|
|
|
- Pearl Lyons
- 9 years ago
- Views:
Transcription
1 Problems and Solutions: INMO Let ABCD be a quadrilateral inscribed in a circle. Suppose AB = 2+ 2 and AB subtends 135 at the centre of the circle. Find the maximum possible area of ABCD. Solution: Let O be the centre of the circle in which ABCD is inscribed and let R be its radius. Using cosine rule in triangle AOB, we have Hence R = = 2R 2 (1 cos135 ) = R 2 (2+ 2). Consider quadrilateral ABCD as in the second figure above. Join AC. For [ADC] to be maximum, it is clear that D should be the mid-point of the arc AC so that its distance from the segment AC is maximum. Hence AD = DC for [ABCD] to be maximum. Similarly, we conclude that BC = CD. Thus BC = CD = DA which fixes the quadrilateral ABCD. Therefore each of the sides BC, CD, DA subtends equal angles at the centre O. Let BOC = α, COD = β and DOA = γ. Observe that [ABCD] = [AOB]+[BOC]+[COD]+[DOA] = 1 2 sin (sinα+sinβ+sinγ). Now [ABCD] has maximum area if and only if α = β = γ = ( )/3 = 75. Thus ( [ABCD] = 1 2 sin sin75 = 1 ) = Alternatively, we can use Jensen s inequality. Observe that α, β, γ are all less than 180. Since sinx is concave on (0,π), Jensen s inequality gives ( ) sinα+sinβ +sinγ α+β +γ sin = sin Hence [ABCD] sin75 = , with equality if and only if α = β = γ = 75.
2 2. Let p 1 < p 2 < p 3 < p 4 and q 1 < q 2 < q 3 < q 4 be two sets of prime numbers such that p 4 p 1 = 8 and q 4 q 1 = 8. Suppose p 1 > 5 and q 1 > 5. Prove that 30 divides p 1 q 1. Solution: Since p 4 p 1 = 8, and no prime is even, we observe that {p 1,p 2,p 3,p 4 } is a subset of {p 1,p 1 +2,p 1 +4,p 1 +6,p 1 +8}. Moreover p 1 is larger than 3. If p 1 1 (mod 3), then p 1 +2 and p 1 +8 are divisible by 3. Hence we do not get 4 primes in the set {p 1,p 1 +2,p 1 +4,p 1 +6,p 1 +8}. Thus p 1 2 (mod 3) and p is not a prime. We get p 2 = p 1 + 2,p 3 = p 1 +6,p 4 = p Consider the remainders of p 1,p 1 +2,p 1 +6,p 1 +8 when divided by 5. If p 1 2 (mod 5), then p 1 +8 is divisible by 5 and hence is not a prime. If p 1 3 (mod 5), then p 1 +2 is divisible by 5. If p 1 4 (mod 5), then p 1 +6 is divisible by 5. Hence the only possibility is p 1 1 (mod 5). Thus we see that p 1 1 (mod 2), p 1 2 (mod 3) and p 1 1 (mod 5). We conclude that p 1 11 (mod 30). Similarly q 1 11 (mod 30). It follows that 30 divides p 1 q Define a sequence f 0 (x),f 1 (x),f 2 (x),... of functions by f 0 (x) = 1, f 1 (x) = x, ( fn (x) )2 1 = f n+1 (x)f n 1 (x), for n 1. Prove that each f n (x) is a polynomial with integer coefficients. Solution: Observe that This gives We write this as f 2 n (x) f n 1(x)f n+1 (x) = 1 = f 2 n 1 (x) f n 2(x)f n (x). Using induction, we get Observe that Hence Thus we obtain ( ) ( ) f n (x) f n (x)+f n 2 (x) = f n 1 f n 1 (x)+f n+1 (x). f n 1 (x)+f n+1 (x) = f n 2(x)+f n (x). f n (x) f n 1 (x) f n 1 (x)+f n+1 (x) = f 0(x)+f 2 (x). f n (x) f 1 (x) f 2 (x) = f2 1 (x) 1 = x 2 1. f 0 (x) f n 1 (x)+f n+1 (x) = 1+(x2 1) = x. f n (x) x f n+1 (x) = xf n (x) f n 1 (x).
3 Since f 0 (x), f 1 (x) and f 2 (x) are polynomials with integer coefficients, induction again shows that f n (x) is a polynomial with integer coefficients. Note: We can get f n (x) explicitly: ( ) ( ) ( ) n 1 n 2 n 3 f n (x) = x n x n 2 + x n 4 x n Let ABC be a triangle. An interior point P of ABC is said to be good if we can find exactly 27 rays emanating from P intersecting the sides of the triangle ABC such that the triangle is divided by these rays into 27 smaller triangles of equal area. Determine the number of good points for a given triangle ABC. Solution: Let P be a good point. Let l,m,n be respetively the number of parts the sides BC, CA, AB are divided by the rays starting from P. Note that a ray must pass through each of the vertices the triangle ABC; otherwise we get some quadrilaterals. Let h 1 be the distance of P from BC. Then h 1 is the height for all the triangles with their bases on BC. Equality of areas implies that all these bases have equal length. If we denote this by x, we get lx = a. Similarly, taking y and z as the lengths of the bases of triangles on CA and AB respectively, we get my = b and nz = c. Let h 2 and h 3 be the distances of P from CA and AB respectively. Then h 1 x = h 2 y = h 3 z = 2 27, where denotes the area of the triangle ABC. These lead to But Thus we get h 1 = 2 l 27 a, h 1 = 2 m 27 b, h 1 = 2 n 27 c. 2 a = h a, h 1 2 b = h b, 2 c = h c. = l h a 27, h 2 = m h b 27, h 3 = n h c 27. However, we also have Adding these three relations, Thus h 1 = [PBC] h a, h 2 = [PCA] h b, h 3 = [PAB] h c. h 1 + h 2 + h 3 = 1. h a h b h c l 27 + m 27 + n 27 = h 1 + h 2 + h 3 = 1. h a h b h c
4 We conclude that l +m+n = 27. Thus every good point P determines a partition (l,m,n) of 27 such that there are l, m, n equal segments respectively on BC, CA, AB. Conversely, take any partition (l,m,n) of 27. Divide BC, CA, AB respectively in to l, m, n equal parts. Define h 1 = 2l 27a, h 2 = 2m 27b. Draw a line parallel to BC at a distance h 1 from BC; draw another line parallel to CA at a distance h 2 from CA. Both lines are drawn such that they intersect at a point P inside the triangle ABC. Then [PBC] = 1 2 ah 1 = l m, [PCA] = Hence [PAB] = n 27. This shows that the distance of P from AB is h 3 = 2n 27c. Therefore each traingle with base on CA has area. We conclude that 27 all the triangles which partitions ABC have equal areas. Hence P is a good point. Thus the number of good points is equal to the number of positive integral solutions of the equation l +m+n = 27. This is equal to ( ) 26 = Let ABC be an acute-angled triangle, and let D, E, F be points on BC, CA, AB respectively such that AD is the median, BE is the internal angle bisector and CF is the altitude. Suppose FDE = C, DEF = A and EFD = B. Prove that ABC is equilateral. Solution: Since BF C is right-angled at F, we have FD = BD = CD = a/2. Hence BFD = B. Since EFD = B, we have AFE = π 2 B. Since DEF = A, we also get CED = π 2 B. Applying sine rule in DEF, we have DF sina = FE sinc = DE sinb.
5 Thus we get FE = c/2 and DE = b/2. Sine rule in CED gives DE sinc = CD sin(π 2B). Thus (b/sinc) = (a/2sinbcosb). Solving for cosb, we have Similarly, sine rule in AEF gives cosb = asinc 2bsinB = ac 2b 2. EF sina = AE sin(π 2B). This gives (since AE = bc/(a+c)), as earlier, cosb = a a+c. Comparing the two values of cosb, we get 2b 2 = c(a+c). We also have Thus c 2 +a 2 b 2 = 2cacosB = 2a2 c a+c. 4a 2 c = (a+c)(2c 2 +2a 2 2b 2 ) = (a+c)(2c 2 +2a 2 c(a+c)). This reduces to 2a 3 3a 2 c+c 3 = 0. Thus (a c) 2 (2a+c) = 0. We conclude that a = c. Finally 2b 2 = c(a+c) = 2c 2. We thus get b = c and hence a = c = b. This shows that ABC is equilateral. 6. Let f : Z Z be a function satisfying f(0) 0, f(1) = 0 and (i) f(xy)+f(x)f(y) = f(x)+f(y); (ii) ( f(x y) f(0) ) f(x)f(y) = 0, for all x,y Z, simultaneously. (a) Find the set of all possible values of the function f. (b) If f(10) 0 and f(2) = 0, find the set of all integers n such that f(n) 0. Solution: Setting y = 0 in the condition (ii), we get ( ) f(x) f(0) f(x) = 0, for all x (since f(0) 0). Thus either f(x) = 0 or f(x) = f(0), for all x Z. Now taking x = y = 0 in (i), we see that f(0)+f(0) 2 = 2f(0). This shows
6 that f(0) = 0 or f(0) = 1. Since f(0) 0, we must have f(0) = 1. We conclude that either f(x) = 0 or f(x) = 1 for each x Z. This shows that the set of all possible value of f(x) is {0,1}. This completes (a). Let S = { n Z } { } f(n) 0. Hence we must have S = n Z f(n) = 1 by (a). Since f(1) = 0, 1 is not in S. And f(0) = 1 implies that 0 S. Take any x Z and y S. Using (ii), we get f(xy)+f(x) = f(x)+1. This shows that xy S. If x Z and y Z are such that xy S, then (ii) gives 1+f(x)f(y) = f(x)+f(y). Thus ( f(x) 1 )( f(y) 1 ) = 0. It follows that f(x) = 1 or f(y) = 1; i.e., either x S or y S. We also observe from (ii) that x S and y S implies that f(x y) = 1 so that x y S. Thus S has the properties: (A) x Z and y S implies xy S; (B) x,y Z and xy S implies x S or y S; (C) x,y S implies x y S. Now we know that f(10) 0 and f(2) = 0. Hence f(10) = 1 and 10 S; and 2 S. Writing 10 = 2 5 and using (B), we conclude that 5 S and f(5) = 1. Hence f(5k) = 1 for all k Z by (A). Suppose f(5k + l) = 1 for some l, 1 l 4. Then 5k + l S. Choose u Z such that lu 1 (mod 5). We have (5k +l)u S by (A). Moreover, lu = 1+5m for some m Z and (5k +l)u = 5ku+lu = 5ku+5m+1 = 5(ku+m)+1. This shows that 5(ku+m)+1 S. However, we know that 5(ku+m) S. By (C), 1 S which is a contradiction. We conclude that 5k +l S for any l, 1 l 4. Thus S = { 5k } k Z
DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.
1 Find the length of BC in the following triangles It will help to first find the length of the segment marked X a: b: Given: the diagonals of parallelogram ABCD meet at point O The altitude OE divides
Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions
Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.
IMO Geomety Problems. (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition:
IMO Geomety Problems (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points A and B in S, the perpendicular bisector
Geometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
CSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors
Math 531, Exam 1 Information.
Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)
Geometry Handout 2 ~ Page 1
1. Given: a b, b c a c Guidance: Draw a line which intersects with all three lines. 2. Given: a b, c a a. c b b. Given: d b d c 3. Given: a c, b d a. α = β b. Given: e and f bisect angles α and β respectively.
http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4
of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the
Solutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
Definitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
Most popular response to
Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles
Projective Geometry - Part 2
Projective Geometry - Part 2 Alexander Remorov [email protected] Review Four collinear points A, B, C, D form a harmonic bundle (A, C; B, D) when CA : DA CB DB = 1. A pencil P (A, B, C, D) is the
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
1 Solution of Homework
Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results
CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
Exercise Set 3. Similar triangles. Parallel lines
Exercise Set 3. Similar triangles Parallel lines Note: The exercises marked with are more difficult and go beyond the course/examination requirements. (1) Let ABC be a triangle with AB = AC. Let D be an
http://jsuniltutorial.weebly.com/ Page 1
Parallelogram solved Worksheet/ Questions Paper 1.Q. Name each of the following parallelograms. (i) The diagonals are equal and the adjacent sides are unequal. (ii) The diagonals are equal and the adjacent
Collinearity and concurrence
Collinearity and concurrence Po-Shen Loh 23 June 2008 1 Warm-up 1. Let I be the incenter of ABC. Let A be the midpoint of the arc BC of the circumcircle of ABC which does not contain A. Prove that the
Chapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
6.1 Basic Right Triangle Trigonometry
6.1 Basic Right Triangle Trigonometry MEASURING ANGLES IN RADIANS First, let s introduce the units you will be using to measure angles, radians. A radian is a unit of measurement defined as the angle at
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
Conjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical
Chapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant
æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the
Lecture 24: Saccheri Quadrilaterals
Lecture 24: Saccheri Quadrilaterals 24.1 Saccheri Quadrilaterals Definition In a protractor geometry, we call a quadrilateral ABCD a Saccheri quadrilateral, denoted S ABCD, if A and D are right angles
CHAPTER 8 QUADRILATERALS. 8.1 Introduction
CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is
Solutions Manual for How to Read and Do Proofs
Solutions Manual for How to Read and Do Proofs An Introduction to Mathematical Thought Processes Sixth Edition Daniel Solow Department of Operations Weatherhead School of Management Case Western Reserve
Selected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
SAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
Analytical Geometry (4)
Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line
Warm-up Tangent circles Angles inside circles Power of a point. Geometry. Circles. Misha Lavrov. ARML Practice 12/08/2013
Circles ARML Practice 12/08/2013 Solutions Warm-up problems 1 A circular arc with radius 1 inch is rocking back and forth on a flat table. Describe the path traced out by the tip. 2 A circle of radius
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
3.1 Triangles, Congruence Relations, SAS Hypothesis
Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)
5.1 Midsegment Theorem and Coordinate Proof
5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
Advanced GMAT Math Questions
Advanced GMAT Math Questions Version Quantitative Fractions and Ratios 1. The current ratio of boys to girls at a certain school is to 5. If 1 additional boys were added to the school, the new ratio of
Additional Topics in Math
Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are
Three Lemmas in Geometry
Winter amp 2010 Three Lemmas in Geometry Yufei Zhao Three Lemmas in Geometry Yufei Zhao Massachusetts Institute of Technology [email protected] 1 iameter of incircle T Lemma 1. Let the incircle of triangle
SIMSON S THEOREM MARY RIEGEL
SIMSON S THEOREM MARY RIEGEL Abstract. This paper is a presentation and discussion of several proofs of Simson s Theorem. Simson s Theorem is a statement about a specific type of line as related to a given
INCIDENCE-BETWEENNESS GEOMETRY
INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
THE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3
Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs
Shape, Space and Measure
Name: Shape, Space and Measure Prep for Paper 2 Including Pythagoras Trigonometry: SOHCAHTOA Sine Rule Cosine Rule Area using 1-2 ab sin C Transforming Trig Graphs 3D Pythag-Trig Plans and Elevations Area
Trigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1
Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
Conjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1
47 Similar Triangles An overhead projector forms an image on the screen which has the same shape as the image on the transparency but with the size altered. Two figures that have the same shape but not
Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18
Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
Incenter Circumcenter
TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is
Geometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
WEDNESDAY, 2 MAY 1.30 PM 2.25 PM. 3 Full credit will be given only where the solution contains appropriate working.
C 500/1/01 NATIONAL QUALIFICATIONS 01 WEDNESDAY, MAY 1.0 PM.5 PM MATHEMATICS STANDARD GRADE Credit Level Paper 1 (Non-calculator) 1 You may NOT use a calculator. Answer as many questions as you can. Full
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
2014 Chapter Competition Solutions
2014 Chapter Competition Solutions Are you wondering how we could have possibly thought that a Mathlete would be able to answer a particular Sprint Round problem without a calculator? Are you wondering
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Edexcel IGCSE Mathematics B Paper 1 Centre Number Candidate Number Monday 6 June 2011 Afternoon Time: 1 hour 30 minutes Paper Reference 4MB0/01 You must have: Ruler
Contents. Problems... 2 Solutions... 6
Contents Problems............................ Solutions............................ 6 Problems Baltic Way 014 Problems Problem 1 Show that cos(56 ) cos( 56 ) cos( 56 )... cos( 3 56 ) = 1 4. Problem Let
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, January 26, 2016 1:15 to 4:15 p.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, January 26, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications
11 th Annual Harvard-MIT Mathematics Tournament
11 th nnual Harvard-MIT Mathematics Tournament Saturday February 008 Individual Round: Geometry Test 1. [] How many different values can take, where,, are distinct vertices of a cube? nswer: 5. In a unit
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
CHAPTER 1. LINES AND PLANES IN SPACE
CHAPTER 1. LINES AND PLANES IN SPACE 1. Angles and distances between skew lines 1.1. Given cube ABCDA 1 B 1 C 1 D 1 with side a. Find the angle and the distance between lines A 1 B and AC 1. 1.2. Given
GEOMETRIC MENSURATION
GEOMETRI MENSURTION Question 1 (**) 8 cm 6 cm θ 6 cm O The figure above shows a circular sector O, subtending an angle of θ radians at its centre O. The radius of the sector is 6 cm and the length of the
www.sakshieducation.com
LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c
15. Appendix 1: List of Definitions
page 321 15. Appendix 1: List of Definitions Definition 1: Interpretation of an axiom system (page 12) Suppose that an axiom system consists of the following four things an undefined object of one type,
Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
Warm-up Theorems about triangles. Geometry. Theorems about triangles. Misha Lavrov. ARML Practice 12/15/2013
ARML Practice 12/15/2013 Problem Solution Warm-up problem Lunes of Hippocrates In the diagram below, the blue triangle is a right triangle with side lengths 3, 4, and 5. What is the total area of the green
Geometry EOC Practice Test #2
Class: Date: Geometry EOC Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rebecca is loading medical supply boxes into a crate. Each supply
Circle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
Advanced Euclidean Geometry
dvanced Euclidean Geometry What is the center of a triangle? ut what if the triangle is not equilateral?? Circumcenter Equally far from the vertices? P P Points are on the perpendicular bisector of a line
Section 2.7 One-to-One Functions and Their Inverses
Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your
VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.
VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position
Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion
Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent
Straight Line. Paper 1 Section A. O xy
PSf Straight Line Paper 1 Section A Each correct answer in this section is worth two marks. 1. The line with equation = a + 4 is perpendicular to the line with equation 3 + + 1 = 0. What is the value of
Geometry Final Exam Review Worksheet
Geometry Final xam Review Worksheet (1) Find the area of an equilateral triangle if each side is 8. (2) Given the figure to the right, is tangent at, sides as marked, find the values of x, y, and z please.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
arxiv:1404.6042v1 [math.dg] 24 Apr 2014
Angle Bisectors of a Triangle in Lorentzian Plane arxiv:1404.604v1 [math.dg] 4 Apr 014 Joseph Cho August 5, 013 Abstract In Lorentzian geometry, limited definition of angles restricts the use of angle
Angles in a Circle and Cyclic Quadrilateral
130 Mathematics 19 Angles in a Circle and Cyclic Quadrilateral 19.1 INTRODUCTION You must have measured the angles between two straight lines, let us now study the angles made by arcs and chords in a circle
Class-10 th (X) Mathematics Chapter: Tangents to Circles
Class-10 th (X) Mathematics Chapter: Tangents to Circles 1. Q. AB is line segment of length 24 cm. C is its midpoint. On AB, AC and BC semicircles are described. Find the radius of the circle which touches
Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.
. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and
Mathematics (Project Maths Phase 3)
2014. M328 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 2 Ordinary Level Monday 9 June Morning 9:30 12:00 300
Intermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
Chapter 1. The Medial Triangle
Chapter 1. The Medial Triangle 2 The triangle formed by joining the midpoints of the sides of a given triangle is called the medial triangle. Let A 1 B 1 C 1 be the medial triangle of the triangle ABC
MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014
EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle
Quadrilateral Geometry. Varignon s Theorem I. Proof 10/21/2011 S C. MA 341 Topics in Geometry Lecture 19
Quadrilateral Geometry MA 341 Topics in Geometry Lecture 19 Varignon s Theorem I The quadrilateral formed by joining the midpoints of consecutive sides of any quadrilateral is a parallelogram. PQRS is
ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude
ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height
Triangle Congruence and Similarity A Common-Core-Compatible Approach
Triangle Congruence and Similarity A Common-Core-Compatible Approach The Common Core State Standards for Mathematics (CCSSM) include a fundamental change in the geometry program in grades 8 to 10: geometric
Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids
Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?
Sample Test Questions
mathematics College Algebra Geometry Trigonometry Sample Test Questions A Guide for Students and Parents act.org/compass Note to Students Welcome to the ACT Compass Sample Mathematics Test! You are about
