Electroweak Processes in Few-Nucleon Systems

Size: px
Start display at page:

Download "Electroweak Processes in Few-Nucleon Systems"

Transcription

1 Electroweak Processes in Few-Nucleon Systems M. Viviani INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy) Electron Nucleon Scattering XI, June 25-29, 212, Marciana Marina, Isola d Elba M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

2 Outline 1 EFT approach 2 EM Processes 3 Compton scattering 4 Weak interactions 5 Outlook Collaborators F. Spadoni Graduate student, Pisa R. Schiavilla Jefferson Lab. & ODU, Norfolk (VA, USA) S. Pastore ANL (USA) L. Girlanda University of Salento & INFN-Lecce, Lecce (Italy) A. Kievsky & L.E. Marcucci - INFN-Pisa & Pisa University, Pisa (Italy) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

3 Chiral symmetry - QCD with u and d quarks only u q = d «q R/L = (1 ± «γ5 ) ur/l q = 2 d R/L q R = Rq R = exp i θ R τ/2 q R q L = Lq L = exp i θ L τ/2 q L θ R = θ L = θ V : isospin transformation θ R = θ L = θ A : axial transformation L QCD (almost) invariant under the L, R transformations since m u, m d small also for locals transformations introducing external currents L = L QCD + q L γµ`l µ(x) v(s) µ(x) q L + q R γ µ`r µ(x) v(s) µ(x) q R q R (x)`s(x) + ip(x) q L (x) q L (x)`s(x) ip(x) q R (x) r µ(x) r µ (x) = R(x)rµ(x)R (x) + ir(x) µr (x), etc The external current are related to A µ(x) and W µ ± (x) to reproduce the EM and weak interactions of the quarks Example r µ(x) = l µ(x) = e τz Aµ(x) v(s) µ (x) = e 2 2 Aµ(x) 2 L em = ea µ 3 uγµ u 1 «3 dγµ d M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

4 Chiral Symmetry - Hadrons Non-linear realization of the chiral symmetry for hadrons [Weinberg, 1968, 199],[CCWZ, 1969],[Gasser & Leutwyler, 1984],... Compensator field h u = exp(i π τ/2f π) u = Luh = hur h h(l, R, π) N = hn Nucleons However ( µn) does not transform covariantly u µ = i[u ( µ ir µ)u u( µ il µ)u ] D µ = µ [u ( µ ir µ)u + u( µ il µ)u ] iv (s) µ Transformations: u µ = hu µh (D µn) = hd µn Lagrangian L πn = N `iγ µ D µ m N + g A 2 γ µ γ 5 u µ N + + CS NNNN + it contains an infinite number of LECs Contributions organized as an expansion over (Q/Λ χ) ν [Λ χ 1 GeV] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

5 NN, 3N,..., potentials from the EFT NN Potential V Two methods: S-matrix: for a given process NN NN define V so that (on-shell) NN T EFT NN NN T V NN Unitary transformation: find U in order to decouple NN Hilbert space from NNπ, etc. Realization thanks to the chiral counting: all terms can be organized as powers of Q/Λ χ, Q small momenta or the pion mass Alternatively: Lattice χeft [Lee et al., 21] Example T EFT = T V V + VG V + G = (E H + iǫ) 1 T EFT T () EFT + T (1) EFT + T (2) EFT... V V() + V (1) + V (2)... T (n) EFT, V(n) Q n p 1 p 2 V(n ) G V (n) p 1 p 2 = X p 1 p 2 p 1 p 2 V(n ) p 1 p 2 Then V () = T () EFT V (1) = T (1) EFT V() G V (), etc p 1 p 2 V(n) p 1 p 2 Q n+n +1 E p1 + E p2 E p 1 E p 2 + iǫ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

6 NN, 3N,..., potentials from the EFT NN Potential V Two methods: S-matrix: for a given process NN NN define V so that (on-shell) NN T EFT NN NN T V NN Unitary transformation: find U in order to decouple NN Hilbert space from NNπ, etc. Realization thanks to the chiral counting: all terms can be organized as powers of Q/Λ χ, Q small momenta or the pion mass Alternatively: Lattice χeft [Lee et al., 21] Example T EFT = T V V + VG V + G = (E H + iǫ) 1 T EFT T () EFT + T (1) EFT + T (2) EFT... V V() + V (1) + V (2)... T (n) EFT, V(n) Q n p 1 p 2 V(n ) G V (n) p 1 p 2 = X p 1 p 2 p 1 p 2 V(n ) p 1 p 2 Then V () = T () EFT V (1) = T (1) EFT V() G V (), etc p 1 p 2 V(n) p 1 p 2 Q n+n +1 E p1 + E p2 E p 1 E p 2 + iǫ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

7 NN & 3N interaction For more information see for example [Epelbaum et al., NPA 714, 535 (23)] NN interaction J-N3LO [Epelbaum and Coll, ] I-N3LO [Entem & Machleidt, 23] Part of the LEC s fitted to the NN database or πn database 3N interaction J-N2LO [Epelbaum et al, 22] N-N2LO [Navratil, 27] 3N force at N3LO [see Kreb s talk] At N2LO there are two LECS c D and c E : fitted to some 3N data (see later) At N3LO no new parameters At N4LO 1 new LECs [Girlanda et al., 211] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

8 EM current Basic problem: transition α + γ β β H e.m. α; qλ = Ψ β K 1 Ψ α K 1 = e Z 2ωΩ dx e iq x bǫ qλ Ĵ(x) K 1 acts only on the nucleons d.o.f. α, β initial & final nuclear states, Ψ α, Ψ β corresponding w.f. q, ω, ˆǫ qλ = momentum, energy, polarization of the emitted photon for virtual photons, one needs also the m.e. of ˆq bj and ρ Z J µ (q) = dx e iq x b J µ (x) µ =, 1, 2, 3 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

9 Meson exchange currents bj(x) = P i b j i (x) + 2B + 3B +... Current conservation Ĵ(x) = i[h, ρ(x)] Strict interplay between H, b J and bρ bρ(x) = AX i=1 1 + τ z(i) δ(r i x) 2 [Buchmann et al, 1985] [Riska, 1989], [Schiavilla et al, 199] EFT approach: H and J µ derived from the same Lagrangian. M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

10 Current at N3LO [Park et al, 1993], [Kolling et al, 29], [Pastore et al, 29] N3LO (Q 1 ) terms LO (Q 2 ) NLO (Q 1 ) NNLO (Q ) black square= (Q/M N ) 2 relativistic correction to the NNγ vertex Note: NNγ vertex = (e N /2M N )(p+p )+i(e N +κ N )µ N (σ q) it takes into account the Pauli term + pion loop corrections 2 new LECs black dot= three (Q/Λ χ) 2 vertices 3 new LECs Most of the LECs enter also the NN potential. There are 5 uncostrained LECs ( µ d, µ 3 H, µ3 He, etc.) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

11 Wave functions HH variational method: A. Kievsky, S. Rosati, MV, L.E. Marcucci, and L. Girlanda J. Phys. G, 35, 6311 (28) A benchmark for A = 4 AGS: Deltuva & Fonseca, PRL (27) FY: Lazauskas & Carbonell, PRC 7, 442 (24) n 3 H & p 3 He elastic scattering E c.m. B 3 B MeV NN interaction models: AV18 [Wiringa, Stoks & Schiavilla (1995)] I-N3LO [Entem & Machleidt (23)] V low q [Bogner, Kuo & Schwenk, (23)] (derived from the CD-Bonn potential [Machleidt (21)]) Results reported in [MV et al., 211] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

12 n 3 H scattering (I-N3LO pot.) dσ/dω [mb/sr] MeV AGS 2 MeV 3.5 MeV 6 MeV 18,4 A y,2,2 18 A y,1 -,1 18 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

13 n 3 H scattering (I-N3LO pot.) dσ/dω [mb/sr] MeV AGS HH 2 MeV 3.5 MeV 6 MeV 18,4 A y,2,2 18 A y,1 -,1 18 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

14 n 3 H scattering (I-N3LO pot.) dσ/dω [mb/sr] MeV AGS HH FY 2 MeV 3.5 MeV 6 MeV 18,4 A y,2,2 18 A y,1 -,1 18 M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

15 p 3 He scattering (I-N3LO pot.) dσ/dω [mb/sr] MeV Famularo 1954 Fisher MeV Mcdonald 1964 Fisher MeV Mcdonald A y,4,2 Fisher 26 George 21 Fisher 26 Alley 1993 A y,2,1 Daniels 21 Daniels Alley 1993 Daniels M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

16 Predictions by different potentials dσ/dω [mb/sr] MeV Famularo 1954 Fisher 26 I-N3LO AV18 low-k 4.5 MeV Mcdonald 1964 Fisher MeV Mcdonald ,4 Fisher 26 George 21 Fisher 26 Alley 1993 A y,2 A y,2,1 Daniels 21 Daniels Alley 1993 Daniels M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

17 ,4 2.25MeV 4.5MeV 5.54 MeV,2 Daniels 21 Daniels 21 Daniels 21 Alley 1993 A yy -,2 -,4 -, ,2 Daniels 21 Daniels 21 Alley 1993 A xx,1 -, ,4,3,2,1 -,1 -,2 A xz Alley MeV A zx 5.54 MeV Alley 1993 A zz Alley θ [c.m.] θ [c.m.] θ [c.m.] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

18 Results for A = 3, 4 (1) 4 p-d E c.m. = 2. MeV 4 p- 3 He E c.m. =4.15 MeV 3 AV18 AV18/UIX I-N3LO I-N3LO/N-N2LO 3 I-N3LO AV18 AV18/UIX I-N3LO/N-N2LO dσ/dω [mb/sr] 2 dσ/dω [mb/sr] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

19 Results for A = 3, 4 (2),6 A y p-d E c.m. =2 MeV A y p- 3 He E c.m. =4.15 MeV,5,4,5,4 Alley 1993a Alley 1993b AV18 I-N3LO I-N3LO/N-N2LO A y,3,3,2,1 AV18 AV18/UIX I-N3LO I-N3LO/N-N2LO,2, Study of the 3N force in A = 4 scattering in progress M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

20 Fit of the LECS Fit of the LECs Current at N3LO (O(Q)) NN potential at NLO (O(Q 2 )) q bj(q) = [H, ρ(q)] We have constructed a NN potential at NLO and fitted the corresponding LECs to the NN database: [Pastore et al., 29] In J there are 5 additional LECs: fitted to the A = 2, 3 magnetic moments & n p capture cross section at thermal energies using the I-N3LO NN potential The model depends on a cutoff Λ (Λ = 5 6 MeV) the dependence on Λ is used to test the convergence [Girlanda et al., 21] n.m..9 µ d exp LO NLO N 2 LO N 3 LO(S-L) σ γ np mb n.m. n.m. µ S ( 3 He/ 3 H) µ V ( 3 He/ 3 H) Λ (MeV) Λ(MeV) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

21 Deuteron-photodisintegration Wave functions calculated using I-N3LO for Λ = 5 & 6 MeV Observable dominated by the E1 transitions.28 Deuteron photo-disintegration total cross section (mb).24.2 EXP I-N3LO5 JEFT1(FULL) I-N3LO5 JEFT1(E1) σ dis (fm 2 ) H(γ,n) 1 H E Lab (MeV) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

22 n d & n 3 He radiative captures at thermal energies n d capture from the 2 S 1/2 & 4 S 3/2 waves n 3 He capture from the 3 S 1 wave Scattering lenghts Case I-N3LO/N-N2LO Expt. a nd doublet (1) a nd quartet (2) a n 3 He doublet (53) n d & n 3 He capture cross sections Order σ n d [mb] σ n 3 He [µb] LO NLO N2LO N3LO (loops) N3LO (LECs) Expt.58(15) 52(4) mb σ γ nd R c Λ (MeV) σ γ n 3 He Λ (MeV) exp LO NLO N 2 LO N 3 LO(S-L) N 3 LO(LECs) SNPA SNPA* µb M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

23 Compton scattering (1) Nucleon Polarizabilities Induced dipoles by an EM field: d = αe µ = βb» H eff = 2π αe 2 + βb 2 + γ E1E1 σ E E «+ t Experimental status [Griesshammer et al., 212] proton: from γp γp experiments (MAMI [de Lèon et al., 21],...) α p = (1.7 ±.3(stat) ±.2(Baldin) ±.8(theory)) 1 4 fm 3 β p = (3.1 ±.3(stat) ±.2(Baldin) ±.8(theory)) 1 4 fm 3 neutron: from γd γd experiments or with other methods Data sparse and not accurate [Illinois (1994), SAL (2), Lund (23)] α n = (11.1 ± 1.8(stat) ±.4(Baldin) ±.8(theory)) 1 4 fm 3 β n = ( (stat) ±.4(Baldin) ±.8(theory)) 1 4 fm 3 Theory input needed to separate: 1) structure effects 2) MEC effects New experiments on d, 3 He, 6 Li planned/in progress at TUNL/HγGS, MaxLab (Lund), S-DALINAC (Darmstaad) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

24 Compton scattering (2) Status of the calculations First applications to γn: [Bernard et al, 1992] Recent applications to γd: [Beane et al, 24]: NNLO, no rescattering [Griesshammer & Shukla, 29]: NLO, rescattering calculated with AV18 Review: [Griesshammer et al., 212] Only a few applications to γ 3 He Aims of the new calculation NNγ NN transition operators derived from the EFT at N3LO [Pastore et al., 29] NN interaction derived from the same EFT (at present we have used the I-N3LO potential by Entem & Machleidt) Future: applications to 3 He and 6 Li M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

25 General framework K 1 K1 K 1 K1 + V V K K1 K 1 K1 K 1 } {{ } termini dispersivi d f γ f T d i γ i = Ψ d f K 2 + K 1 GK 1 + K 1 GK 1 Ψd i {z } Dispersive part The Green function G = (E H + iǫ) 1 describes the rescattering of the NN pair between the two EM vertices NN interaction from [Entem & Machleidt, 23] The irriducible kernel K 2 derived from the EFT at NLO ( Q 2 ) (PRELIMNARY) In literature K 2 is derived up to NNLO [Griesshammer et al, 212] inclusion of d.o.f. [Hildebrandt Ph.D. Thesis, München, 25] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

26 Diagrams (1) Diagrams (a): contribution to K 2 seagull (SG) & spin-orbit (SO) P =q q K (SG) 2 = X j e j 2M ǫ i ǫ f ei(q q ) r j, e j = 1 + τ j z 2 P= (b2) (b1) (a) (b3) (b4) (b5) Note: the SG can be derived from H NR = (1/2M)(p ea) 2 SG: order Q 3, SO=corrections to the SG Q 2 Diagrams (b): contribution to K 2 from the polarization of the nucleon They can be used to estimate α and β [Bernard et al, 1992] We ll consider α and β as free parameters (α j = α p(1 + τz)/2 j + α n(1 τz)/2) j K (αβ) = X h 2πα 2 j ǫ i ǫ f qq j 2πβ j (q ǫ i ) (q ǫ f ) ie i(q q ) r j M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

27 Diagrams (2) Diagrams (c-f): Contributions taken into account by the dispersive part Φ f d K 1 GK 1 + K 1 GK 1 Φi d (d1) (c2) (c1) V (e1) (e2) (f1) V V V (f2) (g1) (g2) (c1), (f1) Q 3, (e1), (f2) Q 4 Exact resummation [Ishikawa et al., 1998] Ψ 1 = GK 1 Φ i d Ψ 2 = GK 1 Φi d (E H + iǫ) Ψ 1 = K 1 Φ i d (E = q B d > ) (E H + iǫ) Ψ 2 = K 1 Φi d (E = q B d < ) Diagrams (g): contribution taken into account by the fact that Φ d are solution of the Schroedinger equation Diagrams (h): Contribution to K 2 (h1) (h2) (h3) (h4) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

28 Test Photodisintegration I[ Φ f d K 1 GK 1 Φ i d σ γ+d n+p In our calculation [ Φ f d K 1 GK 1 Φ i d = Φf d K 1 Ψ 1 At E γ = 2 MeV σ γ+d n+p = 54.7 µb: we find µb (I-N3LO + JEFT Λ = 5 MeV) Thomson limit For E γ, the calculation should reproduce the Thomson limit Compton amplitude M (TL) = e 2 /M d (note: M (SG) = e 2 /M 2M (TL) ) True if V, K 1, and K 2 are consistent (current conservation) I-N3LO6 JEFT2 SG SG+Dh SG+Dh+DS(NLO) SG+Dh+DS(N3LO) limite di Thomson dσ/dω[nb/sr] θ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

29 Results (1) 4 49 MeV -- I-N3LO + JEFT (Λ=5 MeV) 35 dσ/dω [nb/sr] Illinois Data SG +SO +DS +Dh +αβ 1 5 (α p +α n )/2=11.5 (β p +β n )/2= θ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

30 Results (2) 4 66 MeV -- I-N3LO + JEFT (Λ=5 MeV) 35 dσ/dω [nb/sr] Lundin (2) SG +SO +DS (N3LO) +Dh +Pol. (standard) θ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

31 Sensitivity to α n & β n 4 49 MeV -- I-N3LO + JEFT (Λ=5 MeV) 35 3 Illinois Data α n =2, β n =2 dσ/dω [nb/sr] (α p +α n )/2=11.5 (β p +β n )/2= θ M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

32 β-decay and the 3N force e [Gardestig & Phillips, 26], [Gazit et al., 29] c D c E d R d R = Mn Λ χg A c D M N(c 3 + 2c 4 ) New fit of c D and c E using 3 H binding energy and tritium β-decay lifetime New versions of the 3N at N2LO: first application for µ-capture on d and 3 He [Marcucci et al., 212] M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

33 pp capture at astrophysical energies Aim: new calculation of the astrophysical factor S 11 of the p + p 2 H + e + ν e reaction S 11 (E) = S 11 + S 11 E S 11 E2 + Preliminary Results units 1 25 MeV b I-N3LO NN interaction + weak transition operator derived from EFT S 11 S 11 /S 11 [MeV 1 ] S [MeV 2 ] LO Λ = LO Λ = Full Λ = Full Λ = M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

34 Outlook Motivations of this work consistent calculations for a variety of processes using potential/current/wave functions derived from the same EFT Applications Main interest: test of 3N interaction in A = 3, 4 systems, study of reactions of astrophysical interest p d & d d captures, form factors of light nuclei, ldots) Compton scattering on 3 He & 6 Li (in the near future new data at HIγS & Lund) weak transitions (pp capture, µ-capture, parity-violation in nuclei,...) M. Viviani (INFN-Pisa) Electroweak Processes Elba, June 28, / 31

Basic Concepts in Nuclear Physics

Basic Concepts in Nuclear Physics Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory

More information

Theoretical nuclear physics

Theoretical nuclear physics Theoretical nuclear physics Laura Elisa Marcucci (Univ. Pisa & INFN-Pisa) The Pisa Group Ignazio Bombaci (Univ. Pisa & INFN-Pisa) Angela Bonaccorso (INFN-Pisa) Alejandro Kievsky (INFN-Pisa) Laura Elisa

More information

arxiv:hep-lat/0408024v1 16 Aug 2004

arxiv:hep-lat/0408024v1 16 Aug 2004 BU-HEPP-04-02 Electric Polarizability of Neutral Hadrons from Lattice QCD Joe Christensen Physics Department, McMurry University, Abilene, TX, 79697 Walter Wilcox Department of Physics, Baylor University,

More information

Masses in Atomic Units

Masses in Atomic Units Nuclear Composition - the forces binding protons and neutrons in the nucleus are much stronger (binding energy of MeV) than the forces binding electrons to the atom (binding energy of ev) - the constituents

More information

Basic Concepts in Nuclear Physics. Paolo Finelli

Basic Concepts in Nuclear Physics. Paolo Finelli Basic Concepts in Nuclear Physics Paolo Finelli Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory Nuclear Physics Basdevant, Rich and Spiro,

More information

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model.

Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model. Electromagnetic scattering of vector mesons in the Sakai-Sugimoto model Carlos Alfonso Ballon Bayona, Durham University In collaboration with H. Boschi-Filho, N. R. F. Braga, M. Ihl and M. Torres. arxiv:0911.0023,

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Spontaneous symmetry breaking in particle physics: a case of cross fertilization

Spontaneous symmetry breaking in particle physics: a case of cross fertilization Spontaneous symmetry breaking in particle physics: a case of cross fertilization Yoichiro Nambu lecture presented by Giovanni Jona-Lasinio Nobel Lecture December 8, 2008 1 / 25 History repeats itself 1960

More information

Recent developments in Electromagnetic Hadron Form Factors

Recent developments in Electromagnetic Hadron Form Factors Recent developments in Electromagnetic Hadron Form Factors (JOH7RPDVL*XVWDIVVRQ '$31,$63K16DFOD\ :KDW are Form Factors? :K\ to measure? +RZ to measure? :KDWLVQHZ" Consequences, Conclusions 6SRNHSHUVR QV

More information

Flavour Physics. Tim Gershon University of Warwick. 31 March 2014

Flavour Physics. Tim Gershon University of Warwick. 31 March 2014 Flavour Physics Tim Gershon University of Warwick 31 March 2014 Outline Lecture 1 what is flavour physics? some history, some concepts, some theory charged lepton physics What is flavour physics? Parameters

More information

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7

Solutions to Problems in Goldstein, Classical Mechanics, Second Edition. Chapter 7 Solutions to Problems in Goldstein, Classical Mechanics, Second Edition Homer Reid April 21, 2002 Chapter 7 Problem 7.2 Obtain the Lorentz transformation in which the velocity is at an infinitesimal angle

More information

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions

High Energy Physics. Lecture 4 More kinematics and a picture show of particle collisions High Energy Physics Lecture 4 More kinematics and a picture show of particle collisions 1 Recall from the previous lecture: the momentum of the scattered Particle in an elastic collision is given by p

More information

Basic Nuclear Concepts

Basic Nuclear Concepts Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

More information

PION SCALAR FORM FACTORS FROM

PION SCALAR FORM FACTORS FROM MENU 27 th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September-4, 27 IKP, Forschungzentrum Jülich, Germany PION SCALAR FORM FACTORS FROM J/ψ DECAYS Timo A. Lähde

More information

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

Electric Dipole moments as probes of physics beyond the Standard Model

Electric Dipole moments as probes of physics beyond the Standard Model Electric Dipole moments as probes of physics beyond the Standard Model K. V. P. Latha Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Plan of the Talk Parity (P) and Time-reversal

More information

Concepts in Theoretical Physics

Concepts in Theoretical Physics Concepts in Theoretical Physics Lecture 6: Particle Physics David Tong e 2 The Structure of Things 4πc 1 137 e d ν u Four fundamental particles Repeated twice! va, 9608085, 9902033 Four fundamental forces

More information

Perfect Fluids: From Nano to Tera

Perfect Fluids: From Nano to Tera Perfect Fluids: From Nano to Tera Thomas Schaefer North Carolina State University 1 2 Perfect Fluids sqgp (T=180 MeV) Neutron Matter (T=1 MeV) Trapped Atoms (T=0.1 nev) 3 Hydrodynamics Long-wavelength,

More information

Scuola Raimondo Anni Electro-weak probes in Nuclear Physics. Electron scattering. (a general introduction) Antonio M. Lallena. Universidad de Granada

Scuola Raimondo Anni Electro-weak probes in Nuclear Physics. Electron scattering. (a general introduction) Antonio M. Lallena. Universidad de Granada Scuola Raimondo Anni Electro-weak probes in Nuclear Physics Electron scattering (a general introduction) Antonio M. Lallena Universidad de Granada Otranto, 2013 Outline i. A very short history of electron

More information

Feynman diagrams. 1 Aim of the game 2

Feynman diagrams. 1 Aim of the game 2 Feynman diagrams Contents 1 Aim of the game 2 2 Rules 2 2.1 Vertices................................ 3 2.2 Anti-particles............................. 3 2.3 Distinct diagrams...........................

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2011 206 Introduction/Aims Symmetries play a central role in particle physics;

More information

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC

UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC UN PICCOLO BIG BANG IN LABORATORIO: L'ESPERIMENTO ALICE AD LHC Parte 1: Carlos A. Salgado Universidade de Santiago de Compostela csalgado@usc.es http://cern.ch/csalgado LHC physics program Fundamental

More information

arxiv:hep-lat/9704002v1 6 Apr 1997

arxiv:hep-lat/9704002v1 6 Apr 1997 Quenched Hadron Spectrum and Decay Constants on the Lattice L. Giusti 1 Scuola Normale Superiore, P.zza dei Cavalieri 7 and INFN, Sezione di Pisa, 56100 Pisa, Italy. Abstract arxiv:hep-lat/9704002v1 6

More information

Charged meson production - status and perspectives

Charged meson production - status and perspectives Charged meson production - status and perspectives Tanja Horn π, K, etc. Known process GP D H H ~ E E ~ π, K, etc. INT09, Seattle, WA 14 Sept 2009 Tanja Horn, CUA Colloquium status and perspectives, INT

More information

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3

0.33 d down 1 1. 0.33 c charm + 2 3. 0 0 1.5 s strange 1 3. 0 0 0.5 t top + 2 3. 0 0 172 b bottom 1 3 Chapter 16 Constituent Quark Model Quarks are fundamental spin- 1 particles from which all hadrons are made up. Baryons consist of three quarks, whereas mesons consist of a quark and an anti-quark. There

More information

η 3π and quark masses

η 3π and quark masses η 3π and quark masses Stefan Lanz Department of Astronomy and Theoretical Physics, Lund University International Workshop on Chiral Dynamics, August 6 10, 2012, Jefferson Lab Stefan Lanz (Lund University)

More information

KE A = PE MAX 1/2M v 2 = k q1 q2 /R

KE A = PE MAX 1/2M v 2 = k q1 q2 /R CHAPTER 13 NUCLEAR STRUCTURE NUCLEAR FORCE The nucleus is help firmly together by the nuclear or strong force, We can estimate the nuclear force by observing that protons residing about 1fm = 10-15m apart

More information

Standard Model of Particle Physics

Standard Model of Particle Physics Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 3rd 006 Contents 1. Spontaneous Symmetry

More information

Bounding the Higgs width at the LHC

Bounding the Higgs width at the LHC Bounding the Higgs width at the LHC Higgs XSWG workshop, June 2014 John Campbell, Fermilab with K. Ellis, C. Williams 1107.5569, 1311.3589, 1312.1628 Reminder of the method This is the essence of the original

More information

Three-point Green Functions in the resonance region: LEC s

Three-point Green Functions in the resonance region: LEC s Three-point Green unctions in the resonance region: LE s Jorge Portolés Instituto de ísica orpuscular SI-UEG, alencia (Spain) Summary LE s in hiral Perturbation Theory : how do we get them? The role of

More information

Why the high lying glueball does not mix with the neighbouring f 0. Abstract

Why the high lying glueball does not mix with the neighbouring f 0. Abstract Why the high lying glueball does not mix with the neighbouring f 0. L. Ya. Glozman Institute for Theoretical Physics, University of Graz, Universitätsplatz 5, A-800 Graz, Austria Abstract Chiral symmetry

More information

arxiv:hep-ph/9812492v1 24 Dec 1998

arxiv:hep-ph/9812492v1 24 Dec 1998 MPI-PhT/96-14(extended version) July 1996 A Note on QCD Corrections to A b FB using Thrust to arxiv:hep-ph/9812492v1 24 Dec 1998 determine the b-quark Direction Bodo Lampe Max Planck Institut für Physik

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables τ

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity 1. The number of electrons in an atom of atomic number Z and mass number A is 1) A 2) Z 3) A+Z 4) A-Z 2. The repulsive force between the positively charged protons does

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL

Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL Masters Thesis in High Energy Physics Directed by: Prof. Yuanning Gao, IHEP, Tsinghua University Prof. Aurelio Bay, LPHE, EPFL 1 Study for CP-violation in the ψ π + π J/ψ transition Vincent Fave July 18,

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 Elliptic Flow Hydrodynamic expansion converts coordinate space anisotropy to momentum space anisotropy Anisotropy

More information

Quark Model. Quark Model

Quark Model. Quark Model Quark odel Outline Hadrons Isosin Strangeness Quark odel Flavours u d s esons Pseudoscalar and vector mesons Baryons Deculet octet Hadron asses Sin-sin couling Heavy Quarks Charm bottom Heavy quark esons

More information

Part II: Heavy Quark Expansion

Part II: Heavy Quark Expansion Part II: Heavy Quark Expansion Thomas Mannel CERN-PH-TH and Theoretische Physik I, Siegen University KITPC, June 24th, 2008 Contents 1 Introduction to HQE Set-up: OPE Spectra of Inclusive Decays 2 Theory

More information

Cross section, Flux, Luminosity, Scattering Rates

Cross section, Flux, Luminosity, Scattering Rates Cross section, Flux, Luminosity, Scattering Rates Table of Contents Paul Avery (Andrey Korytov) Sep. 9, 013 1 Introduction... 1 Cross section, flux and scattering... 1 3 Scattering length λ and λ ρ...

More information

Combining fixed order QCD calculation with the parton shower Monte Carlo new PV prescription for IR singularities

Combining fixed order QCD calculation with the parton shower Monte Carlo new PV prescription for IR singularities Combining fixed order QCD calculation with the parton shower Monte Carlo new PV prescription for IR singularities O. Gituliar, S. Jadach, A. Kusina, W. Płaczek, S. Sapeta, A. Siódmok, M. Skrzypek Partly

More information

Lecture 5 Motion of a charged particle in a magnetic field

Lecture 5 Motion of a charged particle in a magnetic field Lecture 5 Motion of a charged particle in a magnetic field Charged particle in a magnetic field: Outline 1 Canonical quantization: lessons from classical dynamics 2 Quantum mechanics of a particle in a

More information

ffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM

ffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM ffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM Alexei Sheplyakov Joint Institute for Nuclear Research, Dubna, Russia SUSY 07 Karlsruhe, July 31, 2007 version

More information

Topic 3. Evidence for the Big Bang

Topic 3. Evidence for the Big Bang Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question

More information

Perfect Fluidity in Cold Atomic Gases?

Perfect Fluidity in Cold Atomic Gases? Perfect Fluidity in Cold Atomic Gases? Thomas Schaefer North Carolina State University 1 2 Hydrodynamics Long-wavelength, low-frequency dynamics of conserved or spontaneoulsy broken symmetry variables.

More information

Weak Interactions: towards the Standard Model of Physics

Weak Interactions: towards the Standard Model of Physics Weak Interactions: towards the Standard Model of Physics Weak interactions From β-decay to Neutral currents Weak interactions: are very different world CP-violation: power of logics and audacity Some experimental

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

Radiative corrections to anti-neutrino proton scattering

Radiative corrections to anti-neutrino proton scattering Radiative corrections to anti-neutrino proton scattering Udit Raha, a b and Kuniharu Kubodera b a Indian Institute of Technology Guwahati, 78 039 Assam, India b Dept. Physics and Astronomy, University

More information

EQUATION OF STATE. e (E µ)/kt ± 1 h 3 dp,

EQUATION OF STATE. e (E µ)/kt ± 1 h 3 dp, EQUATION OF STATE Consider elementary cell in a phase space with a volume x y z p x p y p z = h 3, (st.1) where h = 6.63 1 7 erg s is the Planck constant, x y z is volume in ordinary space measured in

More information

Monday 11 June 2012 Afternoon

Monday 11 June 2012 Afternoon Monday 11 June 2012 Afternoon A2 GCE PHYSICS B (ADVANCING PHYSICS) G495 Field and Particle Pictures *G412090612* Candidates answer on the Question Paper. OCR supplied materials: Data, Formulae and Relationships

More information

SHORT DISTANCE STRUCTURE OF NUCLEI: MINING THE WEALTH OF EXISTING JLAB DATA

SHORT DISTANCE STRUCTURE OF NUCLEI: MINING THE WEALTH OF EXISTING JLAB DATA SHORT DISTANCE STRUCTURE OF NUCLEI: MINING THE WEALTH OF EXISTING JLAB DATA Larry Weinstein Old Dominion University, Norfolk, VA And a cast of thousands CollaboraLon: Spokespeople: L.B. Weinstein, S.E.

More information

Meson cloud effects in the electromagnetic hadron structure

Meson cloud effects in the electromagnetic hadron structure Meson cloud effects in the electromagnetic hadron structure Daniel Kupelwieser Thesis supervisor: Wolfgang Schweiger Collaborators: Elmar Biernat, Regina Kleinhappel Universität Graz Graz Jena monitoring

More information

Recent Observation of Short Range Nucleon Correlations in Nuclei and their Implications for the Structure of Nuclei and Neutron Stars

Recent Observation of Short Range Nucleon Correlations in Nuclei and their Implications for the Structure of Nuclei and Neutron Stars Recent Observation of Short Range Nucleon Correlations in Nuclei and their Implications for the Structure of Nuclei and Neutron Stars arxiv:0806.4412v2 [nucl-th] 4 Sep 2008 Leonid Frankfurt School of Physics

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Brief remarks. m 2hyp,i + p2π,i + 2π + p 2π,i = m 2 hyp,i + p2 π,i + E π,i (2) m K + m A =

Brief remarks. m 2hyp,i + p2π,i + 2π + p 2π,i = m 2 hyp,i + p2 π,i + E π,i (2) m K + m A = 1 Brief remarks In FINUDA the strangeness-exchange reaction is used to produce Λ- hypernuclei with stopped K s: K stop + Z A Z Λ A + π (1) Thanks to the energy conservation, we can write for each bound

More information

arxiv:hep-ph/9707397v3 12 May 1998

arxiv:hep-ph/9707397v3 12 May 1998 Oblate Skyrmions F. Leblond and L. Marleau Département de Physique, Université Laval Québec, Canada, G1K 7P4 July 1997) The spherically symmetric hedgehog ansatz used in the description of the skyrmion

More information

Ω I (JP ) = 0( 3 2 + ) Status:

Ω I (JP ) = 0( 3 2 + ) Status: Ω I (JP ) = 0( 3 2 + ) Status: The unambiguous discovery in both production and decay was by BARNES 64. The quantum numbers follow from the assignment of the particle to the baryon decuplet. DEUTSCHMANN

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Exam in: FYS 310 Classical Mechanics and Electrodynamics Day of exam: Tuesday June 4, 013 Exam hours: 4 hours, beginning at 14:30 This examination

More information

Gauge theories and the standard model of elementary particle physics

Gauge theories and the standard model of elementary particle physics Gauge theories and the standard model of elementary particle physics Mark Hamilton 21st July 2014 1 / 35 Table of contents 1 The standard model 2 3 2 / 35 The standard model The standard model is the most

More information

ASCII CODES WITH GREEK CHARACTERS

ASCII CODES WITH GREEK CHARACTERS ASCII CODES WITH GREEK CHARACTERS Dec Hex Char Description 0 0 NUL (Null) 1 1 SOH (Start of Header) 2 2 STX (Start of Text) 3 3 ETX (End of Text) 4 4 EOT (End of Transmission) 5 5 ENQ (Enquiry) 6 6 ACK

More information

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS

Chapter NP-5. Nuclear Physics. Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 NUCLEAR REACTIONS 2.0 NEUTRON INTERACTIONS Chapter NP-5 Nuclear Physics Nuclear Reactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 2.0 NEUTRON INTERACTIONS 2.1 ELASTIC SCATTERING 2.2 INELASTIC SCATTERING 2.3 RADIATIVE CAPTURE 2.4 PARTICLE

More information

Topologically Massive Gravity with a Cosmological Constant

Topologically Massive Gravity with a Cosmological Constant Topologically Massive Gravity with a Cosmological Constant Derek K. Wise Joint work with S. Carlip, S. Deser, A. Waldron Details and references at arxiv:0803.3998 [hep-th] (or for the short story, 0807.0486,

More information

PoS(Baldin ISHEPP XXII)026

PoS(Baldin ISHEPP XXII)026 On the modified Yamaguchi-type functions for the Bethe-Salpeter equation Joint Institute for Nuclear Research, Dubna, Russia E-mail: bondarenko@jinr.ru V. V. Burov Joint Institute for Nuclear Research,

More information

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2014 fall

Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2014 fall UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mecanics and Field Teory 014 fall Set 11 for 17/18. November 014 Problem 59: Te Lagrangian for

More information

Atomic and Nuclear Physics Laboratory (Physics 4780)

Atomic and Nuclear Physics Laboratory (Physics 4780) Gamma Ray Spectroscopy Week of September 27, 2010 Atomic and Nuclear Physics Laboratory (Physics 4780) The University of Toledo Instructor: Randy Ellingson Gamma Ray Production: Co 60 60 60 27Co28Ni *

More information

The Standard Model of Particle Physics - II

The Standard Model of Particle Physics - II The Standard Model of Particle Physics II Lecture 4 Gauge Theory and Symmetries Quantum Chromodynamics Neutrinos Eram Rizvi Royal Institution London 6 th March 2012 Outline A Century of Particle Scattering

More information

Precision Electroweak Measurements with the LBNF Near Detector

Precision Electroweak Measurements with the LBNF Near Detector Precision Electroweak Measurements with the LBNF Near Detector R. Petti University of South Carolina, USA CETUP Near Detector Physics Workshop Deadwood, SD, USA, July 10-21, 2014 MOTIVATIONS A new measurement

More information

Three-nucleon interaction dynamics studied via the deuteron-proton breakup. Elżbieta Stephan Institute of Physics, University of Silesia

Three-nucleon interaction dynamics studied via the deuteron-proton breakup. Elżbieta Stephan Institute of Physics, University of Silesia Three-nucleon interaction dynamics studied via the deuteron-proton breakup Elżbieta Stephan Institute of Physics, University of Silesia Studies of the 1 H(d,pp)n Breakup at 130 MeV University of Silesia,

More information

Damon T. Spayde. Contact Information. Education. Experience. Professional Memberships. Honors

Damon T. Spayde. Contact Information. Education. Experience. Professional Memberships. Honors Damon T. Spayde Contact Information Work Home Education Department of Physics Hendrix College 1600 Washington Avenue Conway, AR 72032-3800 Phone: 501-450-1251 Fax: 501-450-3829 Email: spayded@hendrix.edu

More information

Investigation of the Three-Nucleon System Dynamics in the Deuteron Proton Breakup Reaction

Investigation of the Three-Nucleon System Dynamics in the Deuteron Proton Breakup Reaction Few-Body Syst 55:639 644 DOI 10.1007/s00601-014-0841-3 I. Ciepał B. Kłos St. Kistryn E. Stephan A. Biegun K. Bodek A. Deltuva E. Epelbaum M. Eslami-Kalantari A. C. Fonseca J. Golak V. Jha N. Kalantar-Nayestanaki

More information

Fundamental parameters from future lattice calculations

Fundamental parameters from future lattice calculations Fundamental parameters from future lattice calculations Lattice QCD Executive Committee R. Brower, (Boston U.) N. Christ (Columbia U.), M. Creutz (BNL), P. Mackenzie (Fermilab), J. Negele (MIT), C. Rebbi

More information

arxiv:nucl-th/0609031v2 16 Oct 2006

arxiv:nucl-th/0609031v2 16 Oct 2006 A realistic model of superfluidity in the neutron star inner crust. M. Baldo 1, E.E. Saperstein 2 and S.V. Tolokonnikov 2 1 INFN, Sezione di Catania, 64 Via S.-Sofia, I-95123 Catania, Italy 2 Kurchatov

More information

Basic Geometry Review For Trigonometry Students. 16 June 2010 Ventura College Mathematics Department 1

Basic Geometry Review For Trigonometry Students. 16 June 2010 Ventura College Mathematics Department 1 Basic Geometry Review For Trigonometry Students 16 June 2010 Ventura College Mathematics Department 1 Undefined Geometric Terms Point A Line AB Plane ABC 16 June 2010 Ventura College Mathematics Department

More information

Selected Results on Diffraction at HERA

Selected Results on Diffraction at HERA Selected Results on Diffraction at HERA Grzegorz Gach Various Faces of QCD May 014 Grzegorz Gach Selected Results on Diffraction at HERA 1 HERA DESY, Hamburg 199-007 e/e + - p 7.5 GeV 80 GeV 90 GeV Ldt

More information

arxiv:hep-ph/9607427v1 25 Jul 1996

arxiv:hep-ph/9607427v1 25 Jul 1996 DFTT 44/96 IFT-96-16 MPI-PhT/96-63 hep-ph/967427 arxiv:hep-ph/967427v1 25 Jul 1996 New proton polarized structure functions in charged current processes at HERA M. Anselmino, P. Gambino, J. Kalinowski,1

More information

Group Theory and Chemistry

Group Theory and Chemistry Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

More information

arxiv:1008.4792v2 [hep-ph] 20 Jun 2013

arxiv:1008.4792v2 [hep-ph] 20 Jun 2013 A Note on the IR Finiteness of Fermion Loop Diagrams Ambresh Shivaji Harish-Chandra Research Initute, Chhatnag Road, Junsi, Allahabad-09, India arxiv:008.479v hep-ph] 0 Jun 03 Abract We show that the mo

More information

Physics 1104 Midterm 2 Review: Solutions

Physics 1104 Midterm 2 Review: Solutions Physics 114 Midterm 2 Review: Solutions These review sheets cover only selected topics from the chemical and nuclear energy chapters and are not meant to be a comprehensive review. Topics covered in these

More information

Special Theory of Relativity

Special Theory of Relativity Special Theory of Relativity In ~1895, used simple Galilean Transformations x = x - vt t = t But observed that the speed of light, c, is always measured to travel at the same speed even if seen from different,

More information

Lepton Flavour Violation @ LHC?

Lepton Flavour Violation @ LHC? m ν (charged) lepton flavour change happens, and the LHC exists...so look for Lepton Flavour Violation @ LHC? Sacha Davidson, P Gambino, G Grenier, S Lacroix, ML Mangano, S Perries, V Sordini, P Verdier

More information

Meson spectroscopy and pion cloud effect on baryon masses

Meson spectroscopy and pion cloud effect on baryon masses Meson spectroscopy and pion cloud effect on baryon masses Stanislav Kubrak, Christian Fischer, Helios Sanchis-Alepuz, Richard Williams Justus-Liebig-University, Giessen 13.06.2014 SK, C. Fischer, H. Sanchis-Alepuz,

More information

Status and hadron physics program of J-PARC

Status and hadron physics program of J-PARC EPJ Web of Conferences 37, 01005 (2012) DOI: 10.1051/ epjconf/ 20123701005 C Owned by the authors, published by EDP Sciences, 2012 Status and hadron physics program of J-PARC K. Ozawa a High Energy Research

More information

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).

Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics). Fermi liquids The electric properties of most metals can be well understood from treating the electrons as non-interacting. This free electron model describes the electrons in the outermost shell of the

More information

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A. June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a

More information

Study of the B D* ℓ ν with the Partial Reconstruction Technique

Study of the B D* ℓ ν with the Partial Reconstruction Technique Study of the B D* ℓ ν with the Partial Reconstruction Technique + University of Ferrara / INFN Ferrara Dottorato di Ricerca in Fisica Ciclo XVII Mirco Andreotti 4 March 25 Measurement of B(B D*ℓν) from

More information

Radioactivity III: Measurement of Half Life.

Radioactivity III: Measurement of Half Life. PHY 192 Half Life 1 Radioactivity III: Measurement of Half Life. Introduction This experiment will once again use the apparatus of the first experiment, this time to measure radiation intensity as a function

More information

Search for solar axions with the CCD detector at CAST (CERN Axion Solar Telescope)

Search for solar axions with the CCD detector at CAST (CERN Axion Solar Telescope) Search for solar axions with the CCD detector at CAST (CERN Axion Solar Telescope) Donghwa Kang FAKULTÄT FÜR MATHEMATIK UND PHYSIK ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG Search for solar axions with the

More information

Electroweak effects in Higgs boson production

Electroweak effects in Higgs boson production Electroweak effects in Higgs boson production Frank Petriello University of Wisconsin, Madison w/c. Anastasiou, R. Boughezal 0811.3458 w/ W. Y. Keung, WIP Outline Brief review of experiment, theory for

More information

Høgskolen i Narvik Sivilingeniørutdanningen

Høgskolen i Narvik Sivilingeniørutdanningen Høgskolen i Narvik Sivilingeniørutdanningen Eksamen i Faget STE66 ELASTISITETSTEORI Klasse: 4.ID Dato: 7.0.009 Tid: Kl. 09.00 1.00 Tillatte hjelpemidler under eksamen: Kalkulator Kopi av Boken Mechanics

More information

arxiv:hep-ph/0410120v2 2 Nov 2004

arxiv:hep-ph/0410120v2 2 Nov 2004 Photon deflection by a Coulomb field in noncommutative QED C. A. de S. Pires Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-970, João Pessoa - PB, Brazil. Abstract arxiv:hep-ph/0410120v2

More information

2. Illustration of the Nikkei 225 option data

2. Illustration of the Nikkei 225 option data 1. Introduction 2. Illustration of the Nikkei 225 option data 2.1 A brief outline of the Nikkei 225 options market τ 2.2 Estimation of the theoretical price τ = + ε ε = = + ε + = + + + = + ε + ε + ε =

More information

arxiv:hep-ph/0112027v1 3 Dec 2001

arxiv:hep-ph/0112027v1 3 Dec 2001 CERN-TH/2001-347 1 arxiv:hep-ph/0112027v1 3 Dec 2001 Strangeness and Statistical QCD Johann Rafelski a and Jean Letessier b a Department of Physics, University of Arizona, Tucson, AZ 85721 and CERN-Theory

More information

arxiv:math/0501161v1 [math.ds] 11 Jan 2005

arxiv:math/0501161v1 [math.ds] 11 Jan 2005 ANALYTICITY OF THE SUSCEPTIBILITY FUNCTION FOR UNIMODAL MARKOVIAN MAPS OF THE INTERVAL. by Yunping iang* and David Ruelle**. arxiv:math/0501161v1 [math.ds] 11 an 2005 Abstract. We study the expression

More information

Lecture 8. Generating a non-uniform probability distribution

Lecture 8. Generating a non-uniform probability distribution Discrete outcomes Lecture 8 Generating a non-uniform probability distribution Last week we discussed generating a non-uniform probability distribution for the case of finite discrete outcomes. An algorithm

More information

Big Bang Cosmology. Big Bang vs. Steady State

Big Bang Cosmology. Big Bang vs. Steady State Big Bang vs. Steady State Big Bang Cosmology Perfect cosmological principle: universe is unchanging in space and time => Steady-State universe - Bondi, Hoyle, Gold. True? No! Hubble s Law => expansion

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

Gravity and running coupling constants

Gravity and running coupling constants Gravity and running coupling constants 1) Motivation and history 2) Brief review of running couplings 3) Gravity as an effective field theory 4) Running couplings in effective field theory 5) Summary 6)

More information