Spectra of Sample Covariance Matrices for Multiple Time Series

Size: px
Start display at page:

Download "Spectra of Sample Covariance Matrices for Multiple Time Series"

Transcription

1 Spectra of Sample Covariance Matrices for Multiple Time Series Reimer Kühn, Peter Sollich Disordered System Group, Department of Mathematics, King s College London VIIIth Brunel-Bielefeld Workshop on Random Matrices, Dec 14-15, 212

2 Sample Covariance Matrices of Multiple Time Series Covariance matrix of stationary stochastic process x t = (x a t ), t Z, 1 a p: C ab ij = 1 M M t=1 x a i+t xb j+t = 1 M (XXT ) ab ij. Here X = (x it ) is pn M matrix with entries x it = x i+t. Expect finite sample fluctuation around mean C ab ij = xa i xb j ±O(1/ M) = C ab (i j)±o(1/ M) C is randomly perturbed block Toeplitz matrix. Spectrum of C as N, fixed p and α = N/M? Known result as α : Szegö s Theorem ρ (λ) = 1 p p s=1 2π dq 2π δ(λ Ĉ s (q))

3 Compare with Wishart Laguerre Ensemble Empirical covariances for N data, evaluated on the basis of M measurements for each variable. Use N M matrices X = (x it ) with i.i.d. entries x it to compute: C ij = 1 M (XXT ) ij = 1 M M t=1 x it x jt. Expect finite sample fluctuation around mean. C ij = x i x j ±O(1/ M) = δ ij ±O(1/ M) Spectrum of C as N, fixed α = N/M? Marčenko Pastur-Law ρ α (λ) = 1 4α (λ (1+α)) 2 2παλ

4 Principal Differences Rows of X for the multi-time series covariance problem groups of shifted sections of a set of p time series (x t ) t Z, x t R p. X = x 1 x 2 x 3... x M x 2 x 3 x 4... x 1+M..... x N x N+1 x N+2... x N+M Number of random variables in the problem is O(N), rather than O(N 2 ) as in the Wishart Laguerre ensemble. Extensive body of knowledge about the Wishart-Laguerre ensemble and its variants (applications in multivariate statistics, signal-processing, finance,...) Very little is known. Existence proofs (Basak, Bose, Sen 211). p = 1-case solved only recently. (RK, P Sollich, EPL 212)

5 Spectral Density and Resolvent Spectral density of sample covariance matrix from resolvent 1 [λε ρ(λ) = lim Im Tr 1I C ] 1, λ ε = λ iε N πnp Express as (S F Edwards & R C Jones, JPA, 1976) 1 ρ α (λ) = lim Im ln N πn p λ Tr [ λ ε 1I C ] = lim 2 Im lnz Np, N πn p λ where N p = Np and Z Np is a Gaussian integral: Z Np = k,a du ka 2π/i exp { i 2 ka,lb } u ka (λ ε δ ab δ kl Ckl ab )u lb.

6 Performing the Average Standard Approach Replica Method 1 lnz Np = lim Z n n ln N n p For integer n, Z n N p is partition function of n identical copies of the system (n-th power of Gaussian integral) Experience: final result has structure of replica-symmetric high-temperature solution annealed calculation (n = 1). lnz Np ln Z Np Do annealed calculation from the start Z Np = k,a du ka 2π/i exp { i 2 ka,lb } u ka (λ ε δ ab δ kl Ckl ab )u lb

7 Performing the Average (contd.) Insert definition of C, and α p = αp, Z Np = ka du ka 2π/i exp i 2 λ ε ka u 2 ka + i 2 α p M zi 2 i=1 with disorder dependence of Z Np only through the M variables z i = 1 Np ka x a k+i u ka, 1 i M. By CLT (for weakly dependent rv s) normally distributed for large M with z i =, z i z j = 1 N p ka,lb x a k+i xb l+j u kau lb Q ij and Q given in terms of true process auto-covariance Q ij = z i z j = 1 N p ka,lb C ab (i j +k l)u ka u lb

8 Exploiting Szegö s Theorem for Spectral Sums {z i } average is Gaussian; with α p = αp: Z Np = ka du ka 2π/i exp i 2 λ ε ka u 2 ka 1 2 lndet(1i iα pq) Q is a Toeplitz matrix. evaluate ln det (1I iα p Q) using Szegö s theorem: where Q µ = 1 N p lndet(1i iα p Q) ka,lb (M 1)/2 µ= (M 1)/2 Ĉ ab (q µ )e iq µ(k l) uka u lb = 1 p ) ln (1 iα p Q µ with û a (q µ ) = 1 N Nk=1 e iq µk u ka and q µ = 2π M µ. ab Ĉ ab (q µ )û a(q µ )u b (q µ )

9 Closed Form Approximation & Scaling Get closed form expression of Z Np = ν I ν with I ν = i p sĉs(p ν ) p s=1 e i s x sλ ε /Ĉ s (p ν ) dx s ( 1 i α 2 sx s ) 2/α where Ĉ s (p ν ), s = 1,...,p are eigenvalues of Ĉ(p ν ) = (Ĉ ab (p ν )) Gives ρ α (λ) = 1 p π dq π p s=1 1 Ĉ s (q) ρ s { λ Ĉ s (q) } For uncorrelated data Ĉ s (q) 1, and ρ s is independent of s identify ρ s with the spectral density for covariance matrices of p time series of i.i.d. (uncorrelated) data.

10 Numerical Tests Spectral density for x n N(,1) α = ρ(λ).8.6 ρ(ln(λ)) λ ln(λ) (Left) p = 1: simulation results (green); analytic approximation for ρ () α (λ) (red), Marčenko-Pastur law (blue-dashed) (. From RK, P Sollich, EPL 212.) (Right) logarithmic spectral density; simulation results for p = 1,...,4. In all α =.1

11 AR-1 α =.1, p = 1 x n = a 1 x n a 2 1 ξ n (Logarithmic) Spectral density for AR-1 α = ρ(ln(λ)).6 ρ(ln(λ)) ln(λ) ln(λ) Left: i.i.d. data, simulation (green) and analytic result (red). Right a 1 =.8. Comparing scaling based on the empirical scaling function (black) with that based on the analytic result (red) and simulations (green).

12 AR-1 α =.1, p = 2 and p = 3 (Logarithmic) Spectral density for AR-1 α =.1 x n = Ax n 1 +σξ n ρ(ln(λ)) ρ(ln(λ)) ln(λ) ln(λ) (Left) Spectra for p = 2, uncorrelated data and A = [.8.1;.1.8], (Right) p = 3, uncorrelated data and A = [.8.2.1;.2.6.1;.1.1.5]. In both cases σ =.2, and simulation results are compared with scaling using an approximate evaluation of scaling integrals.

13 Summary Computed DOS of sample covariance matrices for multiple time-series using annealed calculation. Key ingredient: Szegö s theorem for (block) Toeplitz matrices Rectangular window and decorrelation approximation Closed form approximation. Use of Szegös theorem suggests a scaling form for DOS. scaling is requires knowledge of a function on R p! DOS for i.i.d. data is insufficient. currently working on effective methods to evaluate scaling function for p > 1. Lots of possible applications.

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties:

THE DYING FIBONACCI TREE. 1. Introduction. Consider a tree with two types of nodes, say A and B, and the following properties: THE DYING FIBONACCI TREE BERNHARD GITTENBERGER 1. Introduction Consider a tree with two types of nodes, say A and B, and the following properties: 1. Let the root be of type A.. Each node of type A produces

More information

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails 12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

Some probability and statistics

Some probability and statistics Appendix A Some probability and statistics A Probabilities, random variables and their distribution We summarize a few of the basic concepts of random variables, usually denoted by capital letters, X,Y,

More information

Multivariate normal distribution and testing for means (see MKB Ch 3)

Multivariate normal distribution and testing for means (see MKB Ch 3) Multivariate normal distribution and testing for means (see MKB Ch 3) Where are we going? 2 One-sample t-test (univariate).................................................. 3 Two-sample t-test (univariate).................................................

More information

Lecture 13: Martingales

Lecture 13: Martingales Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

Method of Stationary phase. Reference: Hormander vol I. Steve Zelditch Department of Mathematics Northwestern University

Method of Stationary phase. Reference: Hormander vol I. Steve Zelditch Department of Mathematics Northwestern University Method of Stationary phase Reference: Hormander vol I Steve Zelditch Department of Mathematics Northwestern University 1 Method of Stationary Phase We now describe the method of stationary phase, which

More information

Isotropic Entanglement

Isotropic Entanglement Isotropic Entanglement (Density of States of Quantum Spin Systems) Ramis Movassagh 1 and Alan Edelman 2 1 Department of Mathematics, Northeastern University 2 Department of Mathematics, M.I.T. Fields Institute,

More information

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES Abstract. In this article the notion of acceleration convergence of double sequences

More information

Quadratic forms Cochran s theorem, degrees of freedom, and all that

Quadratic forms Cochran s theorem, degrees of freedom, and all that Quadratic forms Cochran s theorem, degrees of freedom, and all that Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 1, Slide 1 Why We Care Cochran s theorem tells us

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan

More information

An explicit link between Gaussian fields and Gaussian Markov random fields; the stochastic partial differential equation approach

An explicit link between Gaussian fields and Gaussian Markov random fields; the stochastic partial differential equation approach Intro B, W, M, & R SPDE/GMRF Example End An explicit link between Gaussian fields and Gaussian Markov random fields; the stochastic partial differential equation approach Finn Lindgren 1 Håvard Rue 1 Johan

More information

A characterization of trace zero symmetric nonnegative 5x5 matrices

A characterization of trace zero symmetric nonnegative 5x5 matrices A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the

More information

Lecture 21. The Multivariate Normal Distribution

Lecture 21. The Multivariate Normal Distribution Lecture. The Multivariate Normal Distribution. Definitions and Comments The joint moment-generating function of X,...,X n [also called the moment-generating function of the random vector (X,...,X n )]

More information

Credit Risk Models: An Overview

Credit Risk Models: An Overview Credit Risk Models: An Overview Paul Embrechts, Rüdiger Frey, Alexander McNeil ETH Zürich c 2003 (Embrechts, Frey, McNeil) A. Multivariate Models for Portfolio Credit Risk 1. Modelling Dependent Defaults:

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

LECTURE 4. Last time: Lecture outline

LECTURE 4. Last time: Lecture outline LECTURE 4 Last time: Types of convergence Weak Law of Large Numbers Strong Law of Large Numbers Asymptotic Equipartition Property Lecture outline Stochastic processes Markov chains Entropy rate Random

More information

Tools for the analysis and design of communication networks with Markovian dynamics

Tools for the analysis and design of communication networks with Markovian dynamics 1 Tools for the analysis and design of communication networks with Markovian dynamics Arie Leizarowitz, Robert Shorten, Rade Stanoević Abstract In this paper we analyze the stochastic properties of a class

More information

Testing against a Change from Short to Long Memory

Testing against a Change from Short to Long Memory Testing against a Change from Short to Long Memory Uwe Hassler and Jan Scheithauer Goethe-University Frankfurt This version: December 9, 2007 Abstract This paper studies some well-known tests for the null

More information

Monte Carlo Simulation

Monte Carlo Simulation 1 Monte Carlo Simulation Stefan Weber Leibniz Universität Hannover email: sweber@stochastik.uni-hannover.de web: www.stochastik.uni-hannover.de/ sweber Monte Carlo Simulation 2 Quantifying and Hedging

More information

ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES

ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES ANALYZING INVESTMENT RETURN OF ASSET PORTFOLIOS WITH MULTIVARIATE ORNSTEIN-UHLENBECK PROCESSES by Xiaofeng Qian Doctor of Philosophy, Boston University, 27 Bachelor of Science, Peking University, 2 a Project

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

CHAPTER IV - BROWNIAN MOTION

CHAPTER IV - BROWNIAN MOTION CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time

More information

Testing against a Change from Short to Long Memory

Testing against a Change from Short to Long Memory Testing against a Change from Short to Long Memory Uwe Hassler and Jan Scheithauer Goethe-University Frankfurt This version: January 2, 2008 Abstract This paper studies some well-known tests for the null

More information

An Introduction to Machine Learning

An Introduction to Machine Learning An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune,

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS

A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS Eusebio GÓMEZ, Miguel A. GÓMEZ-VILLEGAS and J. Miguel MARÍN Abstract In this paper it is taken up a revision and characterization of the class of

More information

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i ) Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

More information

Continuity of the Perron Root

Continuity of the Perron Root Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)

More information

Stirling s formula, n-spheres and the Gamma Function

Stirling s formula, n-spheres and the Gamma Function Stirling s formula, n-spheres and the Gamma Function We start by noticing that and hence x n e x dx lim a 1 ( 1 n n a n n! e ax dx lim a 1 ( 1 n n a n a 1 x n e x dx (1 Let us make a remark in passing.

More information

Exploratory Factor Analysis and Principal Components. Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016

Exploratory Factor Analysis and Principal Components. Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016 and Principal Components Pekka Malo & Anton Frantsev 30E00500 Quantitative Empirical Research Spring 2016 Agenda Brief History and Introductory Example Factor Model Factor Equation Estimation of Loadings

More information

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia

Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine Aït-Sahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA

A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA REVSTAT Statistical Journal Volume 4, Number 2, June 2006, 131 142 A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA Authors: Daiane Aparecida Zuanetti Departamento de Estatística, Universidade Federal de São

More information

Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

More information

Tutorial on Markov Chain Monte Carlo

Tutorial on Markov Chain Monte Carlo Tutorial on Markov Chain Monte Carlo Kenneth M. Hanson Los Alamos National Laboratory Presented at the 29 th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Technology,

More information

Chapter 2: Binomial Methods and the Black-Scholes Formula

Chapter 2: Binomial Methods and the Black-Scholes Formula Chapter 2: Binomial Methods and the Black-Scholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a call-option C t = C(t), where the

More information

Forecasting Financial Time Series

Forecasting Financial Time Series Canberra, February, 2007 Contents Introduction 1 Introduction : Problems and Approaches 2 3 : Problems and Approaches : Problems and Approaches Time series: (Relative) returns r t = p t p t 1 p t 1, t

More information

4 Sums of Random Variables

4 Sums of Random Variables Sums of a Random Variables 47 4 Sums of Random Variables Many of the variables dealt with in physics can be expressed as a sum of other variables; often the components of the sum are statistically independent.

More information

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010 Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

0.1 Phase Estimation Technique

0.1 Phase Estimation Technique Phase Estimation In this lecture we will describe Kitaev s phase estimation algorithm, and use it to obtain an alternate derivation of a quantum factoring algorithm We will also use this technique to design

More information

Classification Problems

Classification Problems Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems

More information

INSURANCE RISK THEORY (Problems)

INSURANCE RISK THEORY (Problems) INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,

More information

Gaussian Processes to Speed up Hamiltonian Monte Carlo

Gaussian Processes to Speed up Hamiltonian Monte Carlo Gaussian Processes to Speed up Hamiltonian Monte Carlo Matthieu Lê Murray, Iain http://videolectures.net/mlss09uk_murray_mcmc/ Rasmussen, Carl Edward. "Gaussian processes to speed up hybrid Monte Carlo

More information

Arbitrage-Free Pricing Models

Arbitrage-Free Pricing Models Arbitrage-Free Pricing Models Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Arbitrage-Free Pricing Models 15.450, Fall 2010 1 / 48 Outline 1 Introduction 2 Arbitrage and SPD 3

More information

Lecture 14 More on Real Business Cycles. Noah Williams

Lecture 14 More on Real Business Cycles. Noah Williams Lecture 14 More on Real Business Cycles Noah Williams University of Wisconsin - Madison Economics 312 Optimality Conditions Euler equation under uncertainty: u C (C t, 1 N t) = βe t [u C (C t+1, 1 N t+1)

More information

3. Regression & Exponential Smoothing

3. Regression & Exponential Smoothing 3. Regression & Exponential Smoothing 3.1 Forecasting a Single Time Series Two main approaches are traditionally used to model a single time series z 1, z 2,..., z n 1. Models the observation z t as a

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Recall areal data also known as lattice data are data Y (s), s D where D is a discrete index set. This usually corresponds to data

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

5. Continuous Random Variables

5. Continuous Random Variables 5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

More information

A stochastic programming approach for supply chain network design under uncertainty

A stochastic programming approach for supply chain network design under uncertainty A stochastic programming approach for supply chain network design under uncertainty Tjendera Santoso, Shabbir Ahmed, Marc Goetschalckx, Alexander Shapiro School of Industrial & Systems Engineering, Georgia

More information

VI. Real Business Cycles Models

VI. Real Business Cycles Models VI. Real Business Cycles Models Introduction Business cycle research studies the causes and consequences of the recurrent expansions and contractions in aggregate economic activity that occur in most industrialized

More information

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Autocovariance and Autocorrelation

Autocovariance and Autocorrelation Chapter 3 Autocovariance and Autocorrelation If the {X n } process is weakly stationary, the covariance of X n and X n+k depends only on the lag k. This leads to the following definition of the autocovariance

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

STAT 830 Convergence in Distribution

STAT 830 Convergence in Distribution STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2011 1 / 31

More information

BUY-AND-HOLD STRATEGIES AND COMONOTONIC APPROXIMATIONS 1

BUY-AND-HOLD STRATEGIES AND COMONOTONIC APPROXIMATIONS 1 BUY-AND-HOLD STRATEGIES AND COMONOTONIC APPROXIMATIONS 1 J. Marín-Solano 2, Universitat de Barcelona O. Roch, Universitat de Barcelona J. Dhaene, Katholieque Universiteit Leuven C. Ribas, Universitat de

More information

Lecture Topic: Low-Rank Approximations

Lecture Topic: Low-Rank Approximations Lecture Topic: Low-Rank Approximations Low-Rank Approximations We have seen principal component analysis. The extraction of the first principle eigenvalue could be seen as an approximation of the original

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied

More information

Signal detection and goodness-of-fit: the Berk-Jones statistics revisited

Signal detection and goodness-of-fit: the Berk-Jones statistics revisited Signal detection and goodness-of-fit: the Berk-Jones statistics revisited Jon A. Wellner (Seattle) INET Big Data Conference INET Big Data Conference, Cambridge September 29-30, 2015 Based on joint work

More information

Statistics 100A Homework 7 Solutions

Statistics 100A Homework 7 Solutions Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

More information

Gaussian Conjugate Prior Cheat Sheet

Gaussian Conjugate Prior Cheat Sheet Gaussian Conjugate Prior Cheat Sheet Tom SF Haines 1 Purpose This document contains notes on how to handle the multivariate Gaussian 1 in a Bayesian setting. It focuses on the conjugate prior, its Bayesian

More information

Some remarks on two-asset options pricing and stochastic dependence of asset prices

Some remarks on two-asset options pricing and stochastic dependence of asset prices Some remarks on two-asset options pricing and stochastic dependence of asset prices G. Rapuch & T. Roncalli Groupe de Recherche Opérationnelle, Crédit Lyonnais, France July 16, 001 Abstract In this short

More information

Topic 5: Stochastic Growth and Real Business Cycles

Topic 5: Stochastic Growth and Real Business Cycles Topic 5: Stochastic Growth and Real Business Cycles Yulei Luo SEF of HKU October 1, 2015 Luo, Y. (SEF of HKU) Macro Theory October 1, 2015 1 / 45 Lag Operators The lag operator (L) is de ned as Similar

More information

Consensus and Polarization in a Three-State Constrained Voter Model

Consensus and Polarization in a Three-State Constrained Voter Model Consensus and Polarization in a Three-State Constrained Voter Model Department of Applied Mathematics University of Leeds The Unexpected Conference, Paris 14-16/11/2011 Big questions Outline Talk based

More information

Vortices On Rail Road Track : A Possible Realization of Random Matrix Ensemble

Vortices On Rail Road Track : A Possible Realization of Random Matrix Ensemble arxiv:cond-mat/9405067v1 24 May 1994 Vortices On Rail Road Track : A Possible Realization of Random Matrix Ensemble Yang Chen and Henrik Jeldtoft Jensen Department of Mathematics Imperial College 180 Queen

More information

Neural Networks and Learning Systems

Neural Networks and Learning Systems Neural Networks and Learning Systems Exercise Collection, Class 9 March 2010 x 1 x 2 x N w 11 3 W 11 h 3 2 3 h N w NN h 1 W NN y Neural Networks and Learning Systems Exercise Collection c Medical Informatics,

More information

Structure Preserving Model Reduction for Logistic Networks

Structure Preserving Model Reduction for Logistic Networks Structure Preserving Model Reduction for Logistic Networks Fabian Wirth Institute of Mathematics University of Würzburg Workshop on Stochastic Models of Manufacturing Systems Einhoven, June 24 25, 2010.

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

Integer Factorization using the Quadratic Sieve

Integer Factorization using the Quadratic Sieve Integer Factorization using the Quadratic Sieve Chad Seibert* Division of Science and Mathematics University of Minnesota, Morris Morris, MN 56567 seib0060@morris.umn.edu March 16, 2011 Abstract We give

More information

Chapter 3: The Multiple Linear Regression Model

Chapter 3: The Multiple Linear Regression Model Chapter 3: The Multiple Linear Regression Model Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans November 23, 2013 Christophe Hurlin (University of Orléans) Advanced Econometrics

More information

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS

VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of series-parallel labelled

More information

Probability for Estimation (review)

Probability for Estimation (review) Probability for Estimation (review) In general, we want to develop an estimator for systems of the form: x = f x, u + η(t); y = h x + ω(t); ggggg y, ffff x We will primarily focus on discrete time linear

More information

A Log-Robust Optimization Approach to Portfolio Management

A Log-Robust Optimization Approach to Portfolio Management A Log-Robust Optimization Approach to Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983

More information

Some Pratical Issues on Credit Risk

Some Pratical Issues on Credit Risk Some Pratical Issues on Credit Risk Séminaire CREST / LFA Paris, 6 Février 2003 Thierry Roncalli Groupe de Recherche Opérationnelle Crédit Lyonnais http://gro.creditlyonnais.fr Joint work with P. Demey,

More information

Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, and Discrete Changes

Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, and Discrete Changes Using the Delta Method to Construct Confidence Intervals for Predicted Probabilities, Rates, Discrete Changes JunXuJ.ScottLong Indiana University August 22, 2005 The paper provides technical details on

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Gaussian Mixture Models Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique

More information

Finite dimensional C -algebras

Finite dimensional C -algebras Finite dimensional C -algebras S. Sundar September 14, 2012 Throughout H, K stand for finite dimensional Hilbert spaces. 1 Spectral theorem for self-adjoint opertors Let A B(H) and let {ξ 1, ξ 2,, ξ n

More information

1 Short Introduction to Time Series

1 Short Introduction to Time Series ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Andrew J. Bernoff LECTURE 2 Cooling of a Hot Bar: The Diffusion Equation 2.1. Outline of Lecture An Introduction to Heat Flow Derivation of the Diffusion

More information

The Analysis of Data. Volume 1. Probability. Guy Lebanon

The Analysis of Data. Volume 1. Probability. Guy Lebanon The Analysis of Data Volume 1 Probability Guy Lebanon First Edition 2012 Probability. The Analysis of Data, Volume 1. First Edition, First Printing, 2013 http://theanalysisofdata.com Copyright 2013 by

More information

Regression Analysis LECTURE 2. The Multiple Regression Model in Matrices Consider the regression equation. (1) y = β 0 + β 1 x 1 + + β k x k + ε,

Regression Analysis LECTURE 2. The Multiple Regression Model in Matrices Consider the regression equation. (1) y = β 0 + β 1 x 1 + + β k x k + ε, LECTURE 2 Regression Analysis The Multiple Regression Model in Matrices Consider the regression equation (1) y = β 0 + β 1 x 1 + + β k x k + ε, and imagine that T observations on the variables y, x 1,,x

More information

Lecture 4: Partitioned Matrices and Determinants

Lecture 4: Partitioned Matrices and Determinants Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying

More information

New parameterization of cloud optical properties

New parameterization of cloud optical properties New parameterization of cloud optical properties proposed for model ALARO-0 Results of Prague LACE stay 1.8. 1.1005 under scientific supervision of Jean-François Geleyn J. Mašek, 11.1005 Main target of

More information

M/M/1 and M/M/m Queueing Systems

M/M/1 and M/M/m Queueing Systems M/M/ and M/M/m Queueing Systems M. Veeraraghavan; March 20, 2004. Preliminaries. Kendall s notation: G/G/n/k queue G: General - can be any distribution. First letter: Arrival process; M: memoryless - exponential

More information

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density

More information

Limiting spectral distribution of XX matrices

Limiting spectral distribution of XX matrices Limiting spectral distribution of XX matrices Arup Bose Sreela Gangopadhyay Arnab Sen July 23, 2009 Abstract The methods to establish the limiting spectral distribution (LSD) of large dimensional random

More information