# Implied Volatility Surface

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Implied Volatility Surface Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 16) Liuren Wu Implied Volatility Surface Options Markets 1 / 18

2 Implied volatility Recall the BSM formula: c(s, t, K, T ) = e r(t t) [F t,t N(d 1 ) KN(d 2 )], d 1,2 = ln F t,t K ± 1 2 σ2 (T t) σ T t The BSM model has only one free parameter, the asset return volatility σ. Call and put option values increase monotonically with increasing σ under BSM. Given the contract specifications (K, T ) and the current market observations (S t, F t, r), the mapping between the option price and σ is a unique one-to-one mapping. The σ input into the BSM formula that generates the market observed option price is referred to as the implied volatility (IV). Practitioners often quote/monitor implied volatility for each option contract instead of the option invoice price. Liuren Wu Implied Volatility Surface Options Markets 2 / 18

3 The relation between option price and σ under BSM K=80 K=100 K= K=80 K=100 K=120 Call option value, c t Put option value, p t Volatility, σ Volatility, σ An option value has two components: Intrinsic value: the value of the option if the underlying price does not move (or if the future price = the current forward). Time value: the value generated from the underlying price movement. Since options give the holder only rights but no obligation, larger moves generate bigger opportunities but no extra risk Higher volatility increases the option s time value. Liuren Wu Implied Volatility Surface Options Markets 3 / 18

4 Implied volatility versus σ If the real world behaved just like BSM, σ would be a constant. In this BSM world, we could use one σ input to match market quotes on options at all days, all strikes, and all maturities. Implied volatility is the same as the security s return volatility (standard deviation). In reality, the BSM assumptions are violated. With one σ input, the BSM model can only match one market quote at a specific date, strike, and maturity. The IVs at different (t, K, T ) are usually different direct evidence that the BSM assumptions do not match reality. IV no longer has the meaning of return volatility, but is still closely related to volatility: The IV for at-the-money option is very close to the expected return volatility over the horizon of the option maturity. A particular weighted average of all IV 2 across different moneyness is very close to expected return variance over the horizon of the option maturity. IV reflects (increases monotonically with) the time value of the option. Liuren Wu Implied Volatility Surface Options Markets 4 / 18

5 Implied volatility at (t, K, T ) At each date t, strike K, and expiry date T, there can be two European options: one is a call and the other is a put. The two options should generate the same implied volatility value to exclude arbitrage. Recall put-call parity: c p = e r(t t) (F K). The difference between the call and the put at the same (t, K, T ) is the forward value. The forward value does not depend on (i) model assumptions, (ii) time value, or (iii) implied volatility. At each (t, K, T ), we can write the in-the-money option as the sum of the intrinsic value and the value of the out-of-the-money option: If F > K, call is ITM with intrinsic value e r(t t) (F K), put is OTM. Hence, c = e r(t t) (F K) + p. If F < K, put is ITM with intrinsic value e r(t t) (K F ), call is OTM. Hence, p = c + e r(t t) (K F ). If F = K, both are ATM (forward), intrinsic value is zero for both options. Hence, c = p. Liuren Wu Implied Volatility Surface Options Markets 5 / 18

6 The information content of the implied volatility surface At each time t, we observe options across many strikes K and maturities τ = T t. When we plot the implied volatility against strike and maturity, we obtain an implied volatility surface. If the BSM model assumptions hold in reality, the BSM model should be able to match all options with one σ input. The implied volatilities are the same across all K and τ. The surface is flat. We can use the shape of the implied volatility surface to determine what BSM assumptions are violated and how to build new models to account for these violations. For the plots, do not use K, K F, K/F or even ln K/F as the moneyness measure. Instead, use a standardized measure, such as ln K/F ATMV τ, d 2, d 1, or delta. Using standardized measure makes it easy to compare the figures across maturities and assets. Liuren Wu Implied Volatility Surface Options Markets 6 / 18

7 Implied volatility smiles & skews on a stock 0.75 AMD: 17 Jan Implied Volatility Short term smile 0.5 Long term skew 0.45 Maturities: Moneyness= ln(k/f ) σ τ Liuren Wu Implied Volatility Surface Options Markets 7 / 18

8 Implied volatility skews on a stock index (SPX) 0.22 SPX: 17 Jan More skews than smiles Implied Volatility Maturities: Moneyness= ln(k/f ) σ τ Liuren Wu Implied Volatility Surface Options Markets 8 / 18

9 Average implied volatility smiles on currencies 14 JPYUSD 9.8 GBPUSD Average implied volatility Average implied volatility Put delta Put delta Maturities: 1m (solid), 3m (dashed), 1y (dash-dotted) Liuren Wu Implied Volatility Surface Options Markets 9 / 18

10 Return non-normalities and implied volatility smiles/skews BSM assumes that the security returns (continuously compounding) are normally distributed. ln S T /S t N ( (µ 1 2 σ2 )τ, σ 2 τ ). µ = r q under risk-neutral probabilities. A smile implies that actual OTM option prices are more expensive than BSM model values. The probability of reaching the tails of the distribution is higher than that from a normal distribution. Fat tails, or (formally) leptokurtosis. A negative skew implies that option values at low strikes are more expensive than BSM model values. The probability of downward movements is higher than that from a normal distribution. Negative skewness in the distribution. Implied volatility smiles and skews indicate that the underlying security return distribution is not normally distributed (under the risk-neutral measure We are talking about cross-sectional behaviors, not time series). Liuren Wu Implied Volatility Surface Options Markets 10 / 18

11 Quantifying the linkage ( IV (d) ATMV 1 + Skew. d + Kurt. ) 6 24 d 2, d = ln K/F σ τ If we fit a quadratic function to the smile, the slope reflects the skewness of the underlying return distribution. The curvature measures the excess kurtosis of the distribution. A normal distribution has zero skewness (it is symmetric) and zero excess kurtosis. This equation is just an approximation, based on expansions of the normal density (Read Accounting for Biases in Black-Scholes. ) The currency option quotes: Risk reversals measure slope/skewness, butterfly spreads measure curvature/kurtosis. Check the VOLC function on Bloomberg. Liuren Wu Implied Volatility Surface Options Markets 11 / 18

12 Revisit the implied volatility smile graphics For single name stocks (AMD), the short-term return distribution is highly fat-tailed. The long-term distribution is highly negatively skewed. For stock indexes (SPX), the distributions are negatively skewed at both short and long horizons. For currency options, the average distribution has positive butterfly spreads (fat tails). Normal distribution assumption does not work well. Another assumption of BSM is that the return volatility (σ) is constant Check the evidence in the next few pages. Liuren Wu Implied Volatility Surface Options Markets 12 / 18

13 Stochastic volatility on stock indexes 0.5 SPX: Implied Volatility Level 0.55 FTS: Implied Volatility Level Implied Volatility Implied Volatility At-the-money implied volatilities at fixed time-to-maturities from 1 month to 5 years. Liuren Wu Implied Volatility Surface Options Markets 13 / 18

14 Stochastic volatility on currencies JPYUSD GBPUSD Implied volatility Implied volatility Three-month delta-neutral straddle implied volatility. Liuren Wu Implied Volatility Surface Options Markets 14 / 18

15 Stochastic skewness on stock indexes 0.4 SPX: Implied Volatility Skew 0.4 FTS: Implied Volatility Skew Implied Volatility Difference, 80% 120% Implied Volatility Difference, 80% 120% Implied volatility spread between 80% and 120% strikes at fixed time-to-maturities from 1 month to 5 years. Liuren Wu Implied Volatility Surface Options Markets 15 / 18

16 Stochastic skewness on currencies JPYUSD GBPUSD RR10 and BF RR10 and BF Three-month 10-delta risk reversal (blue lines) and butterfly spread (red lines). Liuren Wu Implied Volatility Surface Options Markets 16 / 18

17 What do the implied volatility plots tell us? Returns on financial securities (stocks, indexes, currencies) are not normally distributed. They all have fatter tails than normal (on average). The distribution is also skewed, mostly negative for stock indexes (and sometimes single name stocks), but can be either direction (positive or negative) for currencies. The return distribution is not constant over time, but varies strongly. The volatility of the distribution is not constant. Even higher moments (skewness, kurtosis) of the distribution are not constant, either. A good option pricing model should account for return non-normality and its stochastic (time-varying) feature. Liuren Wu Implied Volatility Surface Options Markets 17 / 18

18 A new, simple, fun model, directly on implied volatility Black-Merton-Scholes: ds t /S t = µdt + σdw t, with constant volatility σ. Based on the evidence we observed earlier, we allow σ t to be stochastic (vary randomly over time) Normally, one would specify how σ t varies and derive option pricing values under the new specification. This can get complicated, normally involves numerical integration/fourier transform even in the most tractable case. We do not specify how σ t varies, but instead specify how the implied volatility of each contract (K, T ) will vary accordingly: di t (K, T )/I t (K, T ) = m t dt + w t dwt 2, dw t is correlated with dw t with correlation ρ t. Then, the whole implied volatility surface I t (k, τ) becomes the solution to a quadratic equation, 0 = 1 4 w 2 t τ 2 I t (k, τ) 4 +(1 2m t τ w t ρ t σ t τ) I t (k, τ) 2 ( σ 2 t + 2w t ρ t σ t k + w 2 t k 2) where k = ln K/F and τ = T t. Complicated stuff can be made simple if you think hard enough... Liuren Wu Implied Volatility Surface Options Markets 18 / 18

### Stochastic Skew in Currency Options

Stochastic Skew in Currency Options PETER CARR Bloomberg LP and Courant Institute, NYU LIUREN WU Zicklin School of Business, Baruch College Citigroup Wednesday, September 22, 2004 Overview There is a huge

### Options: Definitions, Payoffs, & Replications

Options: Definitions, s, & Replications Liuren Wu Zicklin School of Business, Baruch College Options Markets Liuren Wu (Baruch) s Options Markets 1 / 34 Definitions and terminologies An option gives the

Options Trading Strategies Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: ) Liuren Wu (Baruch) Options Trading Strategies Options Markets 1 / 18 Objectives A strategy

### The Black-Scholes Model

The Black-Scholes Model Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 12, 13, 14) Liuren Wu The Black-Scholes Model Options Markets 1 / 19 The Black-Scholes-Merton

### Option Properties. Liuren Wu. Zicklin School of Business, Baruch College. Options Markets. (Hull chapter: 9)

Option Properties Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 9) Liuren Wu (Baruch) Option Properties Options Markets 1 / 17 Notation c: European call option price.

### Hedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/)

Hedging Barriers Liuren Wu Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/) Based on joint work with Peter Carr (Bloomberg) Modeling and Hedging Using FX Options, March

### Stochastic Skew Models for FX Options

Stochastic Skew Models for FX Options Peter Carr Bloomberg LP and Courant Institute, NYU Liuren Wu Zicklin School of Business, Baruch College Special thanks to Bruno Dupire, Harvey Stein, Arun Verma, and

### The Heston Model. Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ May 6, 2014

Hui Gong, UCL http://www.homepages.ucl.ac.uk/ ucahgon/ May 6, 2014 Generalized SV models Vanilla Call Option via Heston Itô s lemma for variance process Euler-Maruyama scheme Implement in Excel&VBA 1.

### Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options

Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder

### Mechanics of Options Markets

Mechanics of Options Markets Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 8) Liuren Wu (Baruch) Options Markets Mechanics Options Markets 1 / 22 Outline 1 Definition

### Caput Derivatives: October 30, 2003

Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor

### Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.

Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.

### Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008

: A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of

### Introduction, Forwards and Futures

Introduction, Forwards and Futures Liuren Wu Zicklin School of Business, Baruch College Fall, 2007 (Hull chapters: 1,2,3,5) Liuren Wu Introduction, Forwards & Futures Option Pricing, Fall, 2007 1 / 35

### Hedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging

Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in

### Lecture 11: The Greeks and Risk Management

Lecture 11: The Greeks and Risk Management This lecture studies market risk management from the perspective of an options trader. First, we show how to describe the risk characteristics of derivatives.

### MATH3075/3975 Financial Mathematics

MATH3075/3975 Financial Mathematics Week 11: Solutions Exercise 1 We consider the Black-Scholes model M = B, S with the initial stock price S 0 = 9, the continuously compounded interest rate r = 0.01 per

### Beyond Black- Scholes: Smile & Exo6c op6ons. Professor André Farber Solvay Brussels School of Economics and Management Université Libre de Bruxelles

Beyond Black- Scholes: Smile & Exo6c op6ons Professor André Farber Solvay Brussels School of Economics and Management Université Libre de Bruxelles 1 What is a Vola6lity Smile? Rela6onship between implied

### Model-Free Boundaries of Option Time Value and Early Exercise Premium

Model-Free Boundaries of Option Time Value and Early Exercise Premium Tie Su* Department of Finance University of Miami P.O. Box 248094 Coral Gables, FL 33124-6552 Phone: 305-284-1885 Fax: 305-284-4800

### Properties of the SABR model

U.U.D.M. Project Report 2011:11 Properties of the SABR model Nan Zhang Examensarbete i matematik, 30 hp Handledare och examinator: Johan Tysk Juni 2011 Department of Mathematics Uppsala University ABSTRACT

### Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies

Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative

### Study on the Volatility Smile of EUR/USD Currency Options and Trading Strategies

Prof. Joseph Fung, FDS Study on the Volatility Smile of EUR/USD Currency Options and Trading Strategies BY CHEN Duyi 11050098 Finance Concentration LI Ronggang 11050527 Finance Concentration An Honors

### Option Valuation. Chapter 21

Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price

### Factors Affecting Option Prices. Ron Shonkwiler (shonkwiler@math.gatech.edu) www.math.gatech.edu/ shenk

1 Factors Affecting Option Prices Ron Shonkwiler (shonkwiler@math.gatech.edu) www.math.gatech.edu/ shenk 1 Factors Affecting Option Prices Ron Shonkwiler (shonkwiler@math.gatech.edu) www.math.gatech.edu/

### A Primer on Credit Default Swaps

A Primer on Credit Default Swaps Liuren Wu Baruch College and Bloomberg LP July 9, 2008, Beijing, China Liuren Wu CDS July 9, 2008, Beijing 1 / 25 The basic contractual structure of CDS A CDS is an OTC

### A SNOWBALL CURRENCY OPTION

J. KSIAM Vol.15, No.1, 31 41, 011 A SNOWBALL CURRENCY OPTION GYOOCHEOL SHIM 1 1 GRADUATE DEPARTMENT OF FINANCIAL ENGINEERING, AJOU UNIVERSITY, SOUTH KOREA E-mail address: gshim@ajou.ac.kr ABSTRACT. I introduce

### Chapter 13 The Black-Scholes-Merton Model

Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)

### More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options

More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path

### Option Premium = Intrinsic. Speculative Value. Value

Chapters 4/ Part Options: Basic Concepts Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options An Option-Pricing Formula Investment in

### Put-Call Parity. chris bemis

Put-Call Parity chris bemis May 22, 2006 Recall that a replicating portfolio of a contingent claim determines the claim s price. This was justified by the no arbitrage principle. Using this idea, we obtain

### Finance 436 Futures and Options Review Notes for Final Exam. Chapter 9

Finance 436 Futures and Options Review Notes for Final Exam Chapter 9 1. Options: call options vs. put options, American options vs. European options 2. Characteristics: option premium, option type, underlying

### Pricing Barrier Option Using Finite Difference Method and MonteCarlo Simulation

Pricing Barrier Option Using Finite Difference Method and MonteCarlo Simulation Yoon W. Kwon CIMS 1, Math. Finance Suzanne A. Lewis CIMS, Math. Finance May 9, 000 1 Courant Institue of Mathematical Science,

### 2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold

Chapter 21 : Options-1 CHAPTER 21. OPTIONS Contents I. INTRODUCTION BASIC TERMS II. VALUATION OF OPTIONS A. Minimum Values of Options B. Maximum Values of Options C. Determinants of Call Value D. Black-Scholes

### Implied Volatility of Leveraged ETF Options

IEOR Dept. Columbia University joint work with Ronnie Sircar (Princeton) Cornell Financial Engineering Seminar Feb. 6, 213 1 / 37 LETFs and Their Options Leveraged Exchange Traded Funds (LETFs) promise

### Models Used in Variance Swap Pricing

Models Used in Variance Swap Pricing Final Analysis Report Jason Vinar, Xu Li, Bowen Sun, Jingnan Zhang Qi Zhang, Tianyi Luo, Wensheng Sun, Yiming Wang Financial Modelling Workshop 2011 Presentation Jan

### No-Arbitrage Condition of Option Implied Volatility and Bandwidth Selection

Kamla-Raj 2014 Anthropologist, 17(3): 751-755 (2014) No-Arbitrage Condition of Option Implied Volatility and Bandwidth Selection Milos Kopa 1 and Tomas Tichy 2 1 Institute of Information Theory and Automation

### VIX, the CBOE Volatility Index

VIX, the CBOE Volatility Index Ser-Huang Poon September 5, 008 The volatility index compiled by the CBOE (Chicago Board of Option Exchange) has been shown to capture nancial turmoil and produce good volatility

### The Black-Scholes Formula

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

### Overview. Option Basics. Options and Derivatives. Professor Lasse H. Pedersen. Option basics and option strategies

Options and Derivatives Professor Lasse H. Pedersen Prof. Lasse H. Pedersen 1 Overview Option basics and option strategies No-arbitrage bounds on option prices Binomial option pricing Black-Scholes-Merton

### Underlying (S) The asset, which the option buyer has the right to buy or sell. Notation: S or S t = S(t)

INTRODUCTION TO OPTIONS Readings: Hull, Chapters 8, 9, and 10 Part I. Options Basics Options Lexicon Options Payoffs (Payoff diagrams) Calls and Puts as two halves of a forward contract: the Put-Call-Forward

### FX Derivatives Terminology. Education Module: 5. Dated July 2002. FX Derivatives Terminology

Education Module: 5 Dated July 2002 Foreign Exchange Options Option Markets and Terminology A American Options American Options are options that are exercisable for early value at any time during the term

### Option Portfolio Modeling

Value of Option (Total=Intrinsic+Time Euro) Option Portfolio Modeling Harry van Breen www.besttheindex.com E-mail: h.j.vanbreen@besttheindex.com Introduction The goal of this white paper is to provide

### Liquidity in Equity and Option Markets A Hedging Perspective

Liquidity in Equity and Option Markets A Hedging Perspective Stefan Sandberg Stockholm, January 2012 1 Abstract When options and other derivatives are issued, the issuer seeks risk neutral positions. These

### Options. + Concepts and Buzzwords. Readings. Put-Call Parity Volatility Effects

+ Options + Concepts and Buzzwords Put-Call Parity Volatility Effects Call, put, European, American, underlying asset, strike price, expiration date Readings Tuckman, Chapter 19 Veronesi, Chapter 6 Options

### Protective Put Strategy Profits

Chapter Part Options and Corporate Finance: Basic Concepts Combinations of Options Options Call Options Put Options Selling Options Reading The Wall Street Journal Combinations of Options Valuing Options

### Week 13 Introduction to the Greeks and Portfolio Management:

Week 13 Introduction to the Greeks and Portfolio Management: Hull, Ch. 17; Poitras, Ch.9: I, IIA, IIB, III. 1 Introduction to the Greeks and Portfolio Management Objective: To explain how derivative portfolios

### where N is the standard normal distribution function,

The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at

### OPTIONS. FINANCE TRAINER International Options / Page 1 of 38

OPTIONS 1. FX Options... 3 1.1 Terminology... 4 1.2 The Four Basic Positions... 5 1.3 Standard Options... 7 1.4 Exotic Options... 7 1.4.1 Asian Option (Average Rate Option, ARO)... 7 1.4.2 Compound Option...

### Figure S9.1 Profit from long position in Problem 9.9

Problem 9.9 Suppose that a European call option to buy a share for \$100.00 costs \$5.00 and is held until maturity. Under what circumstances will the holder of the option make a profit? Under what circumstances

### Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6

Lecture 15 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 Black-Scholes Equation and Replicating Portfolio 2 Static

### Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model

### Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.

Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards

### Foreign Exchange Symmetries

Foreign Exchange Symmetries Uwe Wystup MathFinance AG Waldems, Germany www.mathfinance.com 8 September 2008 Contents 1 Foreign Exchange Symmetries 2 1.1 Motivation.................................... 2

### Lecture 4: The Black-Scholes model

OPTIONS and FUTURES Lecture 4: The Black-Scholes model Philip H. Dybvig Washington University in Saint Louis Black-Scholes option pricing model Lognormal price process Call price Put price Using Black-Scholes

### The Implied Volatility Surfaces

The Implied Volatility Surfaces August 13, 2007 1 Introduction The volatility surface, or matrix (we will use without any distinction the two terms), is the map of the implied volatilities quoted by the

### 7: The CRR Market Model

Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The Cox-Ross-Rubinstein

### CURRENCY OPTION PRICING II

Jones Grauate School Rice University Masa Watanabe INTERNATIONAL FINANCE MGMT 657 Calibrating the Binomial Tree to Volatility Black-Scholes Moel for Currency Options Properties of the BS Moel Option Sensitivity

### Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption

### Markov modeling of Gas Futures

Markov modeling of Gas Futures p.1/31 Markov modeling of Gas Futures Leif Andersen Banc of America Securities February 2008 Agenda Markov modeling of Gas Futures p.2/31 This talk is based on a working

### Credit Implied Volatility

Credit Implied Volatility Bryan Kelly* Gerardo Manzo Diogo Palhares University of Chicago & NBER University of Chicago AQR Capital Management January 2015 PRELIMINARY AND INCOMPLETE Abstract We introduce

### Information Content of Right Option Tails: Evidence from S&P 500 Index Options

Information Content of Right Option Tails: Evidence from S&P 500 Index Options Greg Orosi* October 17, 2015 Abstract In this study, we investigate how useful the information content of out-of-the-money

### Contents. iii. MFE/3F Study Manual 9th edition Copyright 2011 ASM

Contents 1 Put-Call Parity 1 1.1 Review of derivative instruments................................................ 1 1.1.1 Forwards............................................................ 1 1.1.2 Call

### 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

### An Empirical Analysis of Option Valuation Techniques. Using Stock Index Options

An Empirical Analysis of Option Valuation Techniques Using Stock Index Options Mohammad Yamin Yakoob 1 Duke University Durham, NC April 2002 1 Mohammad Yamin Yakoob graduated cum laude from Duke University

### Some Practical Issues in FX and Equity Derivatives

Some Practical Issues in FX and Equity Derivatives Phenomenology of the Volatility Surface The volatility matrix is the map of the implied volatilities quoted by the market for options of different strikes

### 1.1 Some General Relations (for the no dividend case)

1 American Options Most traded stock options and futures options are of American-type while most index options are of European-type. The central issue is when to exercise? From the holder point of view,

### FINANCIAL ENGINEERING CLUB TRADING 201

FINANCIAL ENGINEERING CLUB TRADING 201 STOCK PRICING It s all about volatility Volatility is the measure of how much a stock moves The implied volatility (IV) of a stock represents a 1 standard deviation

### One Period Binomial Model

FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing

### Trading the volatility skew of the options on the S&P index

Trading the volatility skew of the options on the S&P index Juan Aguirre Bueno Directors: Juan Toro Cebada Angel Manuel Ramos de Olmo Benjamin Ivorra Trabajo de Fin de Master Academic year: 2011-2012 Contents

### Options on an Asset that Yields Continuous Dividends

Finance 400 A. Penati - G. Pennacchi Options on an Asset that Yields Continuous Dividends I. Risk-Neutral Price Appreciation in the Presence of Dividends Options are often written on what can be interpreted

### Back to the past: option pricing using realized volatility

Back to the past: option pricing using realized volatility F. Corsi N. Fusari D. La Vecchia Swiss Finance Institute and University of Siena Swiss Finance Institute, University of Lugano University of Lugano

### Implied risk-neutral probability density functions from option prices: theory and application

Implied risk-neutral probability density functions from option prices: theory and application Bhupinder Bahra Bank of England, Threadneedle Street, London, ECR 8AH The views expressed in this paper are

### The Black-Scholes pricing formulas

The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

### Lecture 1: Stochastic Volatility and Local Volatility

Lecture 1: Stochastic Volatility and Local Volatility Jim Gatheral, Merrill Lynch Case Studies in Financial Modelling Course Notes, Courant Institute of Mathematical Sciences, Fall Term, 2002 Abstract

### Use the option quote information shown below to answer the following questions. The underlying stock is currently selling for \$83.

Problems on the Basics of Options used in Finance 2. Understanding Option Quotes Use the option quote information shown below to answer the following questions. The underlying stock is currently selling

### Risk Management and Governance Hedging with Derivatives. Prof. Hugues Pirotte

Risk Management and Governance Hedging with Derivatives Prof. Hugues Pirotte Several slides based on Risk Management and Financial Institutions, e, Chapter 6, Copyright John C. Hull 009 Why Manage Risks?

### Option Pricing. 1 Introduction. Mrinal K. Ghosh

Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified

### Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration

CHAPTER 16 Option Valuation 16.1 OPTION VALUATION: INTRODUCTION Option Values Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise price Put:

### The equilibrium price of the call option (C; European on a non-dividend paying stock) is shown by Black and Scholes to be: are given by. p T t.

THE GREEKS BLACK AND SCHOLES (BS) FORMULA The equilibrium price of the call option (C; European on a non-dividend paying stock) is shown by Black and Scholes to be: C t = S t N(d 1 ) Xe r(t t) N(d ); Moreover

### Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week

Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics

### Analytically Tractable Stochastic Stock Price Models

Archil Gulisashvili Analytically Tractable Stochastic Stock Price Models 4Q Springer Contents 1 Volatility Processes 1 1.1 Brownian Motion 1 1.2 s Geometric Brownian Motion 6 1.3 Long-Time Behavior of

### Sensex Realized Volatility Index

Sensex Realized Volatility Index Introduction: Volatility modelling has traditionally relied on complex econometric procedures in order to accommodate the inherent latent character of volatility. Realized

### Options: Valuation and (No) Arbitrage

Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial

### Introduction to Risk, Return and the Historical Record

Introduction to Risk, Return and the Historical Record Rates of return Investors pay attention to the rate at which their fund have grown during the period The holding period returns (HDR) measure the

### FX Options and Smile Risk_. Antonio Castagna. )WILEY A John Wiley and Sons, Ltd., Publication

FX Options and Smile Risk_ Antonio Castagna )WILEY A John Wiley and Sons, Ltd., Publication Preface Notation and Acronyms IX xiii 1 The FX Market 1.1 FX rates and spot contracts 1.2 Outright and FX swap

### Contents. iii. MFE/3F Study Manual 9 th edition 10 th printing Copyright 2015 ASM

Contents 1 Put-Call Parity 1 1.1 Review of derivative instruments................................. 1 1.1.1 Forwards........................................... 1 1.1.2 Call and put options....................................

### Implied Volatility Skews in the Foreign Exchange Market. Empirical Evidence from JPY and GBP: 1997-2002

Implied Volatility Skews in the Foreign Exchange Market Empirical Evidence from JPY and GBP: 1997-2002 The Leonard N. Stern School of Business Glucksman Institute for Research in Securities Markets Faculty

### Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)

Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared

### Options Pricing. This is sometimes referred to as the intrinsic value of the option.

Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff

### Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D

Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS

### UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:

UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,

### Derivation of Local Volatility by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Derivation of Local Volatility by Fabrice Douglas Rouah www.frouah.com www.volopta.com The derivation of local volatility is outlined in many papers and textbooks (such as the one by Jim Gatheral []),

### A comparison between different volatility models. Daniel Amsköld

A comparison between different volatility models Daniel Amsköld 211 6 14 I II Abstract The main purpose of this master thesis is to evaluate and compare different volatility models. The evaluation is based

### Option hedging with stochastic volatility

Option hedging with stochastic volatility Adam Kurpiel L.A.R.E. U.R.A. n 944, Université Montesquieu-Bordeaux IV, France Thierry Roncalli FERC, City University Business School, England December 8, 998

### Mid-Term Spring 2003

Mid-Term Spring 2003 1. (1 point) You want to purchase XYZ stock at \$60 from your broker using as little of your own money as possible. If initial margin is 50% and you have \$3000 to invest, how many shares

### Using the SABR Model

Definitions Ameriprise Workshop 2012 Overview Definitions The Black-76 model has been the standard model for European options on currency, interest rates, and stock indices with it s main drawback being