TCP (Transmission Control Protocol)

Size: px
Start display at page:

Download "TCP (Transmission Control Protocol)"

Transcription

1 TCP (Transmission Control Protocol) Originally defined in RFC 793 (September 1981) UDP features: multiplexing + protection against bit errors Ports, checksum Connection-oriented Establishment and teardown of the connections Reliable Missing or corrupt segments are detected and retransmitted Stream-based, in-order delivery The sender writes bytes into a TCP connection and the receiver reads bytes out of the TCP connection Full duplex Each TCP connection supports a pair of byte streams, one flowing in each direction Flow control Keep sender from overrunning receiver (end-to-end issue) Congestion Control Keep sender from overrunning network Algorithm tries to fill available capacity

2 Data Link vs. Transport At the heart of TCP is the sliding window algorithm TCP runs over the Internet rather than a point-to-point link Many important differences TCP potentially connects many different hosts Explicit connection establishment and teardown Some shared information to enable the sliding window algorithm to start Different RTT (Round Trip Times) LANs vs. satellite networks, peak hour Variations in the RTT are even possible during a single TCP connection that lasts only a few minutes Adaptive timeout mechanism Potentially long delay in network Packets may be reordered as they cross the Internet TCP has to be prepared for very old packets to suddenly show up at the receiver, potentially confusing the sliding window algorithm Maximum Segment Lifetime (MSL) Since IP throws packets away after their TTL expires, TCP assumes that each packet has a maximum lifetime The current recommended setting is 120 s (conservative estimation) Different capacity at destination Multiple TCP connections supported at the same time TCP must include a mechanism that each side uses to learn what resources (e.g., how much buffer space) the other side is able to apply to the connection Different network capacity The sender has no idea what links will be traversed to reach the destination

3 TCP Overview Application process Client Server Application process The client process passes a stream of data through the socket The application reads the stream of data from the receive buffer TCP TCP Send Buffer TCP Segments Receive Buffer Basic Data Transfer (RFC 793): The TCP is able to transfer a continuous stream of octets in each direction between its users by packaging some number of octets into segments for transmission through the internet system. In general, the TCPs decide when to block and forward data at their own convenience. Current status of the sliding window mechanism Maximum Segment Size (MSS): MTU of the directly connected network, minus the size of the TCP and IP headers standard MSS for TCP = 536 bytes ( ) push operation timer

4 Source Port Destination Port TCP Header Sequence Number Acknowledgment Source Port: 16 bits The source port number Destination Port: 16 bits The destination port number HLen Resrvd Flags Checksum AdvertisedWindow UrgPtr The SrcPort and DstPort, plus the SRc and Dst IP addresses, combine to uniquely identify each TCP connection (SrcPort, SrcIPAddr,DstPort,DstIPAddr) TCP demux key Options (variable) Checksum: 16 bits The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words in the TCP header, TCP data and the pseudo header. Required in both IPv4 and IPv6. HdrLen (Data Offset): 4 bits The number of 32 bit words in the TCP Header. This indicates where the data begins. The TCP header (even one including options) is an integral number of 32 bits long. Reserved: 6 bits Reserved for future use. Must be zero.

5 TCP Header: Sliding window algorithm Sequence Number: 32 bits The sequence number of the first data octet in this segment (except when SYN is present). If SYN is present the sequence number is the initial sequence number (ISN) and the first data octet is ISN+1. Acknowledgment Number: 32 bits If the ACK control bit is set this field contains the value of the next Sequence Number the sender of the segment is expecting to receive. Once a connection is established this is always sent. Advertised Window: 16 bits The number of data octets beginning with the one indicated in the acknowledgment field which the sender of this segment is willing to accept. Sequence Number (Data) Acknowledgment + AdvertisedWindow Sequence Number (Data) Acknowledgment + AdvertisedWindow

6 TCP Flags Control Bits: 6 bits (from left to right) URG: Urgent Pointer field significant This flag is used to identify incoming data as 'urgent'. Such incoming segments do not have to wait until the previous segments are consumed by the receiving end but are sent directly and processed immediately Out-of-band signalling Interrupt/abort character sequence in remote login session ACK: Acknowledgment field significant PSH: Push Function A push causes the TCP to promptly forward and deliver data up to that point to the receiver The Push flag is usually set on the last segment of a file to prevent buffer deadlocks RST: Reset the connection if a packet is sent to a host in order to establish a connection, and there is no such service waiting to answer at the remote host, then the host would automatically reject the request and then send a reply with the RST flag set SYN: Synchronize sequence numbers the SYN flag is set when establishing the classical 3-way handshake between two hosts FIN: No more data from sender This flag is used to tear down the virtual connections Urgent Pointer: 16 bits This field communicates the current value of the urgent pointer as a positive offset from the sequence number in this segment. The urgent pointer points to the sequence number of the octet following the urgent data. This field is only be interpreted in segments with the URG control bit set.

7 TCP Connection Management Connection establishment (Three-Way handshake) TCP sender, receiver establish connection before exchanging data segments initialize TCP variables: seq. #s buffers, flow control info (e.g. RcvWindow) Connection setup is an asymmetric activity: one side does a passive open and the other side does an active open client: connection initiator server: contacted by client The two sides begin sending data only after this connection establishment phase is over Connection termination Connection teardown is symmetric: each side has to close the connection independently As soon as a participant is done sending data, it closes one direction of the connection The other side can keep the other half of the bidirectional connection open and continue sending data

8 Initial Sequence Number (ISN) The protocol places no restriction on a particular connection being used over and over again. New instances of a connection will be referred to as incarnations of the connection. How does the TCP identify duplicate segments from previous incarnations of the connection? The connection is being opened and closed in quick succession, The connection breaks with loss of memory and is then reestablished To avoid confusion TCP must prevent segments from one incarnation of a connection from being used while the same sequence numbers may still be present in the network from an earlier incarnation. When new connections are created, an initial sequence number (ISN) generator is employed which selects a new 32 bit ISN The generator is bound to a (possibly fictitious) 32 bit clock whose low order bit is incremented roughly every 4 microseconds. Thus, the ISN cycles approximately every 4.55 hours. Since TCP assumes that segments will stay in the network no more than the Maximum Segment Lifetime (MSL) and that the MSL is less than 4.55 hours we can reasonably assume that ISN's will be unique. For a connection to be established or initialized, the two TCPs must synchronize on each other's initial sequence numbers. This is done in an exchange of connection establishing segments carrying a control bit called "SYN" (for synchronize) and the initial sequence numbers. As a shorthand, segments carrying the SYN bit are also called SYNs The solution requires a suitable mechanism for picking an initial sequence number and a slightly involved handshake to exchange the ISN's.

9 Three-Way Handshake active participant (client) A timer is scheduled for each of the first two segments, and if the expected response is not received, the segment is retransmitted SYN+ACK, SeqNum=y Ack=x+1 SYN SeqNum=x ACK, SeqNum=x+1 Ack=y+1 passive participant (server) The Acknowledgement Field identifies the next sequence number expected, thereby implicitly acknowledging all earlier sequence numbers ACK, SeqNum=x+1 Ack=y+1 First data segment

10 TCP State-Transition diagram States involved in opening a connection States involved in closing a connection

11 As the connection progresses, the connection moves from state to state according to the arcs TCP State-Transition diagram All Connections start in the CLOSED state The local application process invokes an operation on TCP States of the connection Each arc is labelled with a tag of the form event/action A segment arrives from the peer TimeOut based Retransmissions are NOT shown in the diagram

12 client SYN server Three-Way Handshake SYN+ACK ACK

13 Normal Connection Termination The application process on both sides of the connection must independently close its half of the connection Initiator Sequence FIN ACK Responder Sequence If only one side closes the connection, it is still available to receive data from the other side FIN ACK

14 TIME_WAIT State The TIME-WAIT state is required since the local side of the connection does not know if its ACK was successfully delivered Retransmission of the FIN segment Delayed packets FIN ACK FIN ACK SYN FIN

15 Connection Termination Simultaneous Close It is also possible for two devices to try to terminate a connection simultaneously. This term simultaneously does not mean that they both decide to shut down at exactly the same time. It simply means that one host decides to shut down and sends a FIN, but the other host sends its own FIN before receiving it. FIN FIN ACK ACK Both devices crosses the same states

16 Connection Termination- Rare transition Initiator Sequence FIN FIN+ACK Responder Sequence ACK

17 Connection Termination - Summary

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Computer Networks UDP and TCP

Computer Networks UDP and TCP Computer Networks UDP and TCP Saad Mneimneh Computer Science Hunter College of CUNY New York I m a system programmer specializing in TCP/IP communication protocol on UNIX systems. How can I explain a thing

More information

Computer Networks. Chapter 5 Transport Protocols

Computer Networks. Chapter 5 Transport Protocols Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

More information

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 Outline The transport service Elements of transport protocols A

More information

B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com

B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com B-2 Analyzing TCP/IP Networks with Wireshark June 15, 2010 Ray Tompkins Founder of Gearbit www.gearbit.com SHARKFEST 10 Stanford University June 14-17, 2010 TCP In this session we will examine the details

More information

Chapter 5. Transport layer protocols

Chapter 5. Transport layer protocols Chapter 5. Transport layer protocols This chapter provides an overview of the most important and common protocols of the TCP/IP transport layer. These include: User Datagram Protocol (UDP) Transmission

More information

q Connection establishment (if connection-oriented) q Data transfer q Connection release (if conn-oriented) q Addressing the transport user

q Connection establishment (if connection-oriented) q Data transfer q Connection release (if conn-oriented) q Addressing the transport user Transport service characterization The Transport Layer End-to-End Protocols: UDP and TCP Connection establishment (if connection-oriented) Data transfer Reliable ( TCP) Unreliable / best effort ( UDP)

More information

[Prof. Rupesh G Vaishnav] Page 1

[Prof. Rupesh G Vaishnav] Page 1 Basics The function of transport layer is to provide a reliable end-to-end communications service. It also provides data transfer service for the user layers above and shield the upper layers from the

More information

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson)

Networking Overview. (as usual, thanks to Dave Wagner and Vern Paxson) Networking Overview (as usual, thanks to Dave Wagner and Vern Paxson) Focus For This Lecture Sufficient background in networking to then explore security issues in next few lectures Networking = the Internet

More information

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions)

COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions) COMP 3331/9331: Computer Networks and Applications Lab Exercise 3: TCP and UDP (Solutions) AIM To investigate the behaviour of TCP and UDP in greater detail. EXPERIMENT 1: Understanding TCP Basics Tools

More information

Transport Layer. Chapter 3.4. Think about

Transport Layer. Chapter 3.4. Think about Chapter 3.4 La 4 Transport La 1 Think about 2 How do MAC addresses differ from that of the network la? What is flat and what is hierarchical addressing? Who defines the IP Address of a device? What is

More information

Network Security TCP/IP Refresher

Network Security TCP/IP Refresher Network Security TCP/IP Refresher What you (at least) need to know about networking! Dr. David Barrera Network Security HS 2014 Outline Network Reference Models Local Area Networks Internet Protocol (IP)

More information

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio).

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). Client App Network Server App 25-May-13 15:32 (Page 1) This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). TCP is an end to end protocol which

More information

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002

More information

TCP/IP Optimization for Wide Area Storage Networks. Dr. Joseph L White Juniper Networks

TCP/IP Optimization for Wide Area Storage Networks. Dr. Joseph L White Juniper Networks TCP/IP Optimization for Wide Area Storage Networks Dr. Joseph L White Juniper Networks SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individuals

More information

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31 IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011

More information

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

More information

TCP Performance Management for Dummies

TCP Performance Management for Dummies TCP Performance Management for Dummies Nalini Elkins Inside Products, Inc. Monday, August 8, 2011 Session Number 9285 Our SHARE Sessions Orlando 9285: TCP/IP Performance Management for Dummies Monday,

More information

First Midterm for ECE374 03/09/12 Solution!!

First Midterm for ECE374 03/09/12 Solution!! 1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

Objectives of Lecture. Network Architecture. Protocols. Contents

Objectives of Lecture. Network Architecture. Protocols. Contents Objectives of Lecture Network Architecture Show how network architecture can be understood using a layered approach. Introduce the OSI seven layer reference model. Introduce the concepts of internetworking

More information

Networking Test 4 Study Guide

Networking Test 4 Study Guide Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.

More information

Network Security I: Overview

Network Security I: Overview Network Security I: Overview April 13, 2015 Lecture by: Kevin Chen Slides credit: Vern Paxson, Dawn Song 1 network security 2 Today s Lecture Networking overview + security issues Keep in mind, networking

More information

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP

Overview. Securing TCP/IP. Introduction to TCP/IP (cont d) Introduction to TCP/IP Overview Securing TCP/IP Chapter 6 TCP/IP Open Systems Interconnection Model Anatomy of a Packet Internet Protocol Security (IPSec) Web Security (HTTP over TLS, Secure-HTTP) Lecturer: Pei-yih Ting 1 2

More information

2.1 Introduction. 2.2 Voice over IP (VoIP)

2.1 Introduction. 2.2 Voice over IP (VoIP) 2.1 Introduction In this section can provide the necessary background on the structure of VoIP applications and on their component, and the transmission protocols generally used in VoIP. 2.2 Voice over

More information

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio).

This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). Here we explore the sequence of interactions in a typical FTP (File Transfer Protocol) session.

More information

RARP: Reverse Address Resolution Protocol

RARP: Reverse Address Resolution Protocol SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it

More information

Access Control: Firewalls (1)

Access Control: Firewalls (1) Access Control: Firewalls (1) World is divided in good and bad guys ---> access control (security checks) at a single point of entry/exit: in medieval castles: drawbridge in corporate buildings: security/reception

More information

Transport layer protocols for ad hoc networks

Transport layer protocols for ad hoc networks Transport layer protocols for ad hoc networks Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2616/ Which transport layer protocol? Classification of transport

More information

La couche transport dans l'internet (la suite TCP/IP)

La couche transport dans l'internet (la suite TCP/IP) La couche transport dans l'internet (la suite TCP/IP) C. Pham RESO-LIP/INRIA Université Lyon 1 http://www.ens-lyon.fr/~cpham Basé sur les transparent de Shivkumar Kalyanaraman La couche transport dans

More information

Recent advances in transport protocols

Recent advances in transport protocols Recent advances in transport protocols April 12, 2013 Abstract Transport protocols play a critical role in today s Internet. This chapter first looks at the evolution of the Internet s Transport Layer

More information

Protocols and Architecture. Protocol Architecture.

Protocols and Architecture. Protocol Architecture. Protocols and Architecture Protocol Architecture. Layered structure of hardware and software to support exchange of data between systems/distributed applications Set of rules for transmission of data between

More information

IP - The Internet Protocol

IP - The Internet Protocol Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network

More information

Voice over IP. Demonstration 1: VoIP Protocols. Network Environment

Voice over IP. Demonstration 1: VoIP Protocols. Network Environment Voice over IP Demonstration 1: VoIP Protocols Network Environment We use two Windows workstations from the production network, both with OpenPhone application (figure 1). The OpenH.323 project has developed

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

La couche transport dans l'internet (la suite TCP/IP)

La couche transport dans l'internet (la suite TCP/IP) La couche transport dans l'internet (la suite TCP/IP) C. Pham Université de Pau et des Pays de l Adour Département Informatique http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Cours de C. Pham,

More information

What is a DoS attack?

What is a DoS attack? CprE 592-YG Computer and Network Forensics Log-based Signature Analysis Denial of Service Attacks - from analyst s point of view Yong Guan 3216 Coover Tel: (515) 294-8378 Email: guan@ee.iastate.edu October

More information

Prefix AggregaNon. Company X and Company Y connect to the same ISP, and they are assigned the prefixes:

Prefix AggregaNon. Company X and Company Y connect to the same ISP, and they are assigned the prefixes: Data Transfer Consider transferring an enormous file of L bytes from Host A to B using a MSS of 1460 bytes and a 66 byte header. What is the maximum value of L such that TCP sequence numbers are not exhausted?

More information

Networks: IP and TCP. Internet Protocol

Networks: IP and TCP. Internet Protocol Networks: IP and TCP 11/1/2010 Networks: IP and TCP 1 Internet Protocol Connectionless Each packet is transported independently from other packets Unreliable Delivery on a best effort basis No acknowledgments

More information

NETI@home: A Distributed Approach to Collecting End-to-End Network Performance Measurements

NETI@home: A Distributed Approach to Collecting End-to-End Network Performance Measurements NETI@home: A Distributed Approach to Collecting End-to-End Network Performance Measurements Charles Robert Simpson, Jr. and George F. Riley Georgia Institute of Technology (Georgia Tech), Atlanta Georgia,

More information

Network layer" 1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! goals: "

Network layer 1DT066! Distributed Information Systems!! Chapter 4 Network Layer!! goals: 1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! Network layer" goals: "! understand principles behind layer services:" " layer service models" " forwarding versus routing" " how a

More information

Overview of TCP/IP. TCP/IP and Internet

Overview of TCP/IP. TCP/IP and Internet Overview of TCP/IP System Administrators and network administrators Why networking - communication Why TCP/IP Provides interoperable communications between all types of hardware and all kinds of operating

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

Understanding Layer 2, 3, and 4 Protocols

Understanding Layer 2, 3, and 4 Protocols 2 Understanding Layer 2, 3, and 4 Protocols While many of the concepts well known to traditional Layer 2 and Layer 3 networking still hold true in content switching applications, the area introduces new

More information

EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst

EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst Data communication in reality In reality, the source and destination hosts are very seldom on the same network, for

More information

Internet Control Protocols Reading: Chapter 3

Internet Control Protocols Reading: Chapter 3 Internet Control Protocols Reading: Chapter 3 ARP - RFC 826, STD 37 DHCP - RFC 2131 ICMP - RFC 0792, STD 05 1 Goals of Today s Lecture Bootstrapping an end host Learning its own configuration parameters

More information

1 An application in BPC: a Web-Server

1 An application in BPC: a Web-Server 1 An application in BPC: a Web-Server We briefly describe our web-server case-study, dwelling in particular on some of the more advanced features of the BPC framework, such as timeouts, parametrized events,

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford

Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford The difference between theory and practice is in theory somewhat smaller than in practice. In theory, this

More information

CS268 Exam Solutions. 1) End-to-End (20 pts)

CS268 Exam Solutions. 1) End-to-End (20 pts) CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

Layer 7 Load Balancing and Content Customization

Layer 7 Load Balancing and Content Customization C H A P T E R 4 Layer 7 Load Balancing and Content Customization This chapter will discuss the methods and protocols involved in accomplishing a Layer 7 load-balancing solution. The reasons for and benefits

More information

Algorithms and Techniques Used for Auto-discovery of Network Topology, Assets and Services

Algorithms and Techniques Used for Auto-discovery of Network Topology, Assets and Services Algorithms and Techniques Used for Auto-discovery of Network Topology, Assets and Services CS4983 Senior Technical Report Brian Chown 0254624 Faculty of Computer Science University of New Brunswick Canada

More information

Network Layer: Network Layer and IP Protocol

Network Layer: Network Layer and IP Protocol 1 Network Layer: Network Layer and IP Protocol Required reading: Garcia 7.3.3, 8.1, 8.2.1 CSE 3213, Winter 2010 Instructor: N. Vlajic 2 1. Introduction 2. Router Architecture 3. Network Layer Protocols

More information

Visualizations and Correlations in Troubleshooting

Visualizations and Correlations in Troubleshooting Visualizations and Correlations in Troubleshooting Kevin Burns Comcast kevin_burns@cable.comcast.com 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional

More information

Internet Protocols. Background CHAPTER

Internet Protocols. Background CHAPTER CHAPTER 3 Internet Protocols Background The Internet protocols are the world s most popular open-system (nonproprietary) protocol suite because they can be used to communicate across any set of interconnected

More information

TCP/IP Networking for Wireless Systems. Integrated Communication Systems Group Ilmenau University of Technology

TCP/IP Networking for Wireless Systems. Integrated Communication Systems Group Ilmenau University of Technology TCP/IP Networking for Wireless Systems Integrated Communication Systems Group Ilmenau University of Technology Content Internet Protocol Suite Link Layer: Ethernet, PPP, ARP, MAC Addressing Network Layer:

More information

TCP/IP and the Internet

TCP/IP and the Internet TCP/IP and the Internet Computer networking today is becoming more and more entwined with the internet. By far the most popular protocol set in use is TCP/IP (Transmission Control Protocol/Internet Protocol).

More information

CS 457 Lecture 19 Global Internet - BGP. Fall 2011

CS 457 Lecture 19 Global Internet - BGP. Fall 2011 CS 457 Lecture 19 Global Internet - BGP Fall 2011 Decision Process Calculate degree of preference for each route in Adj-RIB-In as follows (apply following steps until one route is left): select route with

More information

Computer Networks Practicum 2015

Computer Networks Practicum 2015 Computer Networks Practicum 2015 Vrije Universiteit Amsterdam, The Netherlands http://acropolis.cs.vu.nl/ spyros/cnp/ 1 Overview This practicum consists of two parts. The first is to build a TCP implementation

More information

Introduction to TCP/IP

Introduction to TCP/IP Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information

Higher Layer Protocols: UDP, TCP, ATM, MPLS

Higher Layer Protocols: UDP, TCP, ATM, MPLS Higher Layer Protocols: UDP, TCP, ATM, MPLS Massachusetts Institute of Technology Slide 1 The TCP/IP Protocol Suite Transmission Control Protocol / Internet Protocol Developed by DARPA to connect Universities

More information

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose

Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Instructions: There are 4 questions on this exam. Please use two exam blue books answer questions 1, 2 in one book, and the remaining

More information

Network Intrusion Detection Systems. Beyond packet filtering

Network Intrusion Detection Systems. Beyond packet filtering Network Intrusion Detection Systems Beyond packet filtering Goal of NIDS Detect attacks as they happen: Real-time monitoring of networks Provide information about attacks that have succeeded: Forensic

More information

We will give some overview of firewalls. Figure 1 explains the position of a firewall. Figure 1: A Firewall

We will give some overview of firewalls. Figure 1 explains the position of a firewall. Figure 1: A Firewall Chapter 10 Firewall Firewalls are devices used to protect a local network from network based security threats while at the same time affording access to the wide area network and the internet. Basically,

More information

Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks. Lecture Notes on Computer and Network Security

Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks. Lecture Notes on Computer and Network Security Lecture 16: TCP/IP Vulnerabilities: IP Spoofing and Denial-of-Service Attacks Lecture Notes on Computer and Network Security by Avi Kak (kak@purdue.edu) April 25, 2015 5:22pm c 2015 Avinash Kak, Purdue

More information

Networking Attacks: Link-, IP-, and TCP-layer attacks. CS 161: Computer Security Prof. David Wagner

Networking Attacks: Link-, IP-, and TCP-layer attacks. CS 161: Computer Security Prof. David Wagner Networking Attacks: Link-, IP-, and TCP-layer attacks CS 161: Computer Security Prof. David Wagner February 28, 2013 General Communication Security Goals: CIA! Confidentiality: No one can read our data

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

Network Programming TDC 561

Network Programming TDC 561 Network Programming TDC 561 Lecture # 1 Dr. Ehab S. Al-Shaer School of Computer Science & Telecommunication DePaul University Chicago, IL 1 Network Programming Goals of this Course: Studying, evaluating

More information

Introduction to Cisco IOS Flexible NetFlow

Introduction to Cisco IOS Flexible NetFlow Introduction to Cisco IOS Flexible NetFlow Last updated: September 2008 The next-generation in flow technology allowing optimization of the network infrastructure, reducing operation costs, improving capacity

More information

Exercises TCP/IP Networking. Solution. With Solutions

Exercises TCP/IP Networking. Solution. With Solutions Exercises TCP/IP Networking Solution. With Solutions Jean-Yves Le Boudec Fall 2010 Exercises marked with a were given at exams in the past. 1 Module 1: TCP/IP Architecture Exercise 1.1 Elaine is setting

More information

Request For Comments: 1350 STD: 33 July 1992 Obsoletes: RFC 783

Request For Comments: 1350 STD: 33 July 1992 Obsoletes: RFC 783 Network Working Group K. Sollins Request For Comments: 1350 MIT STD: 33 July 1992 Obsoletes: RFC 783 Status of this Memo THE TFTP PROTOCOL (REVISION 2) This RFC specifies an IAB standards track protocol

More information

Kap. 2. Transport - Schicht

Kap. 2. Transport - Schicht Kap. 2 Transport - Schicht 2-2 Transport-Schicht Transport-Schicht: bietet eine logische Kommunikation zw. Anwendungen TCP: - Verbindungsorientiert mittels 3-Way-Handshake - zuverlässiger Datentransport

More information

8.2 The Internet Protocol

8.2 The Internet Protocol TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface

More information

Advanced Computer Networks Project 2: File Transfer Application

Advanced Computer Networks Project 2: File Transfer Application 1 Overview Advanced Computer Networks Project 2: File Transfer Application Assigned: April 25, 2014 Due: May 30, 2014 In this assignment, you will implement a file transfer application. The application

More information

Architecture and Performance of the Internet

Architecture and Performance of the Internet SC250 Computer Networking I Architecture and Performance of the Internet Prof. Matthias Grossglauser School of Computer and Communication Sciences EPFL http://lcawww.epfl.ch 1 Today's Objectives Understanding

More information

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013 CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

More information

The present and the future of TCP/IP

The present and the future of TCP/IP The present and the future of TCP/IP David Espina Project in Electronics dea09001@student.mdh.com Dariusz Baha Computer science dba04002@student.mdh.se ABSTRACT The Transport Control Protocol (TCP) and

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Introduction to IP networking

Introduction to IP networking DD2395 p2 2011 Introduction to IP networking Olof Hagsand KTH CSC 1 Example: Packet transfer www.server.org An end host requests a web-page from a server via a local-area network The aim of this lecture

More information

21.4 Network Address Translation (NAT) 21.4.1 NAT concept

21.4 Network Address Translation (NAT) 21.4.1 NAT concept 21.4 Network Address Translation (NAT) This section explains Network Address Translation (NAT). NAT is also known as IP masquerading. It provides a mapping between internal IP addresses and officially

More information

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline OSI Seven Layer Model & Seminar Outline TCP/IP Fundamentals This seminar will present TCP/IP communications starting from Layer 2 up to Layer 4 (TCP/IP applications cover Layers 5-7) IP Addresses Data

More information

TOE2-IP FTP Server Demo Reference Design Manual Rev1.0 9-Jan-15

TOE2-IP FTP Server Demo Reference Design Manual Rev1.0 9-Jan-15 TOE2-IP FTP Server Demo Reference Design Manual Rev1.0 9-Jan-15 1 Introduction File Transfer Protocol (FTP) is the protocol designed for file sharing over internet. By using TCP/IP for lower layer, FTP

More information

Solution of Exercise Sheet 5

Solution of Exercise Sheet 5 Foundations of Cybersecurity (Winter 15/16) Prof. Dr. Michael Backes CISPA / Saarland University saarland university computer science Protocols = {????} Client Server IP Address =???? IP Address =????

More information

Answer FIVE Questions only. Each carries 20 marks.

Answer FIVE Questions only. Each carries 20 marks. Instructions: Answer FIVE Questions only. Each carries 20 marks. Question 1 Answer FOUR parts only. Each carries 5 marks: i) Outline the structure of computer names used by DNS. DNS uses a hierarchical

More information

Encapsulating Voice in IP Packets

Encapsulating Voice in IP Packets Encapsulating Voice in IP Packets Major VoIP Protocols This topic defines the major VoIP protocols and matches them with the seven layers of the OSI model. Major VoIP Protocols 15 The major VoIP protocols

More information

Command Manual - Network Protocol Quidway S3000 Series Ethernet Switches. Table of Contents

Command Manual - Network Protocol Quidway S3000 Series Ethernet Switches. Table of Contents Table of Contents Table of Contents Chapter 1 ARP Configuration Commands... 1-1 1.1 ARP Configuration Commands... 1-1 1.1.1 arp static... 1-1 1.1.2 arp timer aging... 1-2 1.1.3 debugging arp packet...

More information

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology

Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Indian Institute of Technology Kharagpur TCP/IP Part I Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 3: TCP/IP Part I On completion, the student

More information

CHAPTER 1 PRINCIPLES OF NETWORK MONITORING

CHAPTER 1 PRINCIPLES OF NETWORK MONITORING CHAPTER 1 PRINCIPLES OF NETWORK MONITORING Jawwad Shamsi and Monica Brocmeyer Department of Computer Science, Wayne State University 5143 Cass Avenue, 431 State Hall, Detroit, MI 48202, USA E-mail:{ jshamsi,

More information

Title: DEVELOPING TCP/IP AND UDP TRAFFIC MONITORING TOOL. RAFIQ BIN CHE MAT (2003285011)

Title: DEVELOPING TCP/IP AND UDP TRAFFIC MONITORING TOOL. RAFIQ BIN CHE MAT (2003285011) Title: DEVELOPING TCP/IP AND UDP TRAFFIC MONITORING TOOL. By RAFIQ BIN CHE MAT (2003285011) A project paper submitted to FACULTY OF INFRMATION TECHNOLOGY AND QUANTITATIVE SCIENCES MARA UNIVERSITY OF TECHNOLOGY

More information

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4)

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4) Chapter 3 TCP/IP Networks 3.1 Internet Protocol version 4 (IPv4) Internet Protocol version 4 is the fourth iteration of the Internet Protocol (IP) and it is the first version of the protocol to be widely

More information

CMPE 150 Winter 2009

CMPE 150 Winter 2009 CMPE 150 Winter 2009 Lecture 6 January 22, 2009 P.E. Mantey CMPE 150 -- Introduction to Computer Networks Instructor: Patrick Mantey mantey@soe.ucsc.edu http://www.soe.ucsc.edu/~mantey/ / t / Office: Engr.

More information

Internet Protocol: IP packet headers. vendredi 18 octobre 13

Internet Protocol: IP packet headers. vendredi 18 octobre 13 Internet Protocol: IP packet headers 1 IPv4 header V L TOS Total Length Identification F Frag TTL Proto Checksum Options Source address Destination address Data (payload) Padding V: Version (IPv4 ; IPv6)

More information

TCP Flow Control. TCP Receiver Window. Sliding Window. Computer Networks. Lecture 30: Flow Control, Reliable Delivery

TCP Flow Control. TCP Receiver Window. Sliding Window. Computer Networks. Lecture 30: Flow Control, Reliable Delivery TCP Flow Control Computer Networks The receiver side of a TCP connection maintains a receiver buffer: Lecture : Flow Control, eliable elivery application process may be slow at reading from the buffer

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

Transport Layer and Data Center TCP

Transport Layer and Data Center TCP Transport Layer and Data Center TCP Hakim Weatherspoon Assistant Professor, Dept of Computer Science CS 5413: High Performance Systems and Networking September 5, 2014 Slides used and adapted judiciously

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

2 TCP-like Design. Answer

2 TCP-like Design. Answer Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about

More information

Question: 3 When using Application Intelligence, Server Time may be defined as.

Question: 3 When using Application Intelligence, Server Time may be defined as. 1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response

More information