The Heston Model. Hui Gong, UCL ucahgon/ May 6, 2014


 Roberta Robertson
 1 years ago
 Views:
Transcription
1 Hui Gong, UCL ucahgon/ May 6, 2014
2 Generalized SV models Vanilla Call Option via Heston Itô s lemma for variance process EulerMaruyama scheme Implement in Excel&VBA
3 1. Why the BlackScholes model is not popular in the industry? 2. What is the stochastic volatility models? Stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed.
4 Generalized SV models Vanilla Call Option via Heston A general expression for nondividend stock with stochastic volatility is as below: with ds t = µ t S t dt + v t S t dw 1 t, (1) dv t = α(s t, v t, t)dt + β(s t, v t, t)dw 2 t, (2) dw 1 t dw 2 t = ρdt, where S t denotes the stock price and v t denotes its variance. Examples: Heston model SABR volatility model GARCH model 3/2 model Chen model
5 Generalized SV models Vanilla Call Option via Heston The Heston model is a typical model which takes α(s t, v t, t) = κ(θ v t ) and β(s t, v t, t) = σ v t, i.e. ds t = µs t dt + v t S t dw 1,t, (3) dv t = κ(θ v t )dt + σ v t dw 2,t, (4) with dw 1,t dw 2,t = ρdt, (5) where θ is the long term mean of v t, κ denotes the speed of reversion and σ is the volatility of volatility. The instantaneous variance v t here is a CIR process (square root process).
6 Generalized SV models Vanilla Call Option via Heston Let x t = ln S t, the riskneutral dynamics of Heston model is ( dx t = r 1 ) 2 v t dt + v t dw1,t, (6) with dv t = κ (θ v t )dt + σ v t dw 2,t, (7) dw 1,tdW 2,t = ρdt. (8) where κ = κ + λ and θ = κθ κ+λ. Using these dynamics, the probability of the call option expires inthemoney, conditional on the log of the stock price, can be interpreted as riskadjusted or riskneutral probabilities. Hence, F j (x, v, T ; ln K) = Pr(x(T ) ln K x t = x, v t = v).
7 Generalized SV models Vanilla Call Option via Heston The price of vanilla call option is: C(S, v, t) = SF 1 e r(t t) KF 2, (9) where F 1 and F 2 should satisfy the PDE (for j = 1, 2) 1 2 v 2 F j x 2 + ρσv 2 F j x v σ2 v 2 F j v 2 +(r + u j v) F j x + (a j b j v) F j v + F j t = 0. (10) The parameter in Equation (10) is as follows u 1 = 1 2, u 2 = 1 2, a = κθ, b 1 = κ+λ ρσ, b 2 = κ+λ.
8 Itô s lemma for variance process EulerMaruyama scheme Implement in Excel&VBA The simulated variance can be inspected to check whether it is negative (v < 0). In this case, the variance can be set to zero (v = 0), or its sign can be inverted so that v becomes v. Alternatively, the variance process can be modified in the same way as the stock process, by defining a process for natural log variances by using Itô s lemma d ln v t = 1 ( κ (θ v t ) 1 ) v t 2 σ2 dt + σ 1 dw2,t. (11) vt
9 Itô s lemma for variance process EulerMaruyama scheme Implement in Excel&VBA The Heston model can be discretized as following ( ln S t+ t = ln S t + r 1 ) 2 v t t + v t tɛs,t+1, ln v t+ t = ln v t + 1 v t ( κ (θ v t ) 1 2 σ2 ) t + σ 1 vt tɛv,t+1. Shocks to the volatility, ɛ v,t+1, are correlated with the shocks to the stock price process, ɛ S,t+1. This correlation is denoted ρ, so that ρ = Corr(ɛ S,t+1, ɛ v,t+1 ) and the relationship between the shocks can be written as ɛ v,t+1 = ρɛ S,t ρ 2 ɛ t+1 where ɛ t+1 are independently with ɛ S,t+1.
10 Itô s lemma for variance process EulerMaruyama scheme Implement in Excel&VBA Figure: Heston (1993) Call Price by Monte Carlo
11 Itô s lemma for variance process EulerMaruyama scheme Implement in Excel&VBA Figure: VBA code for Heston (1993) Call Price by Monte Carlo
12 Use the ClosedForm Approach to implement Heston Call & Put.
The Evaluation of Barrier Option Prices Under Stochastic Volatility. BFS 2010 Hilton, Toronto June 24, 2010
The Evaluation of Barrier Option Prices Under Stochastic Volatility Carl Chiarella, Boda Kang and Gunter H. Meyer School of Finance and Economics University of Technology, Sydney School of Mathematics
More informationSimulating Stochastic Differential Equations
Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular
More informationLecture 1: Stochastic Volatility and Local Volatility
Lecture 1: Stochastic Volatility and Local Volatility Jim Gatheral, Merrill Lynch Case Studies in Financial Modelling Course Notes, Courant Institute of Mathematical Sciences, Fall Term, 2002 Abstract
More informationImplied Volatility Surface
Implied Volatility Surface Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 16) Liuren Wu Implied Volatility Surface Options Markets 1 / 18 Implied volatility Recall
More informationUsing the SABR Model
Definitions Ameriprise Workshop 2012 Overview Definitions The Black76 model has been the standard model for European options on currency, interest rates, and stock indices with it s main drawback being
More informationHPCFinance: New Thinking in Finance. Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation
HPCFinance: New Thinking in Finance Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation Dr. Mark Cathcart, Standard Life February 14, 2014 0 / 58 Outline Outline of Presentation
More informationStock Price Dynamics, Dividends and Option Prices with Volatility Feedback
Stock Price Dynamics, Dividends and Option Prices with Volatility Feedback Juho Kanniainen Tampere University of Technology New Thinking in Finance 12 Feb. 2014, London Based on J. Kanniainen and R. Piche,
More informationHedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15
Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.
More informationPrivate Equity Fund Valuation and Systematic Risk
An Equilibrium Approach and Empirical Evidence Axel Buchner 1, Christoph Kaserer 2, Niklas Wagner 3 Santa Clara University, March 3th 29 1 Munich University of Technology 2 Munich University of Technology
More informationJungSoon Hyun and YoungHee Kim
J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL JungSoon Hyun and YoungHee Kim Abstract. We present two approaches of the stochastic interest
More informationThe BlackScholes pricing formulas
The BlackScholes pricing formulas Moty Katzman September 19, 2014 The BlackScholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock
More informationValuation of Long Term Equity Options and Guarantees under Stochastic Interest Rates. Bernard Wong, UNSW
Valuation of Long Term Equity Options and Guarantees under Stochastic Interest Rates Bernard Wong, UNSW Outline 1. Long Term Guarantees and Interest Rate Variability 2. HJM framework and applicable models
More informationExam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D
Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS
More informationThe Impact of Stochastic Volatility on Pricing, Hedging, and Hedge Efficiency of Variable Annuity Guarantees
The Impact of Stochastic Volatility on Pricing, Hedging, and Hedge Efficiency of Variable Annuity Guarantees Alexander Kling, Frederik Ruez, and Jochen Russ Frederik Ruez, Ulm University Research Purpose
More informationHedging Barriers. Liuren Wu. Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/)
Hedging Barriers Liuren Wu Zicklin School of Business, Baruch College (http://faculty.baruch.cuny.edu/lwu/) Based on joint work with Peter Carr (Bloomberg) Modeling and Hedging Using FX Options, March
More informationNumerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
More informationThe FeynmanKac Theorem by Fabrice Douglas Rouah
The FeynmanKac Theorem by Fabrice Douglas Rouah wwwfrouahcom wwwvoloptacom In this Note we illustrate the FeynmanKac theorem in one dimension, and in multiple dimensions We illustrate the use of the
More informationA Closedform Exact Solution for Pricing Variance. Swaps with Stochastic Volatility
A Closedform Exact Solution for Pricing Variance Swaps with Stochastic Volatility SongPing Zhu, GuangHua Lian University of Wollongong, Australia Abstract In this paper, we present a highly efficient
More informationNumerical Methods for Option Pricing
Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly
More informationLecture 6 BlackScholes PDE
Lecture 6 BlackScholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the riskneutral measure Q by If the contingent
More informationEstimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine AïtSahalia
Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine AïtSahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times
More informationLecture 15. Sergei Fedotov. 20912  Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6
Lecture 15 Sergei Fedotov 20912  Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 BlackScholes Equation and Replicating Portfolio 2 Static
More informationPricing Barrier Option Using Finite Difference Method and MonteCarlo Simulation
Pricing Barrier Option Using Finite Difference Method and MonteCarlo Simulation Yoon W. Kwon CIMS 1, Math. Finance Suzanne A. Lewis CIMS, Math. Finance May 9, 000 1 Courant Institue of Mathematical Science,
More informationLecture 12: The BlackScholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The BlackScholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The BlackScholesMerton Model
More informationMATH3075/3975 Financial Mathematics
MATH3075/3975 Financial Mathematics Week 11: Solutions Exercise 1 We consider the BlackScholes model M = B, S with the initial stock price S 0 = 9, the continuously compounded interest rate r = 0.01 per
More informationJorge Cruz Lopez  Bus 316: Derivative Securities. Week 11. The BlackScholes Model: Hull, Ch. 13.
Week 11 The BlackScholes Model: Hull, Ch. 13. 1 The BlackScholes Model Objective: To show how the BlackScholes formula is derived and how it can be used to value options. 2 The BlackScholes Model 1.
More informationAnalytic Approximations for MultiAsset Option Pricing
Analytic Approximations for MultiAsset Option Pricing Carol Alexander ICMA Centre, University of Reading Aanand Venkatramanan ICMA Centre, University of Reading First Version March 2008 June 23, 2009
More informationFrom CFD to computational finance (and back again?)
computational finance p. 1/21 From CFD to computational finance (and back again?) Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute OxfordMan Institute of Quantitative Finance
More informationQuanto Adjustments in the Presence of Stochastic Volatility
Quanto Adjustments in the Presence of tochastic Volatility Alexander Giese March 14, 01 Abstract This paper considers the pricing of quanto options in the presence of stochastic volatility. While it is
More informationGenerating Random Numbers Variance Reduction QuasiMonte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010
Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 QuasiMonte
More informationThe BlackScholes Model
The BlackScholes Model Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 12, 13, 14) Liuren Wu The BlackScholes Model Options Markets 1 / 19 The BlackScholesMerton
More informationOption Pricing. 1 Introduction. Mrinal K. Ghosh
Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified
More informationFinite Differences Schemes for Pricing of European and American Options
Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the BlackScholes
More informationMoreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
More informationHedging Exotic Options
Kai Detlefsen Wolfgang Härdle Center for Applied Statistics and Economics HumboldtUniversität zu Berlin Germany introduction 11 Models The Black Scholes model has some shortcomings:  volatility is not
More informationConvenience YieldBased Pricing of Commodity Futures
Convenience YieldBased Pricing of Commodity Futures Takashi Kanamura, JPOWER BFS2010 6th World Congress in Toronto, Canada June 26th, 2010 1 Agenda 1. The objectives and results 2. The convenience yieldbased
More informationStochastic Processes Prof. Dr. S. Dharmaraja Department of Mathematics Indian Institute of Technology, Delhi
Stochastic Processes Prof. Dr. S. Dharmaraja Department of Mathematics Indian Institute of Technology, Delhi Module  7 Brownian Motion and its Applications Lecture  5 Ito Formula and its Variants This
More informationOnline Appendix. Supplemental Material for Insider Trading, Stochastic Liquidity and. Equilibrium Prices. by Pierre CollinDufresne and Vyacheslav Fos
Online Appendix Supplemental Material for Insider Trading, Stochastic Liquidity and Equilibrium Prices by Pierre CollinDufresne and Vyacheslav Fos 1. Deterministic growth rate of noise trader volatility
More informationStochastic Skew Models for FX Options
Stochastic Skew Models for FX Options Peter Carr Bloomberg LP and Courant Institute, NYU Liuren Wu Zicklin School of Business, Baruch College Special thanks to Bruno Dupire, Harvey Stein, Arun Verma, and
More informationHedging. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Hedging
Hedging An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in
More information金融隨機計算 : 第一章. BlackScholesMerton Theory of Derivative Pricing and Hedging. CH Han Dept of Quantitative Finance, Natl. TsingHua Univ.
金融隨機計算 : 第一章 BlackScholesMerton Theory of Derivative Pricing and Hedging CH Han Dept of Quantitative Finance, Natl. TsingHua Univ. Derivative Contracts Derivatives, also called contingent claims, are
More informationImplied Volatility of Leveraged ETF Options: Consistency and Scaling
Implied Volatility of Leveraged ETF Options: Consistency and Scaling Industrial Engineering & Operations Research Dept Columbia University Finance and Stochastics (FAST) Seminar University of Sussex March
More informationSome remarks on twoasset options pricing and stochastic dependence of asset prices
Some remarks on twoasset options pricing and stochastic dependence of asset prices G. Rapuch & T. Roncalli Groupe de Recherche Opérationnelle, Crédit Lyonnais, France July 16, 001 Abstract In this short
More informationLikewise, the payoff of the betteroftwo note may be decomposed as follows: Price of gold (US$/oz) 375 400 425 450 475 500 525 550 575 600 Oil price
Exchange Options Consider the Double Index Bull (DIB) note, which is suited to investors who believe that two indices will rally over a given term. The note typically pays no coupons and has a redemption
More informationLecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing
Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing Key concept: Ito s lemma Stock Options: A contract giving its holder the right, but not obligation, to trade shares of a common
More informationGeneration Asset Valuation with Operational Constraints A Trinomial Tree Approach
Generation Asset Valuation with Operational Constraints A Trinomial Tree Approach Andrew L. Liu ICF International September 17, 2008 1 Outline Power Plants Optionality  Intrinsic vs. Extrinsic Values
More informationNotes and exercises on BlackScholes April 2010
Math 425 Dr. DeTurck Notes and exercises on BlackScholes April 2010 On Thursday we talked in class about how to derive the BlackScholes differential equation, which is used in mathematical finance to
More informationStatic Hedging and Model Risk for Barrier Options
Static Hedging and Model Risk for Barrier Options Morten Nalholm Rolf Poulsen Abstract We investigate how sensitive different dynamic and static hedge strategies for barrier options are to model risk.
More informationBlackScholes Equation for Option Pricing
BlackScholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there
More informationTimerStyle Options Design, Pricing and Practice
TimerStyle Options Design, Pricing and Practice RiO 2010 Carole Bernard (joint work with Zhenyu Cui) Carole Bernard Timer Options 1 Outline Realized volatility. What is a timer option? Modelfree price
More informationOption hedging with stochastic volatility
Option hedging with stochastic volatility Adam Kurpiel L.A.R.E. U.R.A. n 944, Université MontesquieuBordeaux IV, France Thierry Roncalli FERC, City University Business School, England December 8, 998
More informationContinuous time; continuous variable stochastic process. We assume that stock prices follow Markov processes. That is, the future movements in a
Continuous time; continuous variable stochastic process. We assume that stock prices follow Markov processes. That is, the future movements in a variable depend only on the present, and not the history
More informationWeek 9 Stochastic differential equations
Week 9 Stochastic differential equations Jonathan Goodman November 19, 1 1 Introduction to the material for the week The material this week is all about the expression dx t = a t dt + b t dw t. (1 There
More informationMarkovian projection for volatility calibration
cutting edge. calibration Markovian projection for volatility calibration Vladimir Piterbarg looks at the Markovian projection method, a way of obtaining closedform approximations of Europeanstyle option
More informationEstimation of Stochastic Volatility Models with Implied Volatility Indices and Pricing of
Estimation of Stochastic Volatility Models with Implied Volatility Indices and Pricing of Straddle Option Yue Peng and Steven C. J. Simon University of Essex Centre for Computational Finance and Economic
More information3. Monte Carlo Simulations. Math6911 S08, HM Zhu
3. Monte Carlo Simulations Math6911 S08, HM Zhu References 1. Chapters 4 and 8, Numerical Methods in Finance. Chapters 17.617.7, Options, Futures and Other Derivatives 3. George S. Fishman, Monte Carlo:
More informationDerivation of Local Volatility by Fabrice Douglas Rouah www.frouah.com www.volopta.com
Derivation of Local Volatility by Fabrice Douglas Rouah www.frouah.com www.volopta.com The derivation of local volatility is outlined in many papers and textbooks (such as the one by Jim Gatheral []),
More informationOption Pricing under Heston and 3/2 Stochastic Volatility Models: an Approximation to the Fast Fourier Transform
Aarhus University Master s thesis Option Pricing under Heston and 3/2 Stochastic Volatility Models: an Approximation to the Fast Fourier Transform Author: Dessislava Koleva Supervisor: Elisa Nicolato July,
More informationThe Three Methods of Pricing Derivatives by Fabrice Douglas Rouah
The Three Methods of Pricing Derivatives by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we illustrate the three methods for pricing derivatives: pricing by no arbitrage, pricing using
More informationOption Pricing. Chapter 12  Local volatility models  Stefan Ankirchner. University of Bonn. last update: 13th January 2014
Option Pricing Chapter 12  Local volatility models  Stefan Ankirchner University of Bonn last update: 13th January 2014 Stefan Ankirchner Option Pricing 1 Agenda The volatility surface Local volatility
More informationLECTURES ON REAL OPTIONS: PART II TECHNICAL ANALYSIS
LECTURES ON REAL OPTIONS: PART II TECHNICAL ANALYSIS Robert S. Pindyck Massachusetts Institute of Technology Cambridge, MA 02142 Robert Pindyck (MIT) LECTURES ON REAL OPTIONS PART II August, 2008 1 / 50
More informationShare Price Movements
Share Price Movements Brian A. Eales April 2004 Share Price Movements ds = S µ dt + S σ dz ( 1) In continuous time or S = S µ t + S σ z ( 2) In discrete (measurable) time Page1 Where: ds or S represents
More informationProperties of the SABR model
U.U.D.M. Project Report 2011:11 Properties of the SABR model Nan Zhang Examensarbete i matematik, 30 hp Handledare och examinator: Johan Tysk Juni 2011 Department of Mathematics Uppsala University ABSTRACT
More informationα α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =
More informationValuation, Pricing of Options / Use of MATLAB
CS5 Computational Tools and Methods in Finance Tom Coleman Valuation, Pricing of Options / Use of MATLAB 1.0 PutCall Parity (review) Given a European option with no dividends, let t current time T exercise
More informationPricing Currency Options Under Stochastic Volatility
Pricing Currency Options Under Stochastic Volatility MingHsien Chen Department of Finance National Cheng Chi University YinFeng Gau * Department of International Business Studies National Chi Nan University
More informationModeling the Implied Volatility Surface. Jim Gatheral Stanford Financial Mathematics Seminar February 28, 2003
Modeling the Implied Volatility Surface Jim Gatheral Stanford Financial Mathematics Seminar February 28, 2003 This presentation represents only the personal opinions of the author and not those of Merrill
More informationChapter 2: Binomial Methods and the BlackScholes Formula
Chapter 2: Binomial Methods and the BlackScholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a calloption C t = C(t), where the
More informationValuing double barrier options with timedependent parameters by Fourier series expansion
IAENG International Journal of Applied Mathematics, 36:1, IJAM_36_1_1 Valuing double barrier options with timedependent parameters by Fourier series ansion C.F. Lo Institute of Theoretical Physics and
More informationInternational Stock Market Integration: A Dynamic General Equilibrium Approach
International Stock Market Integration: A Dynamic General Equilibrium Approach Harjoat S. Bhamra London Business School 2003 Outline of talk 1 Introduction......................... 1 2 Economy...........................
More informationLecture 10. Sergei Fedotov. 20912  Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7
Lecture 10 Sergei Fedotov 20912  Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 10 1 Binomial Model for Stock Price 2 Option Pricing on Binomial
More informationEuropean Options Pricing Using Monte Carlo Simulation
European Options Pricing Using Monte Carlo Simulation Alexandros Kyrtsos Division of Materials Science and Engineering, Boston University akyrtsos@bu.edu European options can be priced using the analytical
More informationTime Series 6. Robert Almgren. Nov. 9, 2009
Time Series 6 Robert Almgren Nov. 9, 2009 This week we continue our discussion of state space models, focusing on the particle method approach for nonlinear models. Besides its practical application, this
More informationAn Analytical Pricing Formula for VIX Futures and Its Empirical Applications
Faculty of Informatics, University of Wollongong An Analytical Pricing Formula for VIX Futures and Its Empirical Applications SongPing Zhu and GuangHua Lian School of Mathematics and Applied Statistics
More informationVariance Reduction for Monte Carlo Methods to Evaluate Option Prices under Multifactor Stochastic Volatility Models
Variance Reduction for Monte Carlo Methods to Evaluate Option Prices under Multifactor Stochastic Volatility Models JeanPierre Fouque and ChuanHsiang Han Submitted April 24, Accepted October 24 Abstract
More informationOption Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013
Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed
More informationStochastic Skew in Currency Options
Stochastic Skew in Currency Options PETER CARR Bloomberg LP and Courant Institute, NYU LIUREN WU Zicklin School of Business, Baruch College Citigroup Wednesday, September 22, 2004 Overview There is a huge
More informationImplied Volatility of Leveraged ETF Options: Consistency and Scaling
Implied Volatility of Leveraged ETF Options: Consistency and Scaling Tim Leung Industrial Engineering & Operations Research Dept Columbia University http://www.columbia.edu/ tl2497 Risk USA PostConference
More informationInterest Rate Models: Paradigm shifts in recent years
Interest Rate Models: Paradigm shifts in recent years Damiano Brigo QSCI, Managing Director and Global Head DerivativeFitch, 101 Finsbury Pavement, London Columbia University Seminar, New York, November
More informationDRAFT. Geng Deng, PhD, CFA, FRM Tim Dulaney, PhD, FRM Craig McCann, PhD, CFA Mike Yan, PhD, FRM. January 7, 2014
Crooked Volatility Smiles: Evidence from Leveraged and Inverse ETF Options Geng Deng, PhD, CFA, FRM Tim Dulaney, PhD, FRM Craig McCann, PhD, CFA Mike Yan, PhD, FRM January 7, 214 Abstract We find that
More informationOptions Vs. Futures: Which on Average Will Have the Greater Payoff?
Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 2012 Options Vs. Futures: Which on Average Will Have the Greater? Ryan Silvester Utah State University Follow
More informationMore Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options
More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path
More informationINTEREST RATES AND FX MODELS
INTEREST RATES AND FX MODELS 8. Portfolio greeks Andrew Lesniewski Courant Institute of Mathematical Sciences New York University New York March 27, 2013 2 Interest Rates & FX Models Contents 1 Introduction
More informationA SNOWBALL CURRENCY OPTION
J. KSIAM Vol.15, No.1, 31 41, 011 A SNOWBALL CURRENCY OPTION GYOOCHEOL SHIM 1 1 GRADUATE DEPARTMENT OF FINANCIAL ENGINEERING, AJOU UNIVERSITY, SOUTH KOREA Email address: gshim@ajou.ac.kr ABSTRACT. I introduce
More informationCase Studies in Acceleration of Heston s Stochastic Volatility Financial Engineering Model: GPU, Cloud and FPGA Implementations
Case Studies in Acceleration of Heston s Stochastic Volatility Financial Engineering Model: GPU, Cloud and FPGA Implementations by Christos Delivorias Supervised by Dr. Peter Richtárik and Martin Takáč
More informationMonte Carlo simulations in the case of several risk factors: Cholesky decomposition and copulas
wwwijcsiorg 233 Monte Carlo simulations in the case of several risk factors: Cholesky decomposition and copulas Naima SOKHER 1, Boubker DAAFI 2, Jamal BOYAGHROMNI 1, Abdelwahed NAMIR 1 1 Department of
More informationNumerical Methods for Pricing Exotic Options
Imperial College London Department of Computing Numerical Methods for Pricing Exotic Options by Hardik Dave  00517958 Supervised by Dr. Daniel Kuhn Second Marker: Professor Berç Rustem Submitted in partial
More informationIntroduction to Stochastic Differential Equations (SDEs) for Finance
Introduction to Stochastic Differential Equations (SDEs) for Finance Andrew Papanicolaou January, 013 Contents 1 Financial Introduction 3 1.1 A Market in Discrete Time and Space..................... 3
More informationSimple approximations for option pricing under mean reversion and stochastic volatility
Simple approximations for option pricing under mean reversion and stochastic volatility Christian M. Hafner Econometric Institute Report EI 2003 20 April 2003 Abstract This paper provides simple approximations
More informationStochastic Modelling and Forecasting
Stochastic Modelling and Forecasting Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH RSE/NNSFC Workshop on Management Science and Engineering and Public Policy
More informationEstimating Option Prices with Heston s Stochastic Volatility Model
Estimating Option Prices with Heston s Stochastic Volatility odel Robin Dunn, Paloma Hauser, Tom Seibold 3, Hugh Gong 4. Department of athematics and Statistics, Kenyon College, Gambier, OH 430. Department
More informationNumerical PDE methods for exotic options
Lecture 8 Numerical PDE methods for exotic options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Barrier options For barrier option part of the option contract is triggered if the asset
More informationEXACT SIMULATION OF OPTION GREEKS UNDER STOCHASTIC VOLATILITY AND JUMP DIFFUSION MODELS
Proceedings of the 2004 Winter Simulation Conference R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds. EXACT SIMULATION OF OPTION GREEKS UNDER STOCHASTIC VOLATILITY AND JUMP DIFFUSION
More informationOption to contract An option to reduce the scale of a project s operation. Synonym of contraction option and option to scale back
Glossary @Risk Risk Analysis Software using Monte Carlo Simulation software developed by Palisade Abandonment option Option to sell or close down a project (a simple put option). Synonym of option to abandon
More informationContinuousTime Derivative Pricing Models
ContinuousTime Derivative Pricing Models Eric Zivot May 5, 2011 Outline 1. Derivative Pricing with ContinuousTime Models 2. Derivation of BlackScholes (BS) SDE 3. BS Implied Volatility Reading APDVP,
More informationFinancial Derivatives. An Introduction to the BlackScholes PDE. The Pricing Problem. Example
Financial Derivatives April 23, 2009 Definition A derivative is a financial contract whose value is based on the value of an underlying asset. Typically, a derivative gives the holder the right to buy
More informationLecture 11: The Greeks and Risk Management
Lecture 11: The Greeks and Risk Management This lecture studies market risk management from the perspective of an options trader. First, we show how to describe the risk characteristics of derivatives.
More informationVariance Reduction. Pricing American Options. Monte Carlo Option Pricing. Delta and Common Random Numbers
Variance Reduction The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output If this variance can be lowered without changing the expected value, fewer replications
More informationARMA, GARCH and Related Option Pricing Method
ARMA, GARCH and Related Option Pricing Method Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook September
More informationRecent Developments of Statistical Application in. Finance. Ruey S. Tsay. Graduate School of Business. The University of Chicago
Recent Developments of Statistical Application in Finance Ruey S. Tsay Graduate School of Business The University of Chicago Guanghua Conference, June 2004 Summary Focus on two parts: Applications in Finance:
More information