 6. Main parameters for downgraded DC motor structures with concentrated winding 2P Poles number S slots Z=LCM(S,2P)/ commutator segments N coils per tooth 2B brushes kb winding coefficient Synthesis of Efficient Brushless DC Motor Structures with Concentrated Windings The selection of a particular combination for the number of poles and the number of slots in the armature of a brushless dc motor is done in the same manner. First, the number of rotor poles 2p is chosen based on the operating speed and the rotor external diameter. This number should be maximised to reduce the mass of the motor, however, it should be chosen on the basis of a compromise with respect to the electric frequency in order to limit the magnetic losses. According to the data shown in Fig. 15, the number of slots should be close to the number of poles to maximize the winding factor and consequently the motor performance. The various combinations of slots and poles which allow for the realization of balanced windings can be determined by Eq. 7 for the case of three-phase armatures. GCD(S,2p) is the Greatest Common Divisor between the number of slots (S) and the number of poles (2p) and k is an integer. AcademyPublish.org - Vehicle Engineering 223

18 S 3k GCD( S,2 p) (7) The number of slots per pole and per phase is defined by the following equation in the case of a machine with mph phases. S pp S 2 p mph (8) Table 7 gives a list of the various structures of three-phase machines for which it is possible to obtain balanced concentrated windings. The number of slots per pole and per phase (Spp) and the winding coefficient kb are listed in each table cell. The winding coefficient kb is the performance indicator for each solution. The gray-colored cells indicate the most efficient structures which present a winding coefficient higher than 0.9. There is an optimal value of Spp that allows for the maximization of the winding coefficient kb, for each phase-number. These target values are respectively equal to 1/3 for a 3-phase motor, 1/5 for a 5-phase motor and 1/7 for a 7-phase motor. However, it is not possible to realize a polyphase structure with a number of slots equal to the number of poles (S=2p). We can choose however a structure with a number of slots nearly equal to the number of poles, e.g., S=2p ±1 or S=2p ±2. These structures have the advantage of minimizing the cogging torque without slot skewing (Cros et al., 2002). Indeed, the number of pulsations of the cogging torque for a complete mechanical turn corresponds to the Least Common Multiple between the number of slots and the number of poles. Therefore, the frequency of the cogging torque is very high and its amplitude is low. Table 7. Combinations of number of slots (S) and poles (2p) allowing for the realization of three-phase machines with balanced concentrated windings 2p S 3 1/ /4 1/2 1/8 1/4 3/ /2 9 3/ / / / / / / /10 1/ / / /2 3/ / / / /4 1/2 3/ /14 1/ / / / / /2 4/ / / /16 1/8 3/ /4 5/ / / /2 9/ / /2 1/20 1/10 3/ / /4 3/ / / / /2 1/22 1/ / / / / / / / / /8 1/4 3/ AcademyPublish.org - Vehicle Engineering

19 Method for the Determination of the Winding of a Three-Phase Machine After the selection of the number of slots and poles, the next step is to determine the winding configuration and the position of the coils in the slots. Generally, for a threephase machine, it is preferable to apply a method similar to the one used for the design of large synchronous machines with a fractional number of slots per pole and per phase. This method is based on the decomposition of the number of slots per pole and per phase (Spp). For values below unity, Spp must be reduced to a fraction of two non divisible integers b and c, as shown in Table 7. b Spp (9) c A repeatable winding sequence is a list of integer numbers which characterizes the distribution of the larger and smaller pole-phase coil groups in the armature. This repeatable sequence can be derived from Spp and Eq. 9. The list has c numbers made of 0 and 1. The number of 1 s in the repeatable sequence is equal to b and the number of 0 s is equal to b-c. The initial repeatable sequence can then be described as follows: c cb b (10) The configuration of the whole winding structure is derived from 3 consecutive repeatable sequences under c rotor poles. If c is an even number, the same configuration can be repeated as a periodic distribution of coils. If c is an odd number, this distribution is antiperiodic and the direction of the conductors in the coils should be reversed. For a given structure, one can determine an optimal sequence to find the winding that has the highest performance (and the highest winding coefficient). This optimal sequence is derived from the initial one and has the most regular distribution of the number 1 s among the number 0 s. To illustrate this winding determination method, we present an example with a threephase machine which has 18 slots and 16 poles. The configuration of the whole winding can be determined in eight steps as shown in Fig. 16. In the first step, the Spp fraction is reduced to 3/8 and the initial repeatable sequence of the winding is found to be composed of five 0 s and three 1 s. Then, the repeatable sequence is reproduced three times (step 4). In the fifth step, the usual phase sequence AC'BA'CB' is associated to the whole sequence ( A characterizes the return conductor corresponding to conductor A). The conductors associated to number 1 in the sequence are selected to make the first layer of winding (step 6). Generally, this layer of winding cannot be directly realized to form a concentrated winding. In the seventh step, the second layer of the winding is obtained by reproducing and shifting the initial layer by a tooth or a slot width. The direction of each conductor must be also reversed. The final configuration of the winding of a three-phase machine with 18 slots and 16 poles can be checked in the last step. The figure shows only AcademyPublish.org - Vehicle Engineering 225

20 the winding for 8 rotor poles and this distribution repeats itself for the next 8 poles. Fig. 16. Determination of the concentrated winding of a three-phase machine with 18 slots and 16 poles (periodic symmetry of the winding under 8 poles) Step 1 : 18 3 S pp Step 2 : Initial repeatable sequence : Step 3 : Optimal repeatable sequence for highest winding performance : Step 4: Step 5: A C B A C B A C B A C B A C B A C B A C B A C B Step 6 : A A A B B B C C C Step 7 : A A A B B B C C C Step 8 : A A A A A A B B B B B B C C C C C C N S N S N S N S ANALYTICAL DESIGN AND FORMULATION OF AN OPTIMIZATION PROBLEM An iterative design process for brushed or brushless surface mount PM motors requires a small computation time for estimation of steady state performances and constraint evaluations in regard to the application requirements. Generally, the optimization problem is formulated with a reduced number of variables, an analytical dimensioning process, and several rapid modeling methods for comparison of different possible solutions. Fig.17 presents a general flowchart of a design method based on the iterative optimization process. The main motor performance requirements impose several non-linear constraints for the design method. These are the torque (Te), the motor speed (N), the supply voltage (UDC), the operating temperature (Tw) and the minimal efficiency ( µ 8. Other constraints for the maximal motor size are also added by using two parameters: the maximum external diameter (Dext_max) and the maximum axial length of the motor (Lmax). Before beginning the optimization process, one selects the motor structural parameters i.e. the number of slots (S) and the number of poles (2p), by taking account of the winding type and the number of phases (mph). Such a decision should also consider the 226 AcademyPublish.org - Vehicle Engineering

21 motor size and the winding performance, represented by the winding coefficient (kb), as discussed in the preceding sections. Table 8. Main specification parameters Torque (N.m) Speed (rpm) DC voltage (V) Maximal external Diameter (m) Maximal motor length (m) Working temperature ( C) Minimal efficiency Te N UDC Dext-max Lmax Tw Different kinds of permanent magnet, soft magnetic and conductive materials can be selected and characterized by their respective parameters like the magnetic saturation threshold for the laminations or the residual induction (Br) for the permanent magnets (Hamdi, 1994). The residual induction and the copper resistivity (ρ) are adjusted according to the motor operating temperature. The maximal flux density B sat in the softmagnetic material is fixed to avoid magnetic saturation. Several technological constraints should also be considered. These parameters impose a limit for certain parameters like the maximal copper filling factor kr and the minimal air-gap thickness. Generally, the filling factor does not exceed 0.35 in a small motor and the air-gap thickness is around 1 mm. Table 9 summarizes main material characteristics and technological parameters. Fig.17. Flowchart of the analytical design method of the motor structure Motor structure parameters Number of armature slots: S Number of permanent magnet poles: 2p Number of phases: mph Winding performance coefficient: kb Non-linear constrained optimization method Design Variables Table 9 Specification and realisation Constraints Tables 7 & 8 Iterative process Analytical design model Table 10 Performance Modelling AcademyPublish.org - Vehicle Engineering 227

22 A small number of variables including geometrical dimensions, current and magnetic flux densities are computed by a non-linear constrained optimization procedure that takes account of the performance criteria and the specifications constraints of the motor application. These design variables are listed in Table 10. It should be noted that one may use several similar variables (Bmag) to impose different flux densities in various parts of the magnetic circuit. Fig. 18 illustrates a number of geometrical stator parameters and Table 11 shows several equations which can be used to compute the main characteristics of the motor during the iterative design process. Table 9. Material parameters and technological constraints Iron Maximal flux density (T) Bsat Lamination (< 1.8 T) and SMC (< 1.4T) Residual induction (T) Br Ferrite < 0.4 T and NdFeB bonded (< 0.7 T) Copper resistivity (Ω.m) ρ Air-gap thickness (m) e > 0.75 mm Copper filling factor kr < 0.35 Table 10. Main design variables Total copper section (m 2 ) Current density (A/m 2 ) Armature (airgap) diameter (m) Armature length (m) Magnet thickness (m) Scu J D L la Permanent magnet arc ratio ß 0 1 Iron flux density (T) Bmag Bmag Bsat Fig.18. Sectional view of a permanent magnet motor with external armature eca etb t De ecr Dint e Dext la 228 AcademyPublish.org - Vehicle Engineering

23 Table 11. Analytical design model for a brushless DC motor with concentrated winding Parameter Analytical expression Constraint relation Specific armature loading (A/m) Air-gap flux density (T) Electromagnetic Torque (Nm) Tooth angular width (rad) Tooth tips thickness (m) Armature yoke thickness (m) Permanent magnet yoke thickness (m) A J Scu D Ba Inner Rotor : B r la 2 D D ln D 2 ( e la ) External Rotor : B r la 2 D 2 ( e la ) D ln D T 2 k b sin(β ) 2 D L B A a 2 θ B a 2 B m ag S etb D Ba 2 t 4 Bm ag S eca D B a 4 p B m ag ecp Slot diameter (m) De External armature : D B a 4 p B m ag 2 4 A D 2 etb D 2 etb S kr J (1 t ) 2 Inner armature : 2 4 A D 2 etb D 2 etb S kr J (1 t ) 2 External diameter (m) Dext External armature : D e 2 eca Inner armature : D 2 ( e la ecp ) Inner diameter (m) Dint External armature : D 2 ( e la ecp ) One turn length per coil for an external armature Number of turns per coil Lturn Inner armature : D e 2 eca B a 2 L 1 D e D 2etb S B sat 4 Ns 30 U D C A D p m ph 4 2 S T N Phase Resistance Rph S Lturn Ns 3 Scu RMS Phase current Iph 1 Scu J N s 2 S RMS No-load flux θ T per phase N s m ph p I Total Copper losses Loss 2 mph Rph Iph T T e Dext Dext max D int D int max AcademyPublish.org - Vehicle Engineering 229

24 PERFORMANCE ANALYSIS WITH FINITE ELEMENT AND TIME- SIMULATION METHODS The optimal solution must be evaluated by finite element analysis and time-simulation methods to quantify the analytical model error or to validate the performances before prototype realization. One can use a finite element model with step by step time resolution of Maxwell equations. Such modeling method can compute magnetic losses and takes account of magnetic saturation and rotor motion. When significant differences on motor performances are observed between finite element and analytical methods, several correction coefficients for analytical models are derived from these evaluations and another optimization process is performed. With such a method, the convergence of optimal analytical design process is achieved and all the constraints imposed by the application specifications are validated by finite elements or time-simulations (Cros et al., 2008). In the case of the finite element calculation of a brushed DC machine, the collector modeling is based on an equivalent circuit similar to a full bridge converter using a direct coupling method with meshed armature coils (Fig. 19). Specific switches with an arc model must be used to reproduce the conduction sequences between brush and collector segments and to simulate the conduction by the electric arc (Sincero et al., 2010). This approach is powerful for final solution analysis but it is very time consuming. It is possible to estimate commutation phenomena more accurately and analyze influence of some parameters such as the brush angle. To illustrate the performance of such finite element simulation, the comparison of experimental and simulated armature current waveforms for a 3 slots-2 poles DC motor with a concentrated winding is presented in Fig. 20 (Sincero et al., 2010). Fig.19. Simulation scheme for the finite element simulation of a 3 slots-2 poles DC motor with a concentrated winding Another method to model the brush and brushless motor variable speed operation is a time-simulation method (Fig. 21) based on the matrix resolution of the differential electrical equations of armature coils (Sincero et al., 2010). The armature winding coils are modeled by their equivalent circuits composed of self and mutual inductances, 230 AcademyPublish.org - Vehicle Engineering

25 resistances and electromotive forces. These equivalent circuits use constant inductance values and neglect magnetic saturation. The commutator connects the armature coils to the input DC source and by Eq. 11, we determine the armature coil current, which is represented by vector [I]. The electromotive force [E], and the electromagnetic torque T o, are determined by Eqs. 12 and 13: d[ I] d[ ( )] [ V ] [ Rcoil ][ I] [ L] p (11) dt d [ E] K psin(2 f p( )) (12) flux e T [ E] [ I] T0 Tiron T loss mech (13) Where [V] is the matrix of coil voltages, [L] is the coil inductance matrix, R coil is the coil resistance, [λ] is the armature flux vector, [θ] is the vector of the spatial phase angles of the armature coils, p is the pole pair number and Ω is the mechanical angular speed. Fig.20. Experimental & simulated waveforms for rotor coil voltage, armature current and DC supply current. 40 Voltage (V) Current (A) Rotor coil voltage -5 DC Current -30 Rotor Coil current Times (s) The matrix resolution simulation is preferred since it speeds up the time spent on the performance analysis of PM synchronous motors. Besides, it allows comparing different structures by only changing the files that generate the parameter matrices. This approach is more powerful and efficient during a design process where different motors have to be compared. The commutator and the control blocks are the systems that differ between a PMBLDC motor and a PM dc motor in this simulation strategy, although their basic functionalities AcademyPublish.org - Vehicle Engineering 231

26 are the same. Based on information about the rotor position, the gate signals are generated to feed the armature coils with a current that is in phase with the emf. This is necessary to maximize the output torque. However, it is also possible to simulate other types of control strategies. The simulation method for the commutator of both the brushless and brushed motors is detailed in (Sincero et al., 2008). Fig.21. General flowchart of a time-simulation method for brushed and brushless machines t 0 dt The inverter simulation model can neglect the PWM modulation by using the value of the inverter output voltages averaged over one modulation period. The voltages applied to the armature coils are positive or negative depending on the rotor position. During the diode conduction, an amplified current error determines the voltage to be applied in order to maintain a zero current in the phase (Figueroa et al., 2003). This simulation reproduces accurately, among others, the waveforms of the machine coils voltages and currents, the joule and inverter losses, and the torque ripple due to phase commutation effects (Figueroa et al., 2003). The average value over each modulation period can be also used to model the dc-dc converter. This linear variable dc voltage source is connected to the collector model. The real operation is similar to the inverter one: depending on the rotor position, the positive or negative input voltage is applied to the armature coils, which is equivalent to the collector segment contact with the positive or negative brush. The coil under commutation is short-circuited in order to invert its current direction while maintaining the output torque constant. If the current commutation is not completed at the end of the short-circuit interval, an electric arc voltage is generated and applied to the armature coil which generates an arc current until the complete coil current inversion (Sincero et al., 2008). The advantage of this methodology is the accurate estimation of the machine current waveforms, joule and commutation (arc and brush) losses, torque ripple and DC input current. Fig. 22 shows the brushed dc motor model block diagram. 232 AcademyPublish.org - Vehicle Engineering

CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR

CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR 47 CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR 4.1 INTRODUCTION This chapter deals with the design of 24 slots 8 poles, 48 slots 16 poles and 60 slots 16 poles brushless dc

More information

HIGH SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR / GENERATOR DESIGN FOR FLYWHEEL APPLICATIONS

HIGH SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR / GENERATOR DESIGN FOR FLYWHEEL APPLICATIONS HIGH SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR / GENERATOR DESIGN FOR FLYWHEEL APPLICATIONS Aleksandr Nagorny, Ph.D. National Research Council Outline Introduction Selection of the Rated Point The major

More information

Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie

Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie Motivation The AHPV from VDS 1.0 used an expensive, NGM electric hub motor, costing roughly $8000. (picture on right)

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

Motors and Generators

Motors and Generators Motors and Generators Electro-mechanical devices: convert electrical energy to mechanical motion/work and vice versa Operate on the coupling between currentcarrying conductors and magnetic fields Governed

More information

Enhancing the Design of Electric Machines through the Interaction of Software Tools. Markus Anders Electric machine sector manager CD-adpaco

Enhancing the Design of Electric Machines through the Interaction of Software Tools. Markus Anders Electric machine sector manager CD-adpaco Enhancing the Design of Electric Machines through the Interaction of Software Tools Markus Anders Electric machine sector manager CD-adpaco Outline Part I: SPEED and STAR-CCM+ Enhancing the thermal design

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

Design and Analysis of Switched Reluctance Motors

Design and Analysis of Switched Reluctance Motors Design and Analysis of Switched Reluctance Motors İbrahim ŞENGÖR, Abdullah POLAT, and Lale T. ERGENE Electrical and Electronic Faculty, İstanbul Technical University, 34469, Istanbul, TURKEY sengoribrahim@gmail.com,

More information

Principles of Adjustable Frequency Drives

Principles of Adjustable Frequency Drives What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable

More information

1150 hp motor design, electromagnetic and thermal analysis

1150 hp motor design, electromagnetic and thermal analysis 115 hp motor design, electromagnetic and thermal analysis Qasim Al Akayshee 1, and David A Staton 2 1 Mawdsley s Ltd., The Perry Centre, Davey Close, Waterwells, Gloucester GL2 4AD phone: +44 1452 888311

More information

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the different types of open single-phase motors used to drive

More information

13 ELECTRIC MOTORS. 13.1 Basic Relations

13 ELECTRIC MOTORS. 13.1 Basic Relations 13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This

More information

Chen. Vibration Motor. Application note

Chen. Vibration Motor. Application note Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR 1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

8 Speed control of Induction Machines

8 Speed control of Induction Machines 8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque

More information

FREQUENCY CONTROLLED AC MOTOR DRIVE

FREQUENCY CONTROLLED AC MOTOR DRIVE FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly

More information

Motor-CAD Software for Thermal Analysis of Electrical Motors - Links to Electromagnetic and Drive Simulation Models

Motor-CAD Software for Thermal Analysis of Electrical Motors - Links to Electromagnetic and Drive Simulation Models Motor-CAD Software for Thermal Analysis of Electrical Motors - Links to Electromagnetic and Drive Simulation Models Dave Staton, Douglas Hawkins and Mircea Popescu Motor Design Ltd., Ellesmere, Shropshire,

More information

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 78 90, Article ID: IJARET_07_02_008 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

How to Optimize Performance and Minimize Size in High Speed Applications High Performance Brushless DC Motors

How to Optimize Performance and Minimize Size in High Speed Applications High Performance Brushless DC Motors thinkmotion How to Optimize Performance and Minimize Size in High Speed Applications High Performance Brushless DC Motors I. Introduction II. III. IV. Optimization of a Brushless DC motor for high speed

More information

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor. DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

More information

2. Permanent Magnet (De-) Magnetization 2.1 Methodology

2. Permanent Magnet (De-) Magnetization 2.1 Methodology Permanent Magnet (De-) Magnetization and Soft Iron Hysteresis Effects: A comparison of FE analysis techniques A.M. Michaelides, J. Simkin, P. Kirby and C.P. Riley Cobham Technical Services Vector Fields

More information

CNC Machine Control Unit

CNC Machine Control Unit NC Hardware a NC Hardware CNC Machine Control Unit Servo Drive Control Hydraulic Servo Drive Hydraulic power supply unit Servo valve Servo amplifiers Hydraulic motor Hydraulic Servo Valve Hydraulic Servo

More information

LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS

LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS LINEAR MOTOR CONTROL IN ACTIVE SUSPENSION SYSTEMS HONCŮ JAROSLAV, HYNIOVÁ KATEŘINA, STŘÍBRSKÝ ANTONÍN Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University Karlovo

More information

AC Induction Motor Slip What It Is And How To Minimize It

AC Induction Motor Slip What It Is And How To Minimize It AC Induction Motor Slip What It Is And How To Minimize It Mauri Peltola, ABB Oy, Helsinki, Finland The alternating current (AC) induction motor is often referred to as the workhorse of the industry because

More information

Motor Fundamentals. DC Motor

Motor Fundamentals. DC Motor Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

More information

Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor

Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor At first glance, a brushless direct-current (BLDC) motor might seem more complicated than a permanent magnet brushed DC motor,

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet

Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet VISHAY DALE www.vishay.com Magnetics Selecting IHLP Composite Inductors for Non-Isolated Converters INTRODUCTION This application note will provide information to assist in the specification of IHLP composite

More information

Performance Comparison of Dual-Rotor Radial-Flux and Axial-Flux Permanent-Magnet BLDC Machines

Performance Comparison of Dual-Rotor Radial-Flux and Axial-Flux Permanent-Magnet BLDC Machines Performance Comparison of Dual-Rotor Radial-Flux and Axial-Flux Permanent-Magnet BLDC Machines Ronghai Qu, Member, IEEE Electronic & Photonic Systems Technologies General Electric Company Bldg EP, Rm 110-B,

More information

Lab 14: 3-phase alternator.

Lab 14: 3-phase alternator. Lab 14: 3-phase alternator. Objective: to obtain the no-load saturation curve of the alternator; to determine the voltage regulation characteristic of the alternator with resistive, capacitive, and inductive

More information

Flux Conference 2012. High Efficiency Motor Design for Electric Vehicles

Flux Conference 2012. High Efficiency Motor Design for Electric Vehicles Flux Conference 2012 High Efficiency Motor Design for Electric Vehicles L. Chen, J. Wang, P. Lombard, P. Lazari and V. Leconte University of Sheffield, Date CEDRAT : 18 October 2012 Presented by: P. Lazari

More information

Basics of Electricity

Basics of Electricity Basics of Electricity Generator Theory PJM State & Member Training Dept. PJM 2014 8/6/2013 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components

More information

Understanding the Alternator

Understanding the Alternator http://www.autoshop101.com THIS AUTOMOTIVE SERIES ON ALTERNATORS HAS BEEN DEVELOPED BY KEVIN R. SULLIVAN PROFESSOR OF AUTOMOTIVE TECHNOLOGY AT SKYLINE COLLEGE SAN BRUNO, CALIFORNIA ALL RIGHTS RESERVED

More information

BRUSHLESS DC MOTORS. BLDC 22mm. BLDC Gearmotor Size 9. nuvodisc 32BF. BLDC Gearmotor Size 5

BRUSHLESS DC MOTORS. BLDC 22mm. BLDC Gearmotor Size 9. nuvodisc 32BF. BLDC Gearmotor Size 5 BRUSHLESS DC MOTORS BLDC Gearmotor Size 9 BLDC 22mm nuvodisc 32BF BLDC Gearmotor Size 5 Portescap Brushless DC motors are extremely reliable and built to deliver the best performances. Their high power

More information

Torque motors. direct drive technology

Torque motors. direct drive technology Torque motors direct drive technology Why Direct Drive Motors? Fast and effective Direct-drive technology in mechanical engineering is defined as the use of actuators which transfer their power directly

More information

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor International Journal of Engineering Inventions e-issn: 78-7461, p-issn: 319-6491 Volume 3, Issue 5 (December 013) PP: 36-41 Modelling, Simulation and Performance Analysis of A Variable Frequency Drive

More information

THE LUCAS C40 DYNAMO & ITS ARMATURE.

THE LUCAS C40 DYNAMO & ITS ARMATURE. THE LUCAS C40 DYNAMO & ITS ARMATURE. H. Holden, March 2011. The Dynamo as a DC generating machine was used extensively in the pre- Alternator era, from the early 1900 s up to the late 1960 s and early

More information

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 2, March-April, 2016, pp.19-28, Article ID: IJEET_07_02_003 Available online at http:// http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=2

More information

THE EFFECT OF SLOT SKEWING AND DUMMY SLOTS ON PULSATING TORQUE MINIMIZATION IN PERMANENT MAGNET BRUSHLESS DC MOTORS

THE EFFECT OF SLOT SKEWING AND DUMMY SLOTS ON PULSATING TORQUE MINIMIZATION IN PERMANENT MAGNET BRUSHLESS DC MOTORS Indian J.Sci.Res.1(2) : 404-409, 2014 ISSN : 0976-2876 (Print) ISSN:2250-0138(Online) THE EFFECT OF SLOT SKEWING AND DUMMY SLOTS ON PULSATING TORQUE MINIMIZATION IN PERMANENT MAGNET BRUSHLESS DC MOTORS

More information

Brush DC Motor Basics. by Simon Pata Business Unit Manager, Brushless DC

Brush DC Motor Basics. by Simon Pata Business Unit Manager, Brushless DC thinkmotion Brush DC Motor Basics by Simon Pata Business Unit Manager, Brushless DC Ironless DC Motor Basics Technical Note Brushed DC ironless motors are found in a large variety of products and applications

More information

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA Speed Control Methods of Various Types of Speed Control Motors Kazuya SHIRAHATA Oriental Motor Co., Ltd. offers a wide variety of speed control motors. Our speed control motor packages include the motor,

More information

Application Information

Application Information Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao. x x. x x. Figure 10: Cross sectional view

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao. x x. x x. Figure 10: Cross sectional view 4 Armature Windings Main field Commutator & Brush Compole field haft v Compensating winding Armature winding Yoke Figure 10: Cross sectional view Fig. 10 gives the cross sectional view of a modern d.c.

More information

Lab 8: DC generators: shunt, series, and compounded.

Lab 8: DC generators: shunt, series, and compounded. Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their

More information

Development Of High Efficiency Brushless DC Motor With New Manufacturing Method Of Stator For Compressors

Development Of High Efficiency Brushless DC Motor With New Manufacturing Method Of Stator For Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2002 Development Of High Efficiency Brushless DC Motor With New Manufacturing Method Of

More information

DESIGN OPTIMIZATION OF A SINGLE-SIDED AXIAL FLUX PERMANENT MAGENT IN-WHEEL MOTOR WITH NON- OVERLAP CONCENTRATED WINDING

DESIGN OPTIMIZATION OF A SINGLE-SIDED AXIAL FLUX PERMANENT MAGENT IN-WHEEL MOTOR WITH NON- OVERLAP CONCENTRATED WINDING DESIGN OPTIMIZATION OF A SINGLE-SIDED AXIAL FLUX PERMANENT MAGENT IN-WHEEL MOTOR WITH NON- OVERLAP CONCENTRATED WINDING H Kierstead, R-J Wang and M J Kamper University of Stellenbosch, Department of Electrical

More information

Electrical Drive Modeling through a Multiphysics System Simulation Approach

Electrical Drive Modeling through a Multiphysics System Simulation Approach Application Brief Electrical Drive Modeling through a The electric drive system is a key application in power electronics. Optimizing such complex mechatronic system requires in-depth analysis, expertise

More information

MATHEMATICAL MODELING OF BLDC MOTOR WITH CLOSED LOOP SPEED CONTROL USING PID CONTROLLER UNDER VARIOUS LOADING CONDITIONS

MATHEMATICAL MODELING OF BLDC MOTOR WITH CLOSED LOOP SPEED CONTROL USING PID CONTROLLER UNDER VARIOUS LOADING CONDITIONS VOL. 7, NO., OCTOBER ISSN 89-668 6- Asian Research Publishing Network (ARPN). All rights reserved. MATHEMATICAL MODELING OF BLDC MOTOR WITH CLOSED LOOP SPEED CONTROL USING PID CONTROLLER UNDER VARIOUS

More information

Introduction to Linear Actuators: Precision Linear Motion Accomplished Easily and Economically

Introduction to Linear Actuators: Precision Linear Motion Accomplished Easily and Economically Introduction to Linear Actuators: Precision Linear Motion Accomplished Easily and Economically Part 1 of 2 When students are trained in classic mechanical engineering, they are taught to construct a system

More information

!! #! # %! & () +,+. + / + +. 000 1 2! 34 & ) ( 3,(5 667 58,5553 9 4 44 5 2 ( 338

!! #! # %! & () +,+. + / + +. 000 1 2! 34 & ) ( 3,(5 667 58,5553 9 4 44 5 2 ( 338 !! #! # %! & () +,+. + / + +. 000 1 2! 34 & ) ( 3,(5 667 58,5553 9 4 44 5 2 ( 338 : 584 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 41, NO. 2, MARCH/APRIL 2005 Permanent-Magnet Brushless Machines

More information

INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS

INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS INSTRUMENTATION AND CONTROL TUTORIAL 2 ELECTRIC ACTUATORS This is a stand alone tutorial on electric motors and actuators. The tutorial is of interest to any student studying control systems and in particular

More information

COMPUTER AIDED ELECTRICAL DRAWING (CAED) 10EE65

COMPUTER AIDED ELECTRICAL DRAWING (CAED) 10EE65 COMPUTER AIDED ELECTRICAL DRAWING (CAED) EE Winding Diagrams: (i) DC Winding diagrams (ii) AC Winding Diagrams Terminologies used in winding diagrams: Conductor: An individual piece of wire placed in the

More information

PM734F - Technical Data Sheet Winding 28

PM734F - Technical Data Sheet Winding 28 - Technical Data Sheet Winding 28 SPECIFICATIONS & OPTIONS STANDARDS STAMFORD AC generators are designed to meet the performance requirements of IEC EN 60034-1. Other international standards, including

More information

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR INDEX NO. : M-142 TECHNICAL MANUAL FOR NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR Manufactured by : PREMIER TRADING CORPORATION (An ISO 9001:2000 Certified Company) 212/1, Mansarover Civil

More information

Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications

Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications By Shaun Milano Vibration motors are used in a variety of applications including mobile phone

More information

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. 1 How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. The territory of high-performance motor control has

More information

PI734D - Technical Data Sheet

PI734D - Technical Data Sheet PI734D - Technical Data Sheet PI734D SPECIFICATIONS & OPTIONS STANDARDS Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international

More information

PI734B - Technical Data Sheet

PI734B - Technical Data Sheet PI734B - Technical Data Sheet PI734B SPECIFICATIONS & OPTIONS STANDARDS Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant sections of other national and international

More information

PRODUCTS DC MOTORS BLPM MOTORS AC MOTORS CONTROLLERS

PRODUCTS DC MOTORS BLPM MOTORS AC MOTORS CONTROLLERS D R I V E S Y S T E M S PRODUCTS DC MOTORS BLPM MOTORS AC MOTORS CONTROLLERS The vision of Iskra Avtoelektrika is to be: One of the world's leading manufacturers of electric motors and controllers for

More information

Traditional Design of Cage Rotor Induction Motors. Ronald G. Harley and Yao Duan Georgia Institute of Technology November, 2009

Traditional Design of Cage Rotor Induction Motors. Ronald G. Harley and Yao Duan Georgia Institute of Technology November, 2009 Traditional Design of Cage Rotor Induction Motors Ronald G. Harley and Yao Duan Georgia Institute of Technology November, 2009 Rating considerations Dimensions of a machine depend on Torque at a specific

More information

DC Motor control Reversing

DC Motor control Reversing January 2013 DC Motor control Reversing and a "Rotor" which is the rotating part. Basically there are three types of DC Motor available: - Brushed Motor - Brushless Motor - Stepper Motor DC motors Electrical

More information

Magnetic electro-mechanical machines

Magnetic electro-mechanical machines Magnetic electro-mechanical machines Lorentz Force A magnetic field exerts force on a moving charge. The Lorentz equation: f = q(e + v B) f: force exerted on charge q E: electric field strength v: velocity

More information

UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS

UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS Automobile Electrical Structure 3.1 Introduction Objectives 3.2 Ignition System 3.3 Requirement of an Ignition System 3.4 Types of Ignition 3.4.1 Battery or Coil Ignition

More information

KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE

KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE ADVANCED ENGINEERING 3(2009)1, ISSN 1846-5900 KINETIC ENERGY RECOVERY SYSTEM BY MEANS OF FLYWHEEL ENERGY STORAGE Cibulka, J. Abstract: This paper deals with the design of Kinetic Energy Recovery Systems

More information

SLOT FRINGING EFFECT ON THE MAGNETIC CHARACTERISTICS OF ELECTRICAL MACHINES

SLOT FRINGING EFFECT ON THE MAGNETIC CHARACTERISTICS OF ELECTRICAL MACHINES Journal of ELECTRICAL ENGINEERING, VOL. 60, NO. 1, 2009, 18 23 SLOT FRINGING EFFECT ON THE MAGNETIC CHARACTERISTICS OF ELECTRICAL MACHINES Mohammad B. B. Sharifian Mohammad R. Feyzi Meysam Farrokhifar

More information

5. Measurement of a magnetic field

5. Measurement of a magnetic field H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of

More information

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION Introduction Howard W. Penrose, Ph.D., CMRP Vice President, Engineering and Reliability Services Dreisilker Electric Motors, Inc.

More information

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS *ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS Jay Vaidya, President Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 and Earl Gregory,

More information

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

Variable Frequency Drives - a Comparison of VSI versus LCI Systems Variable Frequency Drives - a Comparison of VSI versus LCI Systems Introduction TMEIC is a leader in the innovative design and manufacture of large ac variable f requency drive systems. TMEIC has been

More information

Design of an Auxiliary Power Distribution Network for an Electric Vehicle

Design of an Auxiliary Power Distribution Network for an Electric Vehicle Design of an Auxiliary Power Distribution Network for an Electric Vehicle William Chen, Simon Round and Richard Duke Department of Electrical & Computer Engineering University of Canterbury, Christchurch,

More information

Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance

Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance ndustrial Circuits Application Note Drive circuit basics For a given size of a stepper motor, a limited space is available for the windings. n the process of optimizing a stepper motor drive system, an

More information

HCM434F - Winding 311 APPROVED DOCUMENT. Technical Data Sheet

HCM434F - Winding 311 APPROVED DOCUMENT. Technical Data Sheet HCM434F - Winding 311 Technical Data Sheet HCM434F SPECIFICATIONS & OPTIONS STANDARDS Marine generators may be certified to Lloyds, DnV, Bureau Veritas, ABS, Germanischer-Lloyd or RINA. Other standards

More information

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 By: R.C. Zowarka T.J. Hotz J.R. Uglum H.E. Jordan 13th Electromagnetic Launch Technology Symposium, Potsdam (Berlin), Germany,

More information

Principles and Working of DC and AC machines

Principles and Working of DC and AC machines BITS Pilani Dubai Campus Principles and Working of DC and AC machines Dr Jagadish Nayak Constructional features BITS Pilani Dubai Campus DC Generator A generator consists of a stationary portion called

More information

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE INTRODUCTION In all kinds of manufacturing, it is very common to have equipment that has three phase motors for doing different

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING ELECTRICAL ENGINEERING The master degree programme of Teacher Training in Electronical Engineering is designed to develop graduates competencies in the field of Curriculum Development and Instructional

More information

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets

Linear DC Motors. 15.1 Magnetic Flux. 15.1.1 Permanent Bar Magnets Linear DC Motors The purpose of this supplement is to present the basic material needed to understand the operation of simple DC motors. This is intended to be used as the reference material for the linear

More information

Topics to cover: 1. Structures and Drive Circuits 2. Equivalent Circuit. Introduction

Topics to cover: 1. Structures and Drive Circuits 2. Equivalent Circuit. Introduction Chapter 12. Brushless DC Motors Topics to cover: 1. Structures and Drive Circuits 2. Equivalent Circuit 3. Performance 4. Applications Introduction Conventional dc motors are highly efficient and their

More information

DC motors: dynamic model and control techniques

DC motors: dynamic model and control techniques DC motors: dynamic model and control techniques Luca Zaccarian Contents 1 Magnetic considerations on rotating coils 1 1.1 Magnetic field and conductors.......................... 1 1.2 The magneto-motive

More information

THIS paper reports some results of a research, which aims to investigate the

THIS paper reports some results of a research, which aims to investigate the FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no. 2, August 2009, 227-234 Determination of Rotor Slot Number of an Induction Motor Using an External Search Coil Ozan Keysan and H. Bülent Ertan

More information

The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics

The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics The DC Motor/Generator Commutation Mystery One small, yet vital piece of the DC electric motor puzzle is the carbon brush. Using the correct carbon brush is a key component for outstanding motor life,

More information

Introduction. Three-phase induction motors are the most common and frequently encountered machines in industry

Introduction. Three-phase induction motors are the most common and frequently encountered machines in industry Induction Motors Introduction Three-phase induction motors are the most common and frequently encountered machines in industry - simple design, rugged, low-price, easy maintenance - wide range of power

More information

Wynn s Extended Care

Wynn s Extended Care Wynn s Extended Care Every car deserves to receive the very best care... especially yours. How Do You Keep Your Reliable Transportation Reliable? Count on Wynn s Because Wynn s has been caring for cars

More information

UCI274C - Technical Data Sheet

UCI274C - Technical Data Sheet - Technical Data Sheet SPECIFICATIONS & OPTIONS STANDARDS Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS000,

More information

On the Influence of Stator Slot shape on the Energy Conservation Associated with the Submersible Induction Motors

On the Influence of Stator Slot shape on the Energy Conservation Associated with the Submersible Induction Motors American Journal of Applied Sciences 8 (4): 393-399, 2011 ISSN 1546-9239 2010 Science Publications On the Influence of Stator Slot shape on the Energy Conservation Associated with the Submersible Induction

More information

UCI274H - Technical Data Sheet

UCI274H - Technical Data Sheet - Technical Data Sheet SPECIFICATIONS & OPTIONS STANDARDS Newage Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS000,

More information

USER MANUAL THE RESOLVER

USER MANUAL THE RESOLVER USR MANUAL TH RSOLVR ICP Department 4 has developed and produced a wide range of transmitter type resolvers for military and industrial applications. From a mechanical viewpoint, these products have been

More information

Design and Simulation of Z-Source Inverter for Brushless DC Motor Drive

Design and Simulation of Z-Source Inverter for Brushless DC Motor Drive Science Arena Publications Specialty Journal of Electronic and Computer Sciences Available online at www.sciarena.com 2015, Vol, 1 (1): 30-34 Design and Simulation of Z-Source Inverter for Brushless DC

More information

C Standard AC Motors

C Standard AC Motors C Standard AC Standard AC C-1 Overview, Product Series... C-2 Constant... C-9 C-21 C-113 Reversible C-147 Overview, Product Series Constant Reversible Electromagnetic Brake C-155 Electromagnetic Brake

More information

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS

A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The

More information

Synchronous motor. Type. Non-excited motors

Synchronous motor. Type. Non-excited motors Synchronous motor A synchronous electric motor is an AC motor in which the rotation rate of the shaft is synchronized with the frequency of the AC supply current; the rotation period is exactly equal to

More information

Stepper motor I/O. Application Note DK9222-0410-0014 Motion Control. A General information on stepper motors

Stepper motor I/O. Application Note DK9222-0410-0014 Motion Control. A General information on stepper motors Stepper motor Keywords Stepper motor Fieldbus Microstepping Encoder Phase current Travel distance control Speed interface KL2531 KL2541 Part A of this Application Example provides general information on

More information

An equivalent circuit of a loop antenna.

An equivalent circuit of a loop antenna. 3.2.1. Circuit Modeling: Loop Impedance A loop antenna can be represented by a lumped circuit when its dimension is small with respect to a wavelength. In this representation, the circuit parameters (generally

More information

Electric Coolant Pumps. Always at the Correct Temperature

Electric Coolant Pumps. Always at the Correct Temperature Electric Coolant Pumps Always at the Correct Temperature Electric coolant pumps Conventional pumps for engine cooling are driven by toothed belts and hence their output is coupled to engine RPM. Coolant

More information

maxon sensor maxon sensor

maxon sensor maxon sensor Sensor Spindle drive Gearhead E Motor (BLD Motor) D Motor X Drives (configurable) Motor control obust encoders, D tachometers, and resolvers with high accuracy and high signal resolution. Due to resonance,

More information

WIND TURBINE TECHNOLOGY

WIND TURBINE TECHNOLOGY Module 2.2-2 WIND TURBINE TECHNOLOGY Electrical System Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Contents Module 2.2 Types of generator systems

More information