Save this PDF as:

Size: px
Start display at page:

## Transcription

2 Grade 6 Contents Introduction... ix Lessons... Lesson Multiplication with Carrying Multiplication with Large Numbers Multiplying by 10, 100, and 1,000 Lesson Division of Whole Numbers Division Signs Creating Fractions with Remainders Lesson Two-Digit Divisors Estimating with Large Divisors Lesson Common Fractions Adding Fractions with Common Denominators Subtracting Fractions with Common Denominators Improper Fractions and Mixed Numbers Lesson Adding Mixed Numbers Subtracting Mixed Numbers Reducing Fractions Reducing Fractions to Lowest Terms iii

3 Contents Grade 6 Math Lesson Subtracting Mixed Numbers from Whole Numbers Borrowing with Mixed Numbers Lesson Common Denominators Finding the Lowest Common Denominator Lesson LCDs in Mixed Numbers Borrowing with Mixed Numbers and LCDs Lesson Multiplying Simple Fractions Multiplying Whole Numbers by Fractions Multiplying by Fractions in Word Problems Lesson Multiplying Fractions and Mixed Numbers Multiplying Two Mixed Numbers Lesson Multiplying Whole and Mixed Numbers Canceling Fractions Lesson Dividing Fractions Dividing Whole Numbers and Fractions Lesson Dividing with Fractions and Mixed Numbers Dividing Whole Numbers and Mixed Numbers Dividing with Two Mixed Numbers Lesson Decimal Fractions Decimal Fractions to Two Places (Hundredths) Decimal Fractions to Three Places (Thousandths) iv Oak Meadow

4 Grade 6 Math Contents Lesson Comparing Decimals Adding Decimals Lesson Subtracting Decimals Subtracting Decimals and Whole Numbers Subtracting Hundredths and Thousandths from Tenths Lesson Adding and Subtracting Money The Sign Lesson The Metric System Meters and Kilometers Lesson Multiplying Decimals Multiplying Larger Decimals Multiplying Decimals and Whole Numbers Multiplying Decimals by 10, 100, and 1,000 Lesson Dividing Decimals by Whole Numbers Dividends with Three or More Decimal Places Lesson Dividing with Dividends Less than 1 Dividing Decimals with Remainders Dividing by 10, 100, and 1,000 Lesson Dividing Decimals by Decimals Dividing Whole Numbers by Decimals Oak Meadow v

5 Contents Grade 6 Math Lesson Percentages Finding a Percent of a Number Using Percentages in Word Problems Lesson Converting Common Fractions to Decimals Converting Decimals to Percentages Finding Percentages in Word Problems Lesson Finding Averages Ratios Lesson Probability Chance Lesson Finding the Square of a Number Square Roots Lesson Measuring Weight Using the Metric System Measuring Liquid Using the Metric System Lesson Calculating Perimeter of Squares and Rectangles Calculating Perimeter of Triangles Calculating the Radius and Diameter of a Circle Lesson Figuring Area Parallel and Perpendicular Lines Finding Area of Irregular Rectangular Shapes vi Oak Meadow

6 Grade 6 Math Contents Lesson Determining Sales Tax Making Change Lesson Reading an Inch Ruler Reading a Centimeter Ruler Lesson Finding Missing Numbers in Addition Finding Missing Numbers in Subtraction Lesson Factors of Whole Numbers Prime Numbers Lesson Missing Numbers in Multiplication and Division Problems Parentheses in Mathematical Equations Lesson Final Exam Appendix Answer Key B-Tests for Enrolled Students Oak Meadow vii

7 Grade 6 3 Lesson MATH INSTRUCTION Two-Digit Divisors Every division problem has three main parts, and there are specific math terms used to describe these parts. Look at the following example: 238 Example 1: In this example, we ve left out the part of the solution that lies below the division bracket so we can focus on the main parts, which are called the divisor, the dividend, and the quotient. In the example above, 3 is the divisor, 714 is the dividend, and 238 is the quotient. The names of these three parts remain the same, even if the problem is presented like this: = 238 The divisor is always the number that you are dividing by, the dividend is always the number you are dividing into, and the quotient is always the answer. In all of the examples and problems we ve presented so far, we ve used 1-digit divisors, but it is possible to divide by larger divisors. In this lesson, we ll practice dividing by 2-digit divisors. Example 2: When we divide by 2-digit divisors, we follow the same four-step process as with 1-digit divisors, but we just use the entire 2-digit divisor for each step. Step 1: Start with the divide step. Ask yourself, How many times does 10 go into 3? Since 10 doesn t go into 3, ask How many times does 10 go into 32? 10 times 2 is 20, 10 times 3 is 30, and 10 times 4 is 40. Since 40 is too much, you go back to 30, so 10 goes into 32 three times. Write 3 as the quotient above the bracket, directly above the 2 in the dividend. ASSIGNMENT SUMMARY Skill Practice A Skill Practice B Lesson 3 Review 21

8 Lesson 3 Grade 6 Math Step 2: Continue with the multiply step, by saying, 10 times 3 is 30. Write 30 under the 32. Step 3: Next, proceed with the subtract step. Say, 32 minus 30 equals 2. Draw a line under the 30 and write 2 underneath the line. Step 4: The final step in the four-step process is bring down, so bring down the next number in the dividend, the 5, to make 25. When you ve completed this last step in the four-step process, the problem looks like this: To complete the problem, start again with step 1 of the four-step process: Step 1: Begin again with the divide step by asking, How many times does 10 go into 25? Since the correct answer is 2, write a 2 in the quotient, next to the 3. Step 2: Then go to the multiply step again, say 2 times 10 is 20, and write the number 20 underneath the 25. Step 3: Next, draw a line under the 20, subtract 20 from 25, and write 5 underneath. Step 4: This is the last step of the four-step process, but there is nothing left in the dividend to bring down, so we put the remainder over the divisor to create the fraction 5, and the problem is finished Estimating with Large Divisors You can divide by a number with any number of digits using the same four steps you have learned, but with larger numbers you have to follow those steps carefully and pay very close attention to keep from getting confused Oak Meadow

10 Lesson 3 Grade 6 Math Step 3: Next, draw a line under the 63, subtract 63 from 74, and write 11 underneath. Step 4: Finally, bring down the next digit in the dividend, the 3, and put it next to the 11 so it makes 113. At this point, the problem looks like this: Step 1: Now start the four-step process again with the divide step by estimating the quotient again. Ask yourself, How many times does 2 go into 1? 2 doesn t go into 1, so include the next digit and ask yourself How many times does 2 go into 11? The answer is 5, so write 5 in the quotient next to the 23, to make 235. Step 2: Then multiply 5 times 21 and get 105. Write it underneath the 113. Again, here is where you can correct your estimate, if necessary. Step 3: Next, draw a line under the 105 and subtract 105 from 113. Write the answer, 8, under the line. Step 4: Now we are at the final step of the four-step process, but since there is nothing left in the dividend to bring down, we put the remainder 8 over the divisor 21 to make the fraction We add this next to the whole numbers in the quotient, and the problem is finished Oak Meadow

12 Lesson 3 Grade 6 Math Learning Assessment Use these assessment rubrics to track student progress throughout the year and to make notes about the learning the student demonstrates or skills that need work. MATH Performs long division with single-digit divisors Uses estimating when solving long division with multi-digit divisors Performs multiplication involving large numbers Multiplies by 10, 100, and 1000 Not Yet Evident Developing Consistent Notes Adds and subtracts multi-digit numbers with carrying and borrowing Adds columns of numbers Translates word problems into numeric equations involving the four processes Uses unit labels and complete sentences when writing solutions to word problems Shows all work when solving problems Checks work using inverse operations Expresses remainders in division as fractions 26 Oak Meadow

13 Grade 6 Math Lesson 3 Skill Practice A Oak Meadow 27

15 Grade 6 Math Lesson 3 Lesson 3 Review , , , , , ,3 8 7 Oak Meadow 29

16 Lesson 3 Grade 6 Math Lesson 3 Review continued , Joan s father is 42 years old today. How many days old is he? (Note: don t add any days for leap year; just count each year as 365 days.) 30 Oak Meadow

17 Grade 6 4 Lesson MATH INSTRUCTION Common Fractions So far we have been working with whole numbers such as 23 or 568. They are called whole numbers because each number represents one whole unit, whatever it may be. Whether it s apples, cars, or flowers, each whole number represents one whole unit. Fractions are numbers that are less than 1, so they represent parts of 1 whole unit. For example, if we have 1 whole pie and we cut it into 6 pieces, each piece is a part of the pie. If there are 6 equal pieces, each piece is 1 part out of 6 parts of the pie. We can write this relationship between the part and the whole like this: 1 6 This is called a common fraction. The number below the line is called the denominator, and this is the number of parts in the whole. In our example, there are 6 pieces in the whole pie, so 6 is the denominator. The number above the line is called the numerator, and it is the number of parts that we are talking about in whatever problem we re discussing. In the example, we are talking about 1 piece of the pie, so 1 is the numerator. If we were talking about 3 pieces of the pie, we would call it 3 6, and if we talked about 5 pieces, we d call it 5 6. Sometimes common fractions are written on a slant, like 5/6, instead of above and below as we ve written it. In this case the numerator is on the left and the denominator on the right. But however it s written, every common fraction has these two parts: a numerator and a denominator. Remember these names, because we ll be referring to them often. ASSIGNMENT SUMMARY Skill Practice A Skill Practice B Lesson 4 Test 31

19 Grade 6 Math Lesson 4 Subtracting Fractions with Common Denominators As you can see from the previous examples, adding common fractions that have the same denominator is very easy. Subtracting common fractions that have the same denominators is also easy. If common fractions have the same denominators, you can subtract one fraction from another by simply subtracting numerators, as in the following example: 7 Example 1: Both denominators are the same, so you just subtract the numerators. Since 7-5 is 2, the answer is 2. As with addition, remember that you only 9 subtract the numerators. You don t subtract the denominators. Example 2: = 1 7 Example 3: Practice these skills with Skill Practice A. Oak Meadow 33

20 Lesson 4 Grade 6 Math Improper Fractions and Mixed Numbers Fractions usually have a numerator that is smaller than the denominator, and these are called proper fractions. But when the numerator is larger than the denominator, this is called an improper fraction. This often happens when you add two proper fractions. When you solve a problem and the answer is an improper fraction, you have to change that into a mixed number a combination of a whole number and a proper fraction. 5 Example 1: Step 1: Add the numerators together: = Step 2: Determine if the fraction is improper is an improper fraction, because the numerator (11) is larger than the denominator (8). Step 3: Divide the numerator by the denominator: 11 divided by 8 is 1, with a remainder of 3. Step 4: Write the whole number (1), then put the remainder (3) over the denominator (8) to make a proper fraction. The whole number and the fraction together make the mixed number The solution to the complete problem looks like this: = 11 = The horizontal line that separates the numerator from the denominator in a fraction actually means divided by. So 11 means 11 divided by 8, just 8 the same as 8 11 or is just another way of showing the same 8 relationship. If you divide the numerator by the denominator and there is no remainder, then the answer is just a whole number without a fraction. Example 2: = = 2 34 Oak Meadow

22 Lesson 4 Grade 6 Math Learning Assessment MATH Adds fractions with common denominators Not Yet Evident Developing Consistent Notes Subtracts fractions with common denominators Converts between mixed numbers and improper fractions Performs long division with single-digit divisors Uses estimating when solving long division with multi-digit divisors Performs multiplication involving large numbers Multiplies by 10, 100, and 1000 Adds and subtracts multi-digit numbers with carrying and borrowing Translates word problems into numeric equations involving the four processes Uses unit labels and complete sentences when writing solutions to word problems Shows all work when solving problems Checks work using inverse operations Expresses remainders in division as fractions 36 Oak Meadow

23 Grade 6 Math Lesson 4 Skill Practice A Oak Meadow 37

24 Lesson 4 Grade 6 Math Skill Practice B Solve these problems. Change improper fractions to mixed numbers Oak Meadow

25 Grade 6 Math Lesson 4 Lesson 4 Test 1. 1, , , , Oak Meadow 39

26 Lesson 4 Grade 6 Math Lesson 4 Test continued 17. Harry plans to save \$65 a month. If he saves this much each month for a year (12 months), how much will he have saved? 18. The Springfield Community Association raised \$6,500 to feed homeless people in their community. If 50 homeless people sign up for this program, how much can Community Service spend on each person? 19. Jackson Fishing Tools makes fishing rods. In April they manufactured 1,279 rods, in May they made 1,426, and in June they created 1,612. How many fishing rods did they make during April, May, and June? 20. Farmville library had 1,816 books in the children s section. A retired schoolteacher donated another 145 children s books to the library. How many children s books did the library have after the new donation? 40 Oak Meadow

27 Grade 6 23 Lesson MATH INSTRUCTION Percentages We might read in a newspaper article that Steve Forbes received 20 percent of the vote in the election. Or we might hear a TV announcer say, 60 percent of children ages 12 to 14 say they would like to spend more time with their parents. What does the word percent mean? We know that common fractions and decimal fractions both represent parts of a whole. For example, if a pie is cut into 10 pieces and 3 pieces have been eaten, we would say that 3 10 of the pie has been eaten. If we express this as a decimal fraction, we would say that 0.3 of the pie has been eaten. Since the pie was divided into 10 pieces, we say that the fractions and 0.3 are based upon ten. The whole was divided into 10 parts A percent is another way of expressing a fraction. The word percent means of a hundred. The symbol for percent is %. In percents, the whole is divided into 100 parts, so every percent expresses the number of parts of a hundred. For example, if we divided the pie above into 100 (very small) pieces, and 30 of those pieces had been eaten; we would say that 30 percent of the pie had been eaten. We would write this as 30%. Since a percent is based upon one hundred, we could express the value of a percent as either a common fraction or a decimal fraction, and the value would remain the same. For example, if we wrote 30% as a common fraction, we would call it , because we re talking about 30 parts out of 100. If we wrote it as a decimal fraction, we would write it as.30. All of these forms express the same value: 30 parts out of a hundred. Example 1: Write 75% as a common fraction. 75% means 75 parts out of a hundred, so we could express this as ASSIGNMENT SUMMARY Skill Practice A Skill Practice B Skill Practice C Lesson 23 Review 205

28 Lesson 23 Grade 6 Math Example 2: Write 18% as a decimal. 18% means 18 parts out of a hundred, so we could express this as.18. We could also put a zero in front to indicate that there is no whole number, so it would be Either way, the value is the same. Usually it is written without the zero. Example 3: Write as a percent. means 50 parts out of a hundred, so we could express this as 50%. Finding a Percent of a Number Since percents express values as parts of a hundred, we know that 80% means 80 out of 100. But suppose we want to find the value of 80% of 30? To do this, we have to multiply by the percent, as follows: Example 1: How much is 80% of 30? Step 1: Convert 80% into a decimal. 80% expressed as a decimal is.80. Step 2: Multiply the total number by the decimal Since there are only zeros after the decimal, we can drop the zeros. This means that 80% of 30 is 24. Example 2: 25% of 1,200 is how much? Step 1: Convert 25% into a decimal. 25% expressed as a decimal is.25. Step 2: Multiply the total number by the decimal Since there are only zeros after the decimal, we can drop the zeros. This means that 25% of 1,200 is Oak Meadow

29 Grade 6 Math Lesson 23 Using Percentages in Word Problems We can apply the skills we just learned to solve word problems that involve percents. Example 1: There were 20 people at the birthday party, and 60% of them were girls. How many girls were at the party? Step 1: Convert 60% into a decimal. 60% expressed as a decimal is.60. Step 2: Multiply the total number by the decimal Since there are only zeros after the decimal, we can drop the zeros. This means that 60% of 20 is 12. There were 12 girls at the party. Example 2: 1,500 people voted in the election, and 45% voted for Bill Jackson. How many people voted for Bill Jackson in the election? Step 1: Convert 45% into a decimal. 45% expressed as a decimal is.45. Step 2: Multiply the total number by the decimal Since there are only zeros after the decimal, we can drop the zeros. This means that 45% of 1,500 is 675. There were 675 voters who chose Bill Jackson in the election. Oak Meadow 207

30 Lesson 23 Grade 6 Math Assignments Complete the following assignments. Show all your work. Skill Practice A Skill Practice B Skill Practice C Lesson 23 Review For Enrolled Students Please contact your teacher if any questions arise. Learning Assessment Use these assessment rubrics to track student progress throughout the year and to make notes about the learning the student demonstrates or skills that need work. 208 Oak Meadow

31 Grade 6 Math Lesson 23 Learning Assessment MATH Converts between decimals, fractions, and percentages Not Yet Evident Developing Consistent Notes Calculates percentages Divides decimals by whole numbers and decimals Multiplies decimals Adds and subtracts decimals Converts between different metric units of measurement Converts between decimal fractions and simple fractions Correctly writes decimal fractions in words Divides using fractions, whole numbers, and mixed numbers Multiplies fractions with whole and mixed numbers Identifies lowest common denominator Adds and subtracts mixed numbers Performs long division with two-digit divisors Performs multiplication involving large numbers Translates word problems into numeric equations involving the four processes with whole numbers, mixed numbers, and fractions Shows all work when solving problems Oak Meadow 209

32 Lesson 23 Grade 6 Math Learning Assessment MATH Reduces fractions to lowest terms Not Yet Evident Developing Consistent Notes Reduces fractions before multiplying by canceling Converts between whole numbers, mixed numbers, and improper fractions 210 Oak Meadow

33 Grade 6 Math Lesson 23 Skill Practice A 1. Write 16% as a decimal. 2. Write 23% as a common fraction. 3. Write as a percent. 4. Write as a percent. 5. Write 82% as a common fraction. Do not reduce. 6. Write as a percent. 7. Write 7% as a common fraction. 8. Write 49% as a decimal. 9. Write as a percent. 10. Write as a percent. 11. Write 15% as a decimal. 12. Write as a percent. Oak Meadow 211

34 Lesson 23 Grade 6 Math Skill Practice B 1. How much is 25% of 300? 2. How much is 14% of 300? 3. 30% of 90 is how much? 4. 15% of 500 is how much? 5. 16% of 50 is how much? 6. 80% of 350 is how much? 7. How much is 20% of 75? 8. How much is 10% of 450? 9. How much is 50% of 250? % of 320 is how much? 212 Oak Meadow

35 Grade 6 Math Lesson 23 Skill Practice C 1. There were 400 people at the game between Centerville and Dayton. 70% of the fans were from Dayton. How many fans at the game were from Dayton? 2. 70% of the members of the Cloverdale Rotary Club voted for Dan Darrow for president. If there were 80 members in the club, how many members voted for Dan? 3. Elise goes to a Tai Chi class every Monday night. 65% of the students in the class are men. If there are 20 students in the class, how many men are in Elise s Tai Chi class? 4. Dale bought a washing machine for \$250. The salesman said if Dale would make a down payment of 20%, he could pay the rest in monthly payments over one year. If he wants to make monthly payments, how much money does Dale have to give for a down payment? 5. Sabina found a stereo system on sale at Cheap Stereo Warehouse. The system normally sells for \$425, but it was on sale for 20% off the regular price. How much will Sabina save off the regular price if she buys during the sale? Oak Meadow 213

37 Grade 6 Math Lesson 23 Lesson 23 Review Reduce all common fractions to lowest terms Oak Meadow 215

38 Lesson 23 Grade 6 Math Lesson 23 Review continued 13. The sales tax in Jim s state is 6%. How much sales tax will he have to pay on a wool scarf that costs \$20? 14. It s 14.7 miles from Bill s house to his office. How many miles does he travel each day driving to and from his office? 15. Joan had dinner at Mama Mia s Italian restaurant. Her check came to \$ How much change will she receive from a \$20 bill? 16. Susan is buying a sofa for her living room, and she has to pay \$58.62 per month for a year. When she finishes all her payments, how much will she have paid for her sofa? 216 Oak Meadow

39 Grade 6 24 Lesson MATH INSTRUCTION Converting Common Fractions to Decimals As we learned previously, we can convert common fractions to decimals, but so far we ve only converted common fractions with a denominator of 10, 100, or 1,000. For example, we know that we can change 7 into.7, 10 that is the same as.38, and that equals.425. But what about common fractions that don t have a denominator of 10, 100, or 1,000? For the purpose of converting common fractions to decimals, the line that separates the numerator from the denominator in a common fraction has the same meaning as a division sign. So we can say that 5 means 5 divided 8 by 8, and that 2 is 2 divided by 3. In this way, all common fractions can be 3 easily converted to decimal fractions by simply dividing the numerator by the denominator, as in the following example: Example 1: Write 3 as a decimal. 4 Step 1: Write the fraction as a division problem, using the division bracket. Put the numerator under the bracket and the denominator outside the bracket. 43 Step 2: Place a decimal to the right of the number under the bracket and add two zeros. You may not need two, or you may need more than two, but start with two zeros ASSIGNMENT SUMMARY Skill Practice A Skill Practice B Skill Practice C Lesson 24 Test 217

40 Lesson 24 Grade 6 Math Step 3: Divide as usual, until the answer comes out evenly and there is no remainder To convert some fractions, you may need to add more zeros to the dividend to make the answer come out evenly. Continue to add as many zeros as necessary, until there is no remainder. Example 2: Write 5 as a decimal. 8 Step 1: Write the fraction as a division problem. 8 5 Step 2: Place a decimal to the right of the number under the division bracket and add two zeros to start Step 3: Divide as usual, adding more zeros if necessary until the answer comes out evenly and there is no remainder Oak Meadow

41 Grade 6 Math Lesson 24 Converting Decimals to Percentages Now that you know how to convert a common fraction into a decimal, it s easy to change that decimal into a percent. We simply move the decimal point 2 places to the right and add a percent sign. Look at the following example: Example 1: Write.75 as a percent. We move the decimal 2 places to the right and add a percent for an answer of 75%. Why do we move the decimal 2 places to the right? Remember, percents are based upon one hundred; so moving the decimal 2 places to the right is the same as multiplying by = 75% In the previous example, the decimal was in hundredths (.75), so when we moved the decimal over 2 places it became a whole number. But what happens if the decimal is not in hundredths? Suppose it s in tenths? Look at the following example: Example 2: Write.2 as a percent. To convert a decimal to a percent, we always move the decimal point 2 places to the right. But since.2 doesn t have 2 decimal places, we have to create another decimal place. We do this by adding a zero, since we learned in a previous lesson that we can add zeros at the end of a decimal without changing its value. We add a 0 to the end of.2 to make it.20, then we move the decimal 2 places as usual, for a final answer of 20%..2 =.20 = 20% This works fine if the decimal is in tenths, but what if it s in thousandths, as in the following example? Example 3: Write.375 as a percent. We always move the decimal point 2 places to the right when we re converting a decimal to a percent, even if there are more places..375 = 37.5% Oak Meadow 219

42 Lesson 24 Grade 6 Math Finding Percentages in Word Problems We can apply the skills we have learned to find percents in word problems. Example 1: There are 8 blocks in a box, and only 2 of them are green. What percent of the blocks are green? Step 1: Write the problem as a common fraction. Remember, a common fraction is always the part over the whole. The numerator is the number of items in the part, and the denominator is the number of items in the whole. In this example, the part is the 2 green blocks, and the whole is the 8 blocks, so the common fraction is 2 8. Step 2: Write the fraction as a division problem, using the division bracket. Put the numerator under the bracket and the denominator outside. 8 2 Step 3: Place a decimal to the right of the number under the division bracket and add two zeros. You may not need two, or you may need more than two, but always start with two zeros Step 4: Divide as usual, until the answer comes out evenly and there is no remainder Step 5: Move the decimal point two places to the right and add a percent sign. The decimal is.25, so when we move the decimal point 2 places to the right, the decimal becomes 25%. So we can say that 25% of the blocks in the box are green. 220 Oak Meadow

43 Grade 6 Math Lesson 24 Example 2: There are 16 boys in John s scout troop. 10 of them are going on the 50-mile hike. What percent of the boys are going on the hike? Step 1: Write the problem as a common fraction, with the part over the whole Step 2: Write the fraction as a division problem, using the division bracket, and add a decimal and two zeros to the dividend Step 3: Divide as usual, adding more zeros if necessary, until the answer comes out evenly and there is no remainder Step 4: Move the decimal point two places to the right and add a percent sign. The decimal is.625, and when we move the decimal point 2 places to the right the decimal becomes 62.5%. We can say that 62.5% of the boys in John s scout troop are going on the 50-mile hike. Example 3: There are 5 kittens in the litter. 4 kittens are black and 1 is brown. What percent of the kittens in the litter are black? Step 1: Write the problem as a common fraction, with the part over the whole. 4 5 Step 2: Write the fraction as a division problem, using the division bracket, and place a decimal and two zeros after the dividend Oak Meadow 221

45 Grade 6 Math Lesson 24 Learning Assessment MATH Converts between decimals, fractions, and percentages Not Yet Evident Developing Consistent Notes Calculates percentages Divides decimals by whole numbers and decimals Multiplies decimals Adds and subtracts decimals Converts between different metric units of measurement Converts between decimal fractions and simple fractions Correctly writes decimal fractions in words Divides using fractions, whole numbers, and mixed numbers Multiplies fractions with whole and mixed numbers Identifies lowest common denominator Adds and subtracts mixed numbers Performs long division with two-digit divisors Performs multiplication involving large numbers Translates word problems into numeric equations involving the four processes with whole numbers, mixed numbers, and fractions Shows all work when solving problems Oak Meadow 223

46 Lesson 24 Grade 6 Math Learning Assessment MATH Reduces fractions to lowest terms Not Yet Evident Developing Consistent Notes Reduces fractions before multiplying by canceling Converts between whole numbers, mixed numbers, and improper fractions 224 Oak Meadow

47 Grade 6 Math Lesson 24 Skill Practice A Change the following common fractions to decimals. When dividing, add as many zeros as necessary to the dividend until there is no remainder Oak Meadow 225

48 Lesson 24 Grade 6 Math Skill Practice B Convert the following decimals to percents. Remember to add the percent sign Oak Meadow

49 Grade 6 Math Lesson 24 Skill Practice C 1. There were 12 girls on the basketball team. 3 of them scored over 10 points in the game. What percent of the girls on the team scored over 10 points in the game? 2. Fred has 8 dogs. 3 of the dogs are males and 5 are females. What percent of Fred s dogs are males? 3. There are 5 trees in Melinda s front yard. 2 of them are maples and 3 are oaks. What percent of the trees in Melinda s front yard are maples? 4. Frank s been traveling a lot lately as part of his job. During the past 30 days, he s been out of town 18 days. What percent of the past 30 days has Frank been out of town? 5. Jan went to the mall with \$20. She spent \$5 at the mall. What percent of her \$20 did she spend at the mall? Oak Meadow 227

51 Grade 6 Math Lesson 24 Lesson 24 Test Reduce all common fractions to lowest terms Oak Meadow 229

52 Lesson 24 Grade 6 Math Lesson 24 Test continued 13. Oak Ridge Medical Supply has 16 employees. 2 of those employees just started working last week. What percent of all the employees just started last week? % of the voters in Pinchville voted for Martin French for mayor. If there are 1,300 voters in Pinchville, how many of them voted for Martin French? 15. Cindy has 30 CDs in her collection, and 6 of those are country music CDs. What percent of Cindy s CD collection is country music? 16. The sales tax in Judy s state is 5%. How much sales tax will she have to pay on a stereo system that sells for \$799? 230 Oak Meadow

### Word Problems. Simplifying Word Problems

Word Problems This sheet is designed as a review aid. If you have not previously studied this concept, or if after reviewing the contents you still don t pass, you should enroll in the appropriate math

### ACCUPLACER Arithmetic Assessment Preparation Guide

ACCUPLACER Arithmetic Assessment Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre at George

### Math Refresher. Book #2. Workers Opportunities Resources Knowledge

Math Refresher Book #2 Workers Opportunities Resources Knowledge Contents Introduction...1 Basic Math Concepts...2 1. Fractions...2 2. Decimals...11 3. Percentages...15 4. Ratios...17 Sample Questions...18

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### Fractions to decimals

Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

### Excel Math Placement Tests A grade-level evaluation tool

Excel Math Placement Tests A grade-level evaluation tool Attached are six tests that can be used to evaluate a student s preparedness for Excel Math. The tests are labeled A - F, which correspond to first

### HOSPITALITY Math Assessment Preparation Guide. Introduction Operations with Whole Numbers Operations with Integers 9

HOSPITALITY Math Assessment Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre at George

### Arithmetic Review ORDER OF OPERATIONS WITH WHOLE NUMBERS

Arithmetic Review The arithmetic portion of the Accuplacer Placement test consists of seventeen multiple choice questions. These questions will measure skills in computation of whole numbers, fractions,

### DIVISION OF DECIMALS. 1503 9. We then we multiply by the

Tallahassee Community College 0 DIVISION OF DECIMALS To divide 9, we write these fractions: reciprocal of the divisor 0 9. We then we multiply by the 0 67 67 = = 9 67 67 The decimal equivalent of is. 67.

### Year 1 Maths Expectations

Times Tables I can count in 2 s, 5 s and 10 s from zero. Year 1 Maths Expectations Addition I know my number facts to 20. I can add in tens and ones using a structured number line. Subtraction I know all

### Fractional Part of a Set

Addition and Subtraction Basic Facts... Subtraction Basic Facts... Order in Addition...7 Adding Three Numbers...8 Inverses: Addition and Subtraction... Problem Solving: Two-Step Problems... 0 Multiplication

### COMPASS Numerical Skills/Pre-Algebra Preparation Guide. Introduction Operations with Integers Absolute Value of Numbers 13

COMPASS Numerical Skills/Pre-Algebra Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre

### Chapter 2 Formulas and Decimals

Chapter Formulas and Decimals Section A Rounding, Comparing, Adding and Subtracting Decimals Look at the following formulas. The first formula (P = A + B + C) is one we use to calculate perimeter of a

### RIT scores between 191 and 200

Measures of Academic Progress for Mathematics RIT scores between 191 and 200 Number Sense and Operations Whole Numbers Solve simple addition word problems Find and extend patterns Demonstrate the associative,

### Quick Reference ebook

This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed

### I know when I have written a number backwards and can correct it when it is pointed out to me I can arrange numbers in order from 1 to 10

Mathematics Targets Moving from Level W and working towards level 1c I can count from 1 to 10 I know and write all my numbers to 10 I know when I have written a number backwards and can correct it when

### Year Five Maths Notes

Year Five Maths Notes NUMBER AND PLACE VALUE I can count forwards in steps of powers of 10 for any given number up to 1,000,000. I can count backwards insteps of powers of 10 for any given number up to

### H.C.C.T.P. Highway Construction Careers Training Program. Entrance Exam. Study Guide

H.C.C.T.P. Highway Construction Careers Training Program Entrance Exam Study Guide Entrance Exam Study Guide How to use this study guide: This study guide is to prepare you for the math section on your

### Accuplacer Arithmetic Study Guide

Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole

### QM0113 BASIC MATHEMATICS I (ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION)

SUBCOURSE QM0113 EDITION A BASIC MATHEMATICS I (ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION) BASIC MATHEMATICS I (ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION) Subcourse Number QM 0113 EDITION

### Knowing and Using Number Facts

Knowing and Using Number Facts Use knowledge of place value and Use knowledge of place value and addition and subtraction of two-digit multiplication facts to 10 10 to numbers to derive sums and derive

### Now that we have a handle on the integers, we will turn our attention to other types of numbers.

1.2 Rational Numbers Now that we have a handle on the integers, we will turn our attention to other types of numbers. We start with the following definitions. Definition: Rational Number- any number that

### Fractions, Ratios, and Proportions Work Sheets. Contents

Fractions, Ratios, and Proportions Work Sheets The work sheets are grouped according to math skill. Each skill is then arranged in a sequence of work sheets that build from simple to complex. Choose the

### DECIMALS are special fractions whose denominators are powers of 10.

DECIMALS DECIMALS are special fractions whose denominators are powers of 10. Since decimals are special fractions, then all the rules we have already learned for fractions should work for decimals. The

### Decimal Notations for Fractions Number and Operations Fractions /4.NF

Decimal Notations for Fractions Number and Operations Fractions /4.NF Domain: Cluster: Standard: 4.NF Number and Operations Fractions Understand decimal notation for fractions, and compare decimal fractions.

### MM 6-1 MM What is the largest number you can make using 8, 4, 6 and 2? (8,642) 1. Divide 810 by 9. (90) 2. What is ?

MM 6-1 1. What is the largest number you can make using 8, 4, 6 and 2? (8,642) 2. What is 500 20? (480) 3. 6,000 2,000 400 = (3,600). 4. Start with 6 and follow me; add 7, add 2, add 4, add 3. (22) 5.

### Math News! 5 th Grade Math

Math News! Grade 5, Module 1, Topic A 5 th Grade Math Module 1: Place Value and Decimal Fractions Math Parent Letter This document is created to give parents and students a better understanding of the

### Charlesworth School Year Group Maths Targets

Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve

Lesson Grade 4 2 Lesson Three-Digit Addition and Subtraction As we move forward this week into word problems and multi-digit addition and subtraction, continue to focus on anything your child struggled

Dear Teachers, During the listening tour, the Eureka Math Team enjoyed the opportunity to witness our curriculum being implemented in St. Charles classrooms. We listened carefully to the feedback you provided

### Unit Essential Question: When do we need standard symbols, operations, and rules in mathematics? (CAIU)

Page 1 Whole Numbers Unit Essential : When do we need standard symbols, operations, and rules in mathematics? (CAIU) M6.A.3.2.1 Whole Number Operations Dividing with one digit (showing three forms of answers)

### 2. Perform the division as if the numbers were whole numbers. You may need to add zeros to the back of the dividend to complete the division

Math Section 5. Dividing Decimals 5. Dividing Decimals Review from Section.: Quotients, Dividends, and Divisors. In the expression,, the number is called the dividend, is called the divisor, and is called

### Fourth Grade. Summer Packet. Packet Covers 4th Grade Common Core Math Standards Shaun Sanchez

Fourth Grade Summer Packet Packet Covers 4th Grade Common Core Math Standards My Summer Math Packet Name I can understand that multiplication fact problems can be seen as comparisons of groups (e.g., 24

### 4 th Grade. Math Common Core I Can Checklists

4 th Grade Math Common Core I Can Checklists Math Common Core Operations and Algebraic Thinking Use the four operations with whole numbers to solve problems. 1. I can interpret a multiplication equation

### Overview of Unit Topics and Lesson Objectives. Topic 1: Multiplicative Patterns on the Place Value Chart 1-4

GRADE 5 UNIT 1 Place Value and Decimal Fractions Table of Contents Overview of Unit Topics and Lesson Objectives Lessons Topic 1: Multiplicative Patterns on the Place Value Chart 1-4 Lesson 1: Reason concretely

### Changing a Mixed Number to an Improper Fraction

Example: Write 48 4 48 4 = 48 8 4 8 = 8 8 = 2 8 2 = 4 in lowest terms. Find a number that divides evenly into both the numerator and denominator of the fraction. For the fraction on the left, there are

### Standards-Based Progress Mathematics. Progress in Mathematics

SADLIER Standards-Based Progress Mathematics Aligned to SADLIER Progress in Mathematics Grade 5 Contents Chapter 1 Place Value, Addition, and Subtraction......... 2 Chapter 2 Multiplication....................................

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

### Saxon Math Home School Edition. September 2008

Saxon Math Home School Edition September 2008 Saxon Math Home School Edition Lesson 4: Comparing Whole Lesson 5: Naming Whole Through Hundreds, Dollars and Cent Lesson 7: Writing and Comparing Through

### Contents. Block A Understanding numbers 7. Block C Geometry 53. Block B Numerical operations 30. Page 4 Introduction Page 5 Oral and mental starters

Contents Page 4 Introduction Page 5 Oral and mental starters Block A Understanding numbers 7 Unit 1 Integers and decimals 8 Integers Rounding and approximation Large numbers Decimal numbers Adding and

### Decimals Worksheets. The decimal point separates the whole numbers from the fractional part of a number.

Decimal Place Values The decimal point separates the whole numbers from the fractional part of a number. 8.09 In a whole number the decimal point is all the way to the right, even if it is not shown in

### Trades Math Practice Test and Review

Trades Math Practice Test and Review This material is intended as a review only. To help prepare for the assessment, the following resources are also available:. online review material (free of charge)

### Progressing toward the standard

Report Card Language: add, subtract, multiply, and/or divide to solve multi-step word problems. CCSS: 4.OA.3 Solve multistep work problems posed with whole numbers and having whole-number answers using

### Year 6 Maths Objectives

Year 6 Maths Objectives Place Value COUNTING COMPARING NUMBERS IDENTIFYING, REPRESENTING & ESTIMATING NUMBERS READING & WRITING NUMBERS UNDERSTANDING PLACE VALUE ROUNDING PROBLEM SOLVING use negative numbers

### Eureka Math Tips for Parents

Eureka Math Tips for Parents Place Value and Decimal Fractions In this first module of, we will extend 4 th grade place value work to multi-digit numbers with decimals to the thousandths place. Students

### MAT 0950 Course Objectives

MAT 0950 Course Objectives 5/15/20134/27/2009 A student should be able to R1. Do long division. R2. Divide by multiples of 10. R3. Use multiplication to check quotients. 1. Identify whole numbers. 2. Identify

### Numbers and Operations in Base 10 and Numbers and Operations Fractions

Numbers and Operations in Base 10 and Numbers As the chart below shows, the Numbers & Operations in Base 10 (NBT) domain of the Common Core State Standards for Mathematics (CCSSM) appears in every grade

### Level Descriptors Maths Level 1-5

Level Descriptors Maths Level 1-5 What is APP? Student Attainment Level Descriptors APP means Assessing Pupil Progress. What are the APP sheets? We assess the children in Reading, Writing, Speaking & Listening,

### 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B. Whole Numbers

Whole Numbers Scope and Sequence for Primary Mathematics, U.S. Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced or specifically addressed. Understand

### Number & Place Value. Addition & Subtraction. Digit Value: determine the value of each digit. determine the value of each digit

Number & Place Value Addition & Subtraction UKS2 The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value

### BASIC MATHEMATICS. WORKBOOK Volume 2

BASIC MATHEMATICS WORKBOOK Volume 2 2006 Veronique Lankar A r ef resher o n t he i mp o rt a nt s ki l l s y o u l l ne e d b efo r e y o u ca n s t a rt Alg e b ra. This can be use d a s a s elf-teaching

### Improper Fractions and Mixed Numbers

This assignment includes practice problems covering a variety of mathematical concepts. Do NOT use a calculator in this assignment. The assignment will be collected on the first full day of class. All

### Year 5 Mathematics Programme of Study Maths worksheets from mathsphere.co.uk MATHEMATICS. Programme of Study. Year 5 Number and Place Value

MATHEMATICS Programme of Study Year 5 Number and Place Value Here are the statutory requirements: Number and place value read, write, order and compare numbers to at least 1 000 000 and determine the value

### Curriculum overview for Year 1 Mathematics

Curriculum overview for Year 1 Counting forward and back from any number to 100 in ones, twos, fives and tens identifying one more and less using objects and pictures (inc number lines) using the language

### Kindergarten Math I can statements

Kindergarten Math I can statements Student name:. Number sense Date Got it Nearly I can count by 1s starting anywhere from 1 to 10 and from 10 to 1, forwards and backwards. I can look at a group of 1 to

### Compass Math Study Guide

Compass Math Study Guide The only purpose of this study guide is to give you an overview of the type of math skills needed to successfully complete the Compass math assessment. The Study Guide is not intended

### Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced

### Florida Math 0018. Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower

Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower Whole Numbers MDECL1: Perform operations on whole numbers (with applications, including

### Supporting your child with maths

Granby Primary School Year 5 & 6 Supporting your child with maths A handbook for year 5 & 6 parents H M Hopps 2016 G r a n b y P r i m a r y S c h o o l 1 P a g e Many parents want to help their children

### MATH-0910 Review Concepts (Haugen)

Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

### Reteaching. Properties of Operations

- Properties of Operations The commutative properties state that changing the order of addends or factors in a multiplication or addition expression does not change the sum or the product. Examples: 5

### NS5-38 Remainders and NS5-39 Dividing with Remainders

:1 PAGE 89-90 NS5-38 Remainders and NS5-39 Dividing with Remainders GOALS Students will divide with remainders using pictures, number lines and skip counting. Draw: 6 3 = 2 7 3 = 2 Remainder 1 8 3 = 2

### LESSON 10 GEOMETRY I: PERIMETER & AREA

LESSON 10 GEOMETRY I: PERIMETER & AREA INTRODUCTION Geometry is the study of shapes and space. In this lesson, we will focus on shapes and measures of one-dimension and two-dimensions. In the next lesson,

### Math 0306 Final Exam Review

Math 006 Final Exam Review Problem Section Answers Whole Numbers 1. According to the 1990 census, the population of Nebraska is 1,8,8, the population of Nevada is 1,01,8, the population of New Hampshire

### Topic Skill Homework Title Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number.

Year 1 (Age 5-6) Number and Place Value Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number. Count up to 10 and back (Age 5-6) Count up to 20 objects (Age 5-6)

### Maths Targets Year 1 Addition and Subtraction Measures. N / A in year 1.

Number and place value Maths Targets Year 1 Addition and Subtraction Count to and across 100, forwards and backwards beginning with 0 or 1 or from any given number. Count, read and write numbers to 100

### Unit 4 Number and Operations in Base Ten: Multiplying and Dividing Decimals

Unit 4 Number and Operations in Base Ten: Multiplying and Dividing Decimals Introduction In this unit, students will learn how to multiply and divide decimals, and learn the algorithm for dividing whole

### Summer Math Packet. Review of Number Sense Skills for Students Entering Math 7. No Calculators!

Name Summer Math Packet Review of Number Sense Skills for Students Entering Math 7 No Calculators! The purpose of this summer math packet is to provide you with notes and practice problems to help you

### 0500 Test 5 Optional Percent Handout (If you are skipping Sections 6.2, 6.3, 6.4, and 6.5 in the text, be sure to thoroughly read this handout.

000 Test Optional Percent Handout (If you are skipping Sections.,.,., and. in the text, be sure to thoroughly read this handout.) Part I Section. Renaming Percents, Fractions, and Decimals Objective Write

### Paramedic Program Pre-Admission Mathematics Test Study Guide

Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page

### Fractions and Decimals

Fractions and Decimals Survive Math 5 Fractions and Decimals Survive Math 5 Fractions and Decimals i 2005 by Open School BC This work is licensed under the Creative Commons Attribution-NonCommercial 4.0

### John Adair Intermediate 4th Grade Math Learning Targets I Can Statements..

John Adair Intermediate 4th Grade Math Learning Targets I Can Statements.. NUMBERS AND OPERATIONS IN BASE TEN 4.NBT Generalize place value understanding for multi-digit whole numbers. Explain how the base

### Dividing Decimals 4.5

4.5 Dividing Decimals 4.5 OBJECTIVES 1. Divide a decimal by a whole number 2. Divide a decimal by a decimal 3. Divide a decimal by a power of ten 4. Apply division to the solution of an application problem

### CARMEL CLAY SCHOOLS MATHEMATICS CURRICULUM

GRADE 4 Standard 1 Number Sense Students understand the place value of whole numbers and decimals to two decimal places and how whole numbers 1 and decimals relate to simple fractions. 4.1.1 Read and write

### Kindergarten Math Standards at a Glance By the end of Kindergarten, students should be able to: Add and subtract numbers up to 5 Know number names

Kindergarten Math Standards at a Glance By the end of Kindergarten, students should be Add and subtract numbers up to 5 Know number names and count to 100 Count to tell the number of objects in a group

### Danville District No. 118 Mathematics Fifth Grade Curriculum and Scope and Sequence First Quarter

Danville District No. 118 Mathematics Fifth Grade Curriculum and Scope and Sequence First Quarter Common Core Operations and Algebraic Thinking (5.OA) Common Core Number and Operations in Base Ten (5.NBT)

### Grade 5 Module 2 Lessons 1 29

Eureka Math Grade 5 Module 2 Lessons 29 Eureka Math, Published by the non-profit Great Minds. Copyright Great Minds. No part of this work may be reproduced, distributed, modified, sold, or commercialized,

### Chapter 1: Order of Operations, Fractions & Percents

HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain

### Hundreds Chart. Vocabulary. Place Value

Addition plus, sum, addend Subtraction minus, difference Multiplication times, product, factor Division quotient, divisor, dividend Hundreds Chart SYMBOLS Addition: + Subtraction: Multiplication: x * Division:

### Maths Area Approximate Learning objectives. Additive Reasoning 3 weeks Addition and subtraction. Number Sense 2 weeks Multiplication and division

Maths Area Approximate Learning objectives weeks Additive Reasoning 3 weeks Addition and subtraction add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar

### Add and subtract 1-digit and 2-digit numbers to 20, including zero. Measure and begin to record length, mass, volume and time

Year 1 Maths - Key Objectives Count to and across 100 from any number Count, read and write numbers to 100 in numerals Read and write mathematical symbols: +, - and = Identify "one more" and "one less"

### PROBLEM SOLVING, REASONING, FLUENCY. Year 6 Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Number and Place Value. Measurement Four operations

PROBLEM SOLVING, REASONING, FLUENCY Year 6 Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Number and Place Value Addition and subtraction Large numbers Fractions & decimals Mental and written Word problems,

What five coins add up to a nickel? five pennies (1 + 1 + 1 + 1 + 1 = 5) Which is longest: a foot, a yard or an inch? a yard (3 feet = 1 yard; 12 inches = 1 foot) What do you call the answer to a multiplication

### Welcome to Basic Math Skills!

Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

### Stage 5 PROMPT sheet. 5/3 Negative numbers 4 7 = -3. l l l l l l l l l /1 Place value in numbers to 1million = 4

Stage PROMPT sheet / Place value in numbers to million The position of the digit gives its size / Negative numbers A number line is very useful for negative numbers. The number line below shows: 7 - l

### Carroll County Public Schools Elementary Mathematics Instructional Guide (5 th Grade) Unit #4 : Division of Whole Numbers and Measurement

Background Information and Research By fifth grade, students should understand that division can mean equal sharing or partitioning of equal groups or arrays. They should also understand that it is the

### Within each area, these outcomes are broken down into more detailed step-by-step learning stages for each of the three terms.

MATHEMATICS PROGRAMME OF STUDY COVERAGE all topics are revisited several times during each academic year. Existing learning is consolidated and then built upon and extended. Listed below are the end of

### Oral and Mental calculation

Oral and Mental calculation Read and write any integer and know what each digit represents. Read and write decimal notation for tenths and hundredths and know what each digit represents. Order and compare

### ACCUPLACER MATH TEST REVIEW

ACCUPLACER MATH TEST REVIEW ARITHMETIC ELEMENTARY ALGEBRA COLLEGE ALGEBRA The following pages are a comprehensive tool used to maneuver the ACCUPLACER UAS Math portion. This tests your mathematical capabilities

### Year 3 End of year expectations

Number and Place Value Count in 4s, 8s, 50s and 100s from any number Read and write numbers up to 1000 in numbers and words Compare and order numbers up to 1000 Recognise the place value of each digit

### ARITHMETIC. Overview. Testing Tips

ARITHMETIC Overview The Arithmetic section of ACCUPLACER contains 17 multiple choice questions that measure your ability to complete basic arithmetic operations and to solve problems that test fundamental

### Section R.2. Fractions

Section R.2 Fractions Learning objectives Fraction properties of 0 and 1 Writing equivalent fractions Writing fractions in simplest form Multiplying and dividing fractions Adding and subtracting fractions

### Multiplying Decimal Numbers by 10, by 100, and by 1000

Multiplying Decimal Numbers by 10, by 100, and by 1000 Lesson 111 111 To multiply by 10, shift the decimal to the right one place. To multiply by 100, shift the decimal to the right two places. To multiply

### Introduce Decimals with an Art Project Criteria Charts, Rubrics, Standards By Susan Ferdman

Introduce Decimals with an Art Project Criteria Charts, Rubrics, Standards By Susan Ferdman hundredths tenths ones tens Decimal Art An Introduction to Decimals Directions: Part 1: Coloring Have children

### Decimals and other fractions

Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very

### Lesson 3 Compare and order 5-digit numbers; Use < and > signs to compare 5-digit numbers (S: Bonds to 100)

Abacus Year 5 Teaching Overview Autumn 1 Week Strands Weekly summary 1 Number and placevalue (NPV); and order 5-digit Read, write, compare Written addition numbers, understanding and subtraction the place-value