CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements

Size: px
Start display at page:

Download "CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements"

Transcription

1 Lecture 3 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there are avalable seats Rules for audt: Homework assgnments

2 Revew Desgn cycle Data Feature selecton Model selecton Requre pror knowledge Learnng Evaluaton

3 Data Data may need a lot of: Cleanng Preprocessng (conversons Cleanng: Get rd of errors, nose, Removal of redundances Preprocessng: Renamng Rescalng (normalzaton Dscretzatons Abstracton Aggregaton New attrbutes Data bases Watch out for data bases: Try to understand the data source It s very easy to derve unexpected results when data used for analyss and learnng are based (pre-selected Results (conclusons derved for pre-selected data do not hold n general!!!

4 Data bases Example 1: Rsks n pregnancy study Sponsored by DARPA at mltary hosptals Study of a large sample of pregnant woman who vsted mltary hosptals Concluson: the factor wth the largest mpact on reducng rsks durng pregnancy (statstcally sgnfcant s a pregnant woman beng sngle Sngle woman the smallest rsk What s wrong? Data Example 2: Stock market tradng (example by Andrew Lo Data on stock performances of companes traded on stock market over past 25 year Investment goal: pck a stock to hold long term Proposed strategy: nvest n a company stock wth an IPO correspondng to a Carmchael number - Evaluaton result: excellent return over 25 years - Where the magc comes from?

5 Desgn cycle Data Feature selecton Model selecton Requre pror knowledge Learnng Evaluaton Feature selecton The sze (dmensonalty of a sample can be enormous 1 2 d x = ( x, x,.., x d - very large Example: document classfcaton 10,000 dfferent words Inputs: counts of occurrences of dfferent words Too many parameters to learn (not enough samples to justfy the estmates the parameters of the model Dmensonalty reducton: replace nputs wth features Extract relevant nputs (e.g. mutual nformaton measure PCA prncpal component analyss Group (cluster smlar words (uses a smlarty measure Replace wth the group label

6 Desgn cycle Data Feature selecton Model selecton Requre pror knowledge Learnng Evaluaton Model selecton What s the rght model to learn? E.g what polynomal to use A pror knowledge helps a lot, but stll a lot of guessng Intal data analyss and vsualzaton We can make a good guess about the form of the dstrbuton, shape of the functon Overfttng problem Take nto account the bas and varance of error estmates Smpler (more based model parameters can be estmated more relably (smaller varance of estmates Complex model wth many parameters parameter estmates are less relable (large varance of the estmate

7 Solutons for overfttng How to make the learner avod the overft? Assure suffcent number of samples n the tranng set May not be possble (small number of examples Hold some data out of the tranng set = valdaton set Tran (ft on the tranng set (w/o data held out; Check for the generalzaton error on the valdaton set, choose the model based on the valdaton set error (random resamplng valdaton technques Regularzaton (Occam s Razor Penalze for the model complexty (number of parameters Explct preference towards smple models Desgn cycle Data Feature selecton Model selecton Requre pror knowledge Learnng Evaluaton

8 Learnng Learnng = optmzaton problem. Varous crtera: Mean square error * 1 w = arg mn Error ( w Error ( w = ( y f ( x, w w N Maxmum lkelhood (ML crteron Θ * = arg max P ( D Θ Error ( Θ = log P( D Θ Θ Maxmum posteror probablty (MAP Θ * = arg max P( Θ D P( Θ D = = 1,.. N P( D Θ P( Θ P D Θ ( 2 Learnng Learnng = optmzaton problem Optmzaton problems can be hard to solve. Rght choce of a model and an error functon makes a dfference. Parameter optmzatons Gradent descent, Conjugate gradent (1 st order method Newton-Rhapson (2 nd order method Levenberg-Marquard Some can be carred on-lne on a sample by sample bass Combnatoral optmzatons (over dscrete spaces: Hll-clmbng Smulated-annealng Genetc algorthms

9 Desgn cycle Data Feature selecton Model selecton Requre pror knowledge Learnng Evaluaton Evaluaton. Smple holdout method. Dvde the data to the tranng and test data. Other more complex methods Based on random re-samplng valdaton schemes: cross-valdaton, random sub-samplng. What f we want to compare the predctve performance on a classfcaton or a regresson problem for two dfferent learnng methods? Soluton: compare the error results on the test data set The method wth better (smaller testng error gves a better generalzaton error. But we need statstcs to show sgnfcance

10 Densty estmaton Outlne Outlne: Densty estmaton: Maxmum lkelhood (ML Bayesan parameter estmates MAP Bernoull dstrbuton. Bnomal dstrbuton Multnomal dstrbuton Normal dstrbuton

11 Densty estmaton Data: D = { D1, D2,.., Dn} D = x a vector of attrbute values Attrbutes: modeled by random varables X = { X1, X 2, K, X d} wth: Contnuous values Dscrete values E.g. blood pressure wth numercal values or chest pan wth dscrete values [no-pan, mld, moderate, strong] Underlyng true probablty dstrbuton: p(x Data: Densty estmaton D = { D1, D2,.., Dn} D = x a vector of attrbute values Objectve: try to estmate the underlyng true probablty dstrbuton over varables X, p(x, usng examples n D true dstrbuton n samples p (X D = D, D,.., D } { 1 2 n estmate pˆ ( X Standard (d assumptons: Samples are ndependent of each other come from the same (dentcal dstrbuton (fxed p(x

12 Densty estmaton Types of densty estmaton: Parametrc the dstrbuton s modeled usng a set of parameters Θ p( X Θ Example: mean and covarances of a multvarate normal Estmaton: fnd parameters Θ descrbng data D Non-parametrc The model of the dstrbuton utlzes all examples n D As f all examples were parameters of the dstrbuton Examples: Nearest-neghbor Sem-parametrc Learnng va parameter estmaton In ths lecture we consder parametrc densty estmaton Basc settngs: A set of random varables X = { X1, X 2, K, X d} A model of the dstrbuton over varables n X wth parameters Θ : pˆ ( X Θ Data D = { 1 2 n D, D,.., D } Objectve: fnd parameters Θ such that p( X Θ descrbes data D the best

13 Parameter estmaton. Maxmum lkelhood (ML maxmze p( D Θ, ξ yelds: one set of parameters Θ ML the target dstrbuton s approxmated as: pˆ ( X = p( X Θ ML Bayesan parameter estmaton uses the posteror dstrbuton over possble parameters p( D Θ, ξ p( Θ ξ p( Θ D, ξ = p( D ξ Yelds: all possble settngs of Θ (and ther weghts The target dstrbuton s approxmated as: p ˆ ( X = p( X D = p( X Θ p( Θ D, ξ dθ Θ Parameter estmaton. Other possble crtera: Maxmum a posteror probablty (MAP maxmze p( Θ D, ξ (mode of the posteror Yelds: one set of parameters Θ MAP Approxmaton: pˆ ( X = p( X Θ MAP Expected value of the parameter Θˆ = E( Θ (mean of the posteror Expectaton taken wth regard to posteror p( Θ D, ξ Yelds: one set of parameters Approxmaton: p ˆ( X = p( X Θˆ

14 Parameter estmaton. Con example. Con example: we have a con that can be based Outcomes: two possble values -- head or tal Data: D a sequence of outcomes x such that head x =1 tal = 0 x Model: probablty of a head probablty of a tal ( 1 Objectve: We would lke to estmate the probablty of a head from data ˆ Parameter estmaton. Example. Assume the unknown and possbly based con Probablty of the head s Data: H H T T H H T H T H T T T H T H H H H T H H H H T Heads: 15 Tals: 10 What would be your estmate of the probablty of a head? ~ =?

15 Parameter estmaton. Example Assume the unknown and possbly based con Probablty of the head s Data: H H T T H H T H T H T T T H T H H H H T H H H H T Heads: 15 Tals: 10 What would be your choce of the probablty of a head? Soluton: use frequences of occurrences to do the estmate ~ 15 = = Ths s the maxmum lkelhood estmate of the parameter Probablty of an outcome Data: D a sequence of outcomes such that head x =1 tal x = 0 Model: probablty of a head probablty of a tal ( 1 Assume: we know the probablty Probablty of an outcome of a con flp x (1 ( x P x = (1 Bernoull dstrbuton Combnes the probablty of a head and a tal So that x s gong to pck ts correct probablty Gves for x =1 Gves ( 1 for = 0 x x x

16 Probablty of a sequence of outcomes. Data: D a sequence of outcomes such that head x tal x =1 = 0 Model: probablty of a head probablty of a tal ( 1 Assume: a sequence of ndependent con flps D = H H T H T H (encoded as D= What s the probablty of observng the data sequence D: P( D =? x Probablty of a sequence of outcomes. Data: D a sequence of outcomes such that head x =1 tal x = 0 Model: probablty of a head probablty of a tal ( 1 Assume: a sequence of con flps D = H H T H T H encoded as D= What s the probablty of observng a data sequence D: P( D = (1 (1 x

17 Probablty of a sequence of outcomes. Data: D a sequence of outcomes such that head x =1 tal x = 0 Model: probablty of a head probablty of a tal ( 1 Assume: a sequence of con flps D = H H T H T H encoded as D= What s the probablty of observng a data sequence D: P( D = (1 (1 lkelhood of the data x Probablty of a sequence of outcomes. Data: D a sequence of outcomes such that head x tal x =1 = 0 Model: probablty of a head probablty of a tal ( 1 Assume: a sequence of con flps D = H H T H T H encoded as D= What s the probablty of observng a data sequence D: P( D = (1 (1 6 x P( D = (1 = 1 Can be rewrtten usng the Bernoull dstrbuton: x (1 x

18 The goodness of ft to the data. Learnng: we do not know the value of the parameter Our learnng goal: Fnd the parameter that fts the data D the best? One soluton to the best : Maxmze the lkelhood n x P( D = (1 = 1 (1 x Intuton: more lkely are the data gven the model, the better s the ft Note: Instead of an error functon that measures how bad the data ft the model we have a measure that tells us how well the data ft : Error ( D, = P( D Example: Bernoull dstrbuton. Con example: we have a con that can be based Outcomes: two possble values -- head or tal Data: D a sequence of outcomes x such that head x =1 tal x = 0 Model: probablty of a head probablty of a tal ( 1 Objectve: We would lke to estmate the probablty of a head ˆ Probablty of an outcome P( = (1 x x x (1 x Bernoull dstrbuton

19 Maxmum lkelhood (ML estmate. Lkelhood of data: n x P( D, ξ = (1 Maxmum lkelhood estmate ML = arg max P( D, ξ = 1 N1 - number of heads seen N 2 - number of tals seen (1 x Optmze log-lkelhood (the same as maxmzng lkelhood = 1 n x (1 x l( D, = log P( D, ξ = log (1 n = 1 x log + (1 x log(1 = log n = 1 = x + log(1 n = 1 (1 x Maxmum lkelhood (ML estmate. Optmze log-lkelhood l( D, = N1 log + N2 log(1 Set dervatve to zero Solvng l( D, N N2 = (1 1 = = 0 N1 N + N 1 2 ML Soluton: ML = N N 1 = N1 N + N 1 2

20 Maxmum lkelhood estmate. Example Assume the unknown and possbly based con Probablty of the head s Data: H H T T H H T H T H T T T H T H H H H T H H H H T Heads: 15 Tals: 10 What s the ML estmate of the probablty of a head and a tal? Maxmum lkelhood estmate. Example Assume the unknown and possbly based con Probablty of the head s Data: H H T T H H T H T H T T T H T H H H H T H H H H T Heads: 15 Tals: 10 What s the ML estmate of the probablty of head and tal? Head: Tal: ML (1 N1 N1 = = = N N1 + N 2 N 2 N 2 = = N N + N ML = 0.6 = = 0.4

L10: Linear discriminants analysis

L10: Linear discriminants analysis L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss

More information

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson

More information

Logistic Regression. Steve Kroon

Logistic Regression. Steve Kroon Logstc Regresson Steve Kroon Course notes sectons: 24.3-24.4 Dsclamer: these notes do not explctly ndcate whether values are vectors or scalars, but expects the reader to dscern ths from the context. Scenaro

More information

The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method. Introduction. 0/1 Knapsack Problem The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

More information

Quantization Effects in Digital Filters

Quantization Effects in Digital Filters Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

Designing a learning system

Designing a learning system Lecture Designing a learning system Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x4-8845 http://.cs.pitt.edu/~milos/courses/cs750/ Design of a learning system (first vie) Application or Testing

More information

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model

More information

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure

More information

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)

Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching) Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

Single and multiple stage classifiers implementing logistic discrimination

Single and multiple stage classifiers implementing logistic discrimination Sngle and multple stage classfers mplementng logstc dscrmnaton Hélo Radke Bttencourt 1 Dens Alter de Olvera Moraes 2 Vctor Haertel 2 1 Pontfíca Unversdade Católca do Ro Grande do Sul - PUCRS Av. Ipranga,

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract - Stock market s one of the most complcated systems

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Evaluating credit risk models: A critique and a new proposal

Evaluating credit risk models: A critique and a new proposal Evaluatng credt rsk models: A crtque and a new proposal Hergen Frerchs* Gunter Löffler Unversty of Frankfurt (Man) February 14, 2001 Abstract Evaluatng the qualty of credt portfolo rsk models s an mportant

More information

Approximating Cross-validatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated IS and WAIC

Approximating Cross-validatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated IS and WAIC Approxmatng Cross-valdatory Predctve Evaluaton n Bayesan Latent Varables Models wth Integrated IS and WAIC Longha L Department of Mathematcs and Statstcs Unversty of Saskatchewan Saskatoon, SK, CANADA

More information

Statistical Methods to Develop Rating Models

Statistical Methods to Develop Rating Models Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

How To Calculate The Accountng Perod Of Nequalty

How To Calculate The Accountng Perod Of Nequalty Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information

Discussion Papers. Support Vector Machines (SVM) as a Technique for Solvency Analysis. Laura Auria Rouslan A. Moro. Berlin, August 2008

Discussion Papers. Support Vector Machines (SVM) as a Technique for Solvency Analysis. Laura Auria Rouslan A. Moro. Berlin, August 2008 Deutsches Insttut für Wrtschaftsforschung www.dw.de Dscusson Papers 8 Laura Aura Rouslan A. Moro Support Vector Machnes (SVM) as a Technque for Solvency Analyss Berln, August 2008 Opnons expressed n ths

More information

A novel Method for Data Mining and Classification based on

A novel Method for Data Mining and Classification based on A novel Method for Data Mnng and Classfcaton based on Ensemble Learnng 1 1, Frst Author Nejang Normal Unversty;Schuan Nejang 641112,Chna, E-mal: lhan-gege@126.com Abstract Data mnng has been attached great

More information

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM BARRIOT Jean-Perre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: jean-perre.barrot@cnes.fr 1/Introducton The

More information

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6 PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has

More information

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation Exhaustve Regresson An Exploraton of Regresson-Based Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The

More information

ActiveClean: Interactive Data Cleaning While Learning Convex Loss Models

ActiveClean: Interactive Data Cleaning While Learning Convex Loss Models ActveClean: Interactve Data Cleanng Whle Learnng Convex Loss Models Sanjay Krshnan, Jannan Wang, Eugene Wu, Mchael J. Frankln, Ken Goldberg UC Berkeley, Columba Unversty {sanjaykrshnan, jnwang, frankln,

More information

Machine Learning and Data Mining Lecture Notes

Machine Learning and Data Mining Lecture Notes Machne Learnng and Data Mnng Lecture Notes CSC 411/D11 Computer Scence Department Unversty of Toronto Verson: February 6, 2012 Copyrght c 2010 Aaron Hertzmann and Davd Fleet CONTENTS Contents Conventons

More information

Lecture 2: Single Layer Perceptrons Kevin Swingler

Lecture 2: Single Layer Perceptrons Kevin Swingler Lecture 2: Sngle Layer Perceptrons Kevn Sngler kms@cs.str.ac.uk Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses

More information

Data Visualization by Pairwise Distortion Minimization

Data Visualization by Pairwise Distortion Minimization Communcatons n Statstcs, Theory and Methods 34 (6), 005 Data Vsualzaton by Parwse Dstorton Mnmzaton By Marc Sobel, and Longn Jan Lateck* Department of Statstcs and Department of Computer and Informaton

More information

Sketching Sampled Data Streams

Sketching Sampled Data Streams Sketchng Sampled Data Streams Florn Rusu, Aln Dobra CISE Department Unversty of Florda Ganesvlle, FL, USA frusu@cse.ufl.edu adobra@cse.ufl.edu Abstract Samplng s used as a unversal method to reduce the

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

How To Know The Components Of Mean Squared Error Of Herarchcal Estmator S

How To Know The Components Of Mean Squared Error Of Herarchcal Estmator S S C H E D A E I N F O R M A T I C A E VOLUME 0 0 On Mean Squared Error of Herarchcal Estmator Stans law Brodowsk Faculty of Physcs, Astronomy, and Appled Computer Scence, Jagellonan Unversty, Reymonta

More information

STATISTICAL DATA ANALYSIS IN EXCEL

STATISTICAL DATA ANALYSIS IN EXCEL Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 petr.nazarov@crp-sante.lu Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for

More information

Credit Limit Optimization (CLO) for Credit Cards

Credit Limit Optimization (CLO) for Credit Cards Credt Lmt Optmzaton (CLO) for Credt Cards Vay S. Desa CSCC IX, Ednburgh September 8, 2005 Copyrght 2003, SAS Insttute Inc. All rghts reserved. SAS Propretary Agenda Background Tradtonal approaches to credt

More information

Media Mix Modeling vs. ANCOVA. An Analytical Debate

Media Mix Modeling vs. ANCOVA. An Analytical Debate Meda M Modelng vs. ANCOVA An Analytcal Debate What s the best way to measure ncremental sales, or lft, generated from marketng nvestment dollars? 2 Measurng ROI From Promotonal Spend Where possble to mplement,

More information

1.2 DISTRIBUTIONS FOR CATEGORICAL DATA

1.2 DISTRIBUTIONS FOR CATEGORICAL DATA DISTRIBUTIONS FOR CATEGORICAL DATA 5 present models for a categorcal response wth matched pars; these apply, for nstance, wth a categorcal response measured for the same subjects at two tmes. Chapter 11

More information

Georey E. Hinton. University oftoronto. Email: zoubin@cs.toronto.edu. Technical Report CRG-TR-96-1. May 21, 1996 (revised Feb 27, 1997) Abstract

Georey E. Hinton. University oftoronto. Email: zoubin@cs.toronto.edu. Technical Report CRG-TR-96-1. May 21, 1996 (revised Feb 27, 1997) Abstract The EM Algorthm for Mxtures of Factor Analyzers Zoubn Ghahraman Georey E. Hnton Department of Computer Scence Unversty oftoronto 6 Kng's College Road Toronto, Canada M5S A4 Emal: zoubn@cs.toronto.edu Techncal

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

1 De nitions and Censoring

1 De nitions and Censoring De ntons and Censorng. Survval Analyss We begn by consderng smple analyses but we wll lead up to and take a look at regresson on explanatory factors., as n lnear regresson part A. The mportant d erence

More information

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading The Choce of Drect Dealng or Electronc Brokerage n Foregn Exchange Tradng Mchael Melvn & Ln Wen Arzona State Unversty Introducton Electronc Brokerage n Foregn Exchange Start from a base of zero n 1992

More information

Hallucinating Multiple Occluded CCTV Face Images of Different Resolutions

Hallucinating Multiple Occluded CCTV Face Images of Different Resolutions In Proc. IEEE Internatonal Conference on Advanced Vdeo and Sgnal based Survellance (AVSS 05), September 2005 Hallucnatng Multple Occluded CCTV Face Images of Dfferent Resolutons Ku Ja Shaogang Gong Computer

More information

A PROBABILITY-MAPPING ALGORITHM FOR CALIBRATING THE POSTERIOR PROBABILITIES: A DIRECT MARKETING APPLICATION

A PROBABILITY-MAPPING ALGORITHM FOR CALIBRATING THE POSTERIOR PROBABILITIES: A DIRECT MARKETING APPLICATION Document de traval du LEM 2011-06 A PROBABILITY-MAPPIG ALGORITHM FOR CALIBRATIG THE POSTERIOR PROBABILITIES: A DIRECT MARKETIG APPLICATIO Krstof Coussement *, Wouter Bucknx ** * IESEG School of Management

More information

How To Evaluate A Dia Fund Suffcency

How To Evaluate A Dia Fund Suffcency DI Fund Suffcency Evaluaton Methodologcal Recommendatons and DIA Russa Practce Andre G. Melnkov Deputy General Drector DIA Russa THE DEPOSIT INSURANCE CONFERENCE IN THE MENA REGION AMMAN-JORDAN, 18 20

More information

Mining Feature Importance: Applying Evolutionary Algorithms within a Web-based Educational System

Mining Feature Importance: Applying Evolutionary Algorithms within a Web-based Educational System Mnng Feature Importance: Applyng Evolutonary Algorthms wthn a Web-based Educatonal System Behrouz MINAEI-BIDGOLI 1, and Gerd KORTEMEYER 2, and Wllam F. PUNCH 1 1 Genetc Algorthms Research and Applcatons

More information

Support vector domain description

Support vector domain description Pattern Recognton Letters 20 (1999) 1191±1199 www.elsever.nl/locate/patrec Support vector doman descrpton Davd M.J. Tax *,1, Robert P.W. Dun Pattern Recognton Group, Faculty of Appled Scence, Delft Unversty

More information

Lecture 5,6 Linear Methods for Classification. Summary

Lecture 5,6 Linear Methods for Classification. Summary Lecture 5,6 Lnear Methods for Classfcaton Rce ELEC 697 Farnaz Koushanfar Fall 2006 Summary Bayes Classfers Lnear Classfers Lnear regresson of an ndcator matrx Lnear dscrmnant analyss (LDA) Logstc regresson

More information

Descriptive Models. Cluster Analysis. Example. General Applications of Clustering. Examples of Clustering Applications

Descriptive Models. Cluster Analysis. Example. General Applications of Clustering. Examples of Clustering Applications CMSC828G Prncples of Data Mnng Lecture #9 Today s Readng: HMS, chapter 9 Today s Lecture: Descrptve Modelng Clusterng Algorthms Descrptve Models model presents the man features of the data, a global summary

More information

Evaluating the generalizability of an RCT using electronic health records data

Evaluating the generalizability of an RCT using electronic health records data Evaluatng the generalzablty of an RCT usng electronc health records data 3 nterestng questons Is our RCT representatve? How can we generalze RCT results? Can we use EHR* data as a control group? *) Electronc

More information

Learning from Large Distributed Data: A Scaling Down Sampling Scheme for Efficient Data Processing

Learning from Large Distributed Data: A Scaling Down Sampling Scheme for Efficient Data Processing Internatonal Journal of Machne Learnng and Computng, Vol. 4, No. 3, June 04 Learnng from Large Dstrbuted Data: A Scalng Down Samplng Scheme for Effcent Data Processng Che Ngufor and Janusz Wojtusak part

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

Regression Models for a Binary Response Using EXCEL and JMP

Regression Models for a Binary Response Using EXCEL and JMP SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STAT-TECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal

More information

ECE544NA Final Project: Robust Machine Learning Hardware via Classifier Ensemble

ECE544NA Final Project: Robust Machine Learning Hardware via Classifier Ensemble 1 ECE544NA Fnal Project: Robust Machne Learnng Hardware va Classfer Ensemble Sa Zhang, szhang12@llnos.edu Dept. of Electr. & Comput. Eng., Unv. of Illnos at Urbana-Champagn, Urbana, IL, USA Abstract In

More information

Chapter XX More advanced approaches to the analysis of survey data. Gad Nathan Hebrew University Jerusalem, Israel. Abstract

Chapter XX More advanced approaches to the analysis of survey data. Gad Nathan Hebrew University Jerusalem, Israel. Abstract Household Sample Surveys n Developng and Transton Countres Chapter More advanced approaches to the analyss of survey data Gad Nathan Hebrew Unversty Jerusalem, Israel Abstract In the present chapter, we

More information

Active Learning for Interactive Visualization

Active Learning for Interactive Visualization Actve Learnng for Interactve Vsualzaton Tomoharu Iwata Nel Houlsby Zoubn Ghahraman Unversty of Cambrdge Unversty of Cambrdge Unversty of Cambrdge Abstract Many automatc vsualzaton methods have been. However,

More information

Course outline. Financial Time Series Analysis. Overview. Data analysis. Predictive signal. Trading strategy

Course outline. Financial Time Series Analysis. Overview. Data analysis. Predictive signal. Trading strategy Fnancal Tme Seres Analyss Patrck McSharry patrck@mcsharry.net www.mcsharry.net Trnty Term 2014 Mathematcal Insttute Unversty of Oxford Course outlne 1. Data analyss, probablty, correlatons, vsualsaton

More information

Transition Matrix Models of Consumer Credit Ratings

Transition Matrix Models of Consumer Credit Ratings Transton Matrx Models of Consumer Credt Ratngs Abstract Although the corporate credt rsk lterature has many studes modellng the change n the credt rsk of corporate bonds over tme, there s far less analyss

More information

Inverse Modeling of Tight Gas Reservoirs

Inverse Modeling of Tight Gas Reservoirs Inverse Modelng of Tght Gas Reservors Der Fakultät für Geowssenschaften, Geotechnk und Bergbau der Technschen Unverstät Bergakademe Freberg engerechte Dssertaton Zur Erlangung des akademschen Grades Doktor-Ingeneur

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Optimal Customized Pricing in Competitive Settings

Optimal Customized Pricing in Competitive Settings Optmal Customzed Prcng n Compettve Settngs Vshal Agrawal Industral & Systems Engneerng, Georga Insttute of Technology, Atlanta, Georga 30332 vshalagrawal@gatech.edu Mark Ferguson College of Management,

More information

Estimating the Number of Clusters in Genetics of Acute Lymphoblastic Leukemia Data

Estimating the Number of Clusters in Genetics of Acute Lymphoblastic Leukemia Data Journal of Al Azhar Unversty-Gaza (Natural Scences), 2011, 13 : 109-118 Estmatng the Number of Clusters n Genetcs of Acute Lymphoblastc Leukema Data Mahmoud K. Okasha, Khaled I.A. Almghar Department of

More information

On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features

On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features On-Lne Fault Detecton n Wnd Turbne Transmsson System usng Adaptve Flter and Robust Statstcal Features Ruoyu L Remote Dagnostcs Center SKF USA Inc. 3443 N. Sam Houston Pkwy., Houston TX 77086 Emal: ruoyu.l@skf.com

More information

Traffic-light a stress test for life insurance provisions

Traffic-light a stress test for life insurance provisions MEMORANDUM Date 006-09-7 Authors Bengt von Bahr, Göran Ronge Traffc-lght a stress test for lfe nsurance provsons Fnansnspetonen P.O. Box 6750 SE-113 85 Stocholm [Sveavägen 167] Tel +46 8 787 80 00 Fax

More information

Economic Interpretation of Regression. Theory and Applications

Economic Interpretation of Regression. Theory and Applications Economc Interpretaton of Regresson Theor and Applcatons Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve

More information

Chapter 6. Classification and Prediction

Chapter 6. Classification and Prediction Chapter 6. Classfcaton and Predcton What s classfcaton? What s Lazy learners (or learnng from predcton? your neghbors) Issues regardng classfcaton and Frequent-pattern-based predcton classfcaton Classfcaton

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

Method for assessment of companies' credit rating (AJPES S.BON model) Short description of the methodology

Method for assessment of companies' credit rating (AJPES S.BON model) Short description of the methodology Method for assessment of companes' credt ratng (AJPES S.BON model) Short descrpton of the methodology Ljubljana, May 2011 ABSTRACT Assessng Slovenan companes' credt ratng scores usng the AJPES S.BON model

More information

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL

More information

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining

Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining Rsk Model of Long-Term Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

Hedging Interest-Rate Risk with Duration

Hedging Interest-Rate Risk with Duration FIXED-INCOME SECURITIES Chapter 5 Hedgng Interest-Rate Rsk wth Duraton Outlne Prcng and Hedgng Prcng certan cash-flows Interest rate rsk Hedgng prncples Duraton-Based Hedgng Technques Defnton of duraton

More information

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence 1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh

More information

Prediction of Stock Market Index Movement by Ten Data Mining Techniques

Prediction of Stock Market Index Movement by Ten Data Mining Techniques Vol. 3, o. Modern Appled Scence Predcton of Stoc Maret Index Movement by en Data Mnng echnques Phchhang Ou (Correspondng author) School of Busness, Unversty of Shangha for Scence and echnology Rm 0, Internatonal

More information

Calculating the high frequency transmission line parameters of power cables

Calculating the high frequency transmission line parameters of power cables < ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,

More information

Study on Model of Risks Assessment of Standard Operation in Rural Power Network

Study on Model of Risks Assessment of Standard Operation in Rural Power Network Study on Model of Rsks Assessment of Standard Operaton n Rural Power Network Qngj L 1, Tao Yang 2 1 Qngj L, College of Informaton and Electrcal Engneerng, Shenyang Agrculture Unversty, Shenyang 110866,

More information

Binomial Link Functions. Lori Murray, Phil Munz

Binomial Link Functions. Lori Murray, Phil Munz Bnomal Lnk Functons Lor Murray, Phl Munz Bnomal Lnk Functons Logt Lnk functon: ( p) p ln 1 p Probt Lnk functon: ( p) 1 ( p) Complentary Log Log functon: ( p) ln( ln(1 p)) Motvatng Example A researcher

More information

Fault tolerance in cloud technologies presented as a service

Fault tolerance in cloud technologies presented as a service Internatonal Scentfc Conference Computer Scence 2015 Pavel Dzhunev, PhD student Fault tolerance n cloud technologes presented as a servce INTRODUCTION Improvements n technques for vrtualzaton and performance

More information

Imperial College London

Imperial College London F. Fang 1, C.C. Pan 1, I.M. Navon 2, M.D. Pggott 1, G.J. Gorman 1, P.A. Allson 1 and A.J.H. Goddard 1 1 Appled Modellng and Computaton Group Department of Earth Scence and Engneerng Imperal College London,

More information

A Practitioner's Guide to Generalized Linear Models

A Practitioner's Guide to Generalized Linear Models A Practtoner's Gude to Generalzed Lnear Models A CAS Study Note Duncan Anderson, FIA Sholom Feldblum, FCAS Claudne Modln, FCAS Dors Schrmacher, FCAS Ernesto Schrmacher, ASA Neeza Thand, FCAS Thrd Edton

More information

Gender differences in revealed risk taking: evidence from mutual fund investors

Gender differences in revealed risk taking: evidence from mutual fund investors Economcs Letters 76 (2002) 151 158 www.elsever.com/ locate/ econbase Gender dfferences n revealed rsk takng: evdence from mutual fund nvestors a b c, * Peggy D. Dwyer, James H. Glkeson, John A. Lst a Unversty

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

The Journal of Systems and Software

The Journal of Systems and Software The Journal of Systems and Software 82 (2009) 241 252 Contents lsts avalable at ScenceDrect The Journal of Systems and Software journal homepage: www. elsever. com/ locate/ jss A study of project selecton

More information

A study on the ability of Support Vector Regression and Neural Networks to Forecast Basic Time Series Patterns

A study on the ability of Support Vector Regression and Neural Networks to Forecast Basic Time Series Patterns A study on the ablty of Support Vector Regresson and Neural Networks to Forecast Basc Tme Seres Patterns Sven F. Crone, Jose Guajardo 2, and Rchard Weber 2 Lancaster Unversty, Department of Management

More information

Estimation of Dispersion Parameters in GLMs with and without Random Effects

Estimation of Dispersion Parameters in GLMs with and without Random Effects Mathematcal Statstcs Stockholm Unversty Estmaton of Dsperson Parameters n GLMs wth and wthout Random Effects Meng Ruoyan Examensarbete 2004:5 Postal address: Mathematcal Statstcs Dept. of Mathematcs Stockholm

More information

MARKET SHARE CONSTRAINTS AND THE LOSS FUNCTION IN CHOICE BASED CONJOINT ANALYSIS

MARKET SHARE CONSTRAINTS AND THE LOSS FUNCTION IN CHOICE BASED CONJOINT ANALYSIS MARKET SHARE CONSTRAINTS AND THE LOSS FUNCTION IN CHOICE BASED CONJOINT ANALYSIS Tmothy J. Glbrde Assstant Professor of Marketng 315 Mendoza College of Busness Unversty of Notre Dame Notre Dame, IN 46556

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Gender Classification for Real-Time Audience Analysis System

Gender Classification for Real-Time Audience Analysis System Gender Classfcaton for Real-Tme Audence Analyss System Vladmr Khryashchev, Lev Shmaglt, Andrey Shemyakov, Anton Lebedev Yaroslavl State Unversty Yaroslavl, Russa vhr@yandex.ru, shmaglt_lev@yahoo.com, andrey.shemakov@gmal.com,

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

Multiclass sparse logistic regression for classification of multiple cancer types using gene expression data

Multiclass sparse logistic regression for classification of multiple cancer types using gene expression data Computatonal Statstcs & Data Analyss 51 (26) 1643 1655 www.elsever.com/locate/csda Multclass sparse logstc regresson for classfcaton of multple cancer types usng gene expresson data Yongda Km a,, Sunghoon

More information

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

Dropout: A Simple Way to Prevent Neural Networks from Overfitting Journal of Machne Learnng Research 15 (2014) 1929-1958 Submtted 11/13; Publshed 6/14 Dropout: A Smple Way to Prevent Neural Networks from Overfttng Ntsh Srvastava Geoffrey Hnton Alex Krzhevsky Ilya Sutskever

More information

Forecasting and Stress Testing Credit Card Default using Dynamic Models

Forecasting and Stress Testing Credit Card Default using Dynamic Models Forecastng and Stress Testng Credt Card Default usng Dynamc Models Tony Bellott and Jonathan Crook Credt Research Centre Unversty of Ednburgh Busness School Verson 4.5 Abstract Typcally models of credt

More information

PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.

PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and m-fle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato

More information

Analysis of Premium Liabilities for Australian Lines of Business

Analysis of Premium Liabilities for Australian Lines of Business Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton

More information

Abstract. Clustering ensembles have emerged as a powerful method for improving both the

Abstract. Clustering ensembles have emerged as a powerful method for improving both the Clusterng Ensembles: {topchyal, Models jan, of punch}@cse.msu.edu Consensus and Weak Parttons * Alexander Topchy, Anl K. Jan, and Wllam Punch Department of Computer Scence and Engneerng, Mchgan State Unversty

More information

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network 700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School

More information

How To Understand The Results Of The German Meris Cloud And Water Vapour Product

How To Understand The Results Of The German Meris Cloud And Water Vapour Product Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller

More information

Prediction of Disability Frequencies in Life Insurance

Prediction of Disability Frequencies in Life Insurance Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng Fran Weber Maro V. Wüthrch October 28, 2011 Abstract For the predcton of dsablty frequences, not only the observed, but also the ncurred but

More information

A statistical approach to determine Microbiologically Influenced Corrosion (MIC) Rates of underground gas pipelines.

A statistical approach to determine Microbiologically Influenced Corrosion (MIC) Rates of underground gas pipelines. A statstcal approach to determne Mcrobologcally Influenced Corroson (MIC) Rates of underground gas ppelnes. by Lech A. Grzelak A thess submtted to the Delft Unversty of Technology n conformty wth the requrements

More information

Adaptive Clinical Trials Incorporating Treatment Selection and Evaluation: Methodology and Applications in Multiple Sclerosis

Adaptive Clinical Trials Incorporating Treatment Selection and Evaluation: Methodology and Applications in Multiple Sclerosis Adaptve Clncal Trals Incorporatng Treatment electon and Evaluaton: Methodology and Applcatons n Multple cleross usan Todd, Tm Frede, Ngel tallard, Ncholas Parsons, Elsa Valdés-Márquez, Jeremy Chataway

More information

ESTIMATING THE MARKET VALUE OF FRANKING CREDITS: EMPIRICAL EVIDENCE FROM AUSTRALIA

ESTIMATING THE MARKET VALUE OF FRANKING CREDITS: EMPIRICAL EVIDENCE FROM AUSTRALIA ESTIMATING THE MARKET VALUE OF FRANKING CREDITS: EMPIRICAL EVIDENCE FROM AUSTRALIA Duc Vo Beauden Gellard Stefan Mero Economc Regulaton Authorty 469 Wellngton Street, Perth, WA 6000, Australa Phone: (08)

More information