A Basic Guide to Modeling Techniques for All Direct Marketing Challenges

Size: px
Start display at page:

Download "A Basic Guide to Modeling Techniques for All Direct Marketing Challenges"

Transcription

1 A Basic Guide to Modeling Techniques for All Direct Marketing Challenges Allison Cornia Database Marketing Manager Microsoft Corporation C. Olivia Rud Executive Vice President Data Square, LLC

2 Overview Types and Uses of Models Descriptive Segmentation Profiling Predictive Regression Trees Neural Networks Genetic Algorithms Association Rules Latent Class Variable Implementing Models Why Good Models Fail Scoring errors Backend failures

3 Segmentation Analysis Segmentation analysis groups variables with like characteristics. Can be market driven: analyst determines the segments. Can be data driven: data determines the segments (clustering) MALE FEMALE M S D W M S D W <

4 Profiling: Credit Card Customers High R I S K Low Low Low Potential Average Balance = $1,089 Average APR = 12.3% Average Tenure = 2.4 Years Average Charge-off = $111 Average Profits = $8 Good Potential Average Balance = $549 Average APR = 8.4% Average Tenure = 1.2 Years Average Charge-off = $29 Average Profits = $33 Revenue Cautious Potential Average Balance = $5,315 Average APR = 15.8% Average Tenure = 2.8 Years Average Charge-off = $584 Average Profits = $239 Best Customer Average Balance = $3,288 Average APR = 13.7% Average Tenure = 3.7 Years Average Charge-off = $102 Average Profits = $440 High

5 Profiling: Credit Card Customers High R I S K Low Potential Charge Annual Fee Increase APR Low Priority Service No Solicitations Good Potential Good Customer Service Decrease APR Offer Balance Transfers Offer Cardholder Benefits Cautious Potential Charge Annual Fee Increase APR Monitor Payment Behavior Offer secured loan Best Customer Best Customer Service No Annual Fee Automatic Line Increase Offer Cardholder Benefits Low Low Revenue High

6 Association Rules Rules derived from past behavior such as movement on Website or purchase groupings. Used to enhance Website structure and modify Web traffic. Used to make real time targeted offers.

7 Linear Regression Uses continuous values to predict continuous value. Explains variation in data using ordinary least squares (OLS). Useful in predicting: amount of sale ~ advertising, cost, demographics charge-off dollars ~ balance, financial risk profile, demographics amount of claim ~ age, health risk profile, geography dollar balance ~ financial risk profile, action to account, market pressure average profitability ~ financial risk profile, price sensitivity, demographics

8 Simple Linear Regression Advertising $120 $160 $205 $210 $225 $230 $290 $315 $375 $390 $440 $475 $490 $550 Sales $1,503 $1,755 $2,971 $1,682 $3,497 $1,998 $4,528 $2,937 $3,622 $4,402 $3,844 $4,470 $5,492 $4,398 S A L E S $6K $5K $4K $3K $2K $1K 0 0 $100 $200 $300 $400 $500 $600 ADVERTISING

9 Simple Linear Regression Goal: characterize relationship between advertising and sales Result: equation that predicts sales dollars based on advertising dollars spent S A L E S $6K $5K $4K $3K $2K $1K Minimize Squared Error Sales = B 0 + B 1 Advertising 0 0 $100 $200 $300 $400 $500 $600 ADVERTISING

10 Multiple Linear Regression Minimizes squared error in N-dimensional space Credit card balances payment amount years gender (0/1) Balances = Payment Months Gender

11 Logistic Regression Uses continuous values to predict probability of discrete outcome Iterative method of minimizing error using method of maximum likelihood Useful in predicting probability of: response to loan offer ~ financial risk profile, demographics response to insurance offer ~ health risk profile, demographics activation ~ financial risk profile, demographics, market pressure charge-off ~ balance, financial risk profile, demographics claim ~ health risk profile, demographics fraud ~ financial risk profile, account activity account closure ~ account activity, market pressure

12 Logistic Regression Predicts probability of event occurring using function of linear predictors p = probability of event occurring p/(1-p) is the odds of an event occurring. Log of the odds: log(p/(1-p)) is linear function of predictors. 1 0 Uses s-shaped curve instead of linear function to fit the data. log(p/(1-p)) = B 0 + B 1 X 1 + b 2 X 2 + B n X n P = 1/(1+e -(B 0 + B 1 X 1 + b 2 X 2 + B n X n ) )

13 Classification Trees Mailed 10,000 Resp Rate 2.6% Male 4,677 Resp Rate 3.2% Female 5,323 Resp Rate 2.1% <$30K 1,290 Resp Rate 1.7% >$45K 1,281 Resp Rate 4.1% Age => 40 2,211 Resp Rate 4.3% $30K-$45K 2,106 Resp Rate 3.6% Age < 40 3,112 Resp Rate 0.7%

14 Decision Trees Profit Issue Loan Yes 97% 3% x $728 (Interest) x $4872 (Loss) $706 ($146) No $0 Decision Node Chance Node Allows you to quantify the best action.

15 Neural Networks amount of sale ~ advertising, cost, demographics charge-off dollars ~ balance, financial risk profile, demographics amount of claim ~ age, health risk profile, geography dollar balance ~ financial risk profile, action to account, market pressure average profitability ~ financial risk profile, price sensitivity, demographics

16 Artificial Neural Networks Multiple hidden nodes Each node is linear transformation of output from previous node Structure is too complex to interpret weights. Output layer Hidden layer Stopping rules Error threshold Time limit Change in error Input layer

17 Artificial Neural Networks Advantages Handles non-linearity Handles interactions Considered very accurate Useful for complex optimization Disadvantages Not interpretable CPU intensive Poor handling of missing data Sensitive to input variable selection Explodes categorical data Risk of over-fitting -> not robust

18 Genetic Algorithms Based on Darwin s Principle of Survival of the Fittest. Genetic Operators Reproduction (Copying) Mating (Crossover) Mutation (Altering) Process starts with initial population of random models. Models with poor performance (fitness) die out - are deleted.

19 Genetic Algorithms Methodology Fitness of the new population improves by: 1. Copying good models. 2. Mating good models to create better offspring models with improved fitness. 3. Altering good models to create mutants with improved fitness. 4. Repeat steps 1-3 until stopping rules are met. The Best Evolved model is the solution.

20 Genetic Algorithms Models are composed of Functions arithmetic (+, -,, ) mathematical (log, exp, max,... ) trigonometric (sin, cos, tan, arcsin,...) logics (and, or, not, gt, lt, eq,...) conditional (if-then-else) Variables independent variables numeric values (constants, random numbers)

21 GA s - Initialize Random Model Models Objective Predict response Let the function set consist of +, -,,, exp Let the variable set consist of 20% X1, X2, b 20% _ + 20% exp 20% 20%

22 GA s - Initialize Random Model Models are displayed in trees. Response % 12.5% b X1 12.5% X1 b _ % Repeat M times 12.5% X2 exp 12.5% 12.5% 12.5%

23 GA s Generate M Models Response Response _ Y = b exp(x1) X1 X2 b exp Y = X1X2 X1

24 GA s Compare Fitness 26% Model 1 Y = x1(b + X2) Model 2 Y = b - exp(x1) Model 3 Y = x1 - X2 Model 4 Y = x1x2 Model 5 Y = b + x1 M2 23% M3 M1 M4 17% M5 6% Fitness Value (r-square) PTF Model Model Model Model Model Total %

25 Genetic Methodology Fitness Improves by: Copying models based on PTF Mating models based on PTF Altering models based on PTF Continue above until stopping rules are met The best-evolved model is the solution

26 Latent Class Models Used more in academic circles Software only allowed small sets and a small number of variables LatentGOLD developed by Statistical Innovations (Jay Magidson, inventor of CHAID) Scalable sofware Disparate sources of data

27 3 Kinds of Latent Class Models Traditional Applications in scaling and classification Factor Applications in exploratory and confirmatory factor analysis Regression Uses are in the prediction and explanation when the population is not homogenous

28 Traditional LCM vs. LC Factor Traditional Latent Class Models identify classes which group together persons who share similar interest/values/characteristics/behavior Latent Class Factor Models identify factors which group together variables sharing a common source of variation

29 Implementing Models How do we select based on model results? What is the impact to the bottom line?

30 Gains Table Number Accounts Predicted Actual Cum Actual Lift Cum Lift 1 48,342 4, % 10.12% 10.12% ,343 3, % 8.16% 9.14% ,342 2, % 5.76% 8.01% ,342 1, % 2.38% 6.60% , % 1.07% 5.50% , % 0.56% 4.67% , % 0.23% 4.04% , % 0.05% 3.54% , % 0.01% 3.15% , % 0.00% 2.83%

31 Gains Chart 100% 90% P e r c e n t A c t i v e 80% 70% 60% 50% 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Percent Mailed

32 Modeling Lifetime Value Predict probability of activation for a life insurance offer using logistic regression, neural networks, genetic algorithms. Use probability to calculate Lifetime Value (LTV) for life insurance prospect for a five year period LTV = Pr(Activation) Risk (Product Profitability+ Cross Sales)Lapse Indicator - Marketing Expense Activation - probability given by a model Risk - indices in matrix of gender marital status age group Product Profitability - present value of product specific 5 year profit measure Cross Sales additional net revenues for five years following activation Lapse Indicator adjustment based on payment method Marketing Expense - cost of package, postage & processing

33 Lifetime Value LTV = Pr(Active) Risk (Cross Sell Profit + Product Profitability) Lapse Indicator Index - Marketing Expense Active Cross Risk Lapse Product Average Average Sum Number Rate Sell Index Indicator Profitability LTV CUM LTV Cum LTV 1 96, % $ $553 $64.76 $64.76 $6,261, , % $ $553 $55.35 $60.06 $11,612, , % $ $553 $30.99 $50.37 $14,609, , % $ $553 $11.13 $40.56 $15,685, , % $ $553 $5.53 $33.55 $16,220, , % $ $553 $1.09 $28.14 $16,325, , % $ $553 ($0.04) $24.12 $16,321, , % $ $553 ($0.26) $21.07 $16,295, , % $ $553 ($0.75) $18.64 $16,223, , % $ $553 ($0.78) $16.70 $16,148,199 How many deciles do you mail?

34 Why Good Models Fail (Allison s Top Ten for Troubleshooting) 1. Check the phones; make sure the site is functioning properly 2. Track the mail 3. Listen in on the call center 4. Implementation Issues Programming errors Inverted scoring 5. Did they pull the right group?

35 More of Why Good Models Fail 6. Practice crop rotation 7. External validity 8. Internal validity 9. Bad ingredients make for bad models 10.Old models, like old horses, have to be put out to pasture

36 All models are wrong, but some are useful. George Box

37 C. Olivia Rud Executive Vice President DataSquare, LLC 733 Summer St. Stamford, CT x103 Specializing in Data Mining, Statistical Modeling and Marketing Strategy for Marketing, Risk and Customer Relationship Management

38 Allison Cornia Database Marketing Manager CRM/Home & Retail Division Microsoft Corporation One Microsoft Way Redmond, WA

39 A Basic Guide to Modeling Techniques for all Direct Marketing Challenges Allison Cornia Database Marketing Manager Microsoft Corporation C. Olivia Rud Executive Vice President Data Square, LLC

Modeling Lifetime Value in the Insurance Industry

Modeling Lifetime Value in the Insurance Industry Modeling Lifetime Value in the Insurance Industry C. Olivia Parr Rud, Executive Vice President, Data Square, LLC ABSTRACT Acquisition modeling for direct mail insurance has the unique challenge of targeting

More information

Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing. C. Olivia Rud, VP, Fleet Bank

Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing. C. Olivia Rud, VP, Fleet Bank Data Mining: An Overview of Methods and Technologies for Increasing Profits in Direct Marketing C. Olivia Rud, VP, Fleet Bank ABSTRACT Data Mining is a new term for the common practice of searching through

More information

Data Mining Algorithms Part 1. Dejan Sarka

Data Mining Algorithms Part 1. Dejan Sarka Data Mining Algorithms Part 1 Dejan Sarka Join the conversation on Twitter: @DevWeek #DW2015 Instructor Bio Dejan Sarka (dsarka@solidq.com) 30 years of experience SQL Server MVP, MCT, 13 books 7+ courses

More information

Numerical Algorithms Group

Numerical Algorithms Group Title: Summary: Using the Component Approach to Craft Customized Data Mining Solutions One definition of data mining is the non-trivial extraction of implicit, previously unknown and potentially useful

More information

Chapter 12 Discovering New Knowledge Data Mining

Chapter 12 Discovering New Knowledge Data Mining Chapter 12 Discovering New Knowledge Data Mining Becerra-Fernandez, et al. -- Knowledge Management 1/e -- 2004 Prentice Hall Additional material 2007 Dekai Wu Chapter Objectives Introduce the student to

More information

IBM SPSS Direct Marketing 23

IBM SPSS Direct Marketing 23 IBM SPSS Direct Marketing 23 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 23, release

More information

Lecture 8 February 4

Lecture 8 February 4 ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt

More information

Predictive Modeling and Big Data

Predictive Modeling and Big Data Predictive Modeling and Presented by Eileen Burns, FSA, MAAA Milliman Agenda Current uses of predictive modeling in the life insurance industry Potential applications of 2 1 June 16, 2014 [Enter presentation

More information

IBM SPSS Direct Marketing 22

IBM SPSS Direct Marketing 22 IBM SPSS Direct Marketing 22 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 22, release

More information

Using Adaptive Random Trees (ART) for optimal scorecard segmentation

Using Adaptive Random Trees (ART) for optimal scorecard segmentation A FAIR ISAAC WHITE PAPER Using Adaptive Random Trees (ART) for optimal scorecard segmentation By Chris Ralph Analytic Science Director April 2006 Summary Segmented systems of models are widely recognized

More information

Data Mining Prediction

Data Mining Prediction Data Mining Prediction Jingpeng Li 1 of 23 What is Prediction? Predicting the identity of one thing based purely on the description of another related thing Not necessarily future events, just unknowns

More information

Data Mining Applications in Higher Education

Data Mining Applications in Higher Education Executive report Data Mining Applications in Higher Education Jing Luan, PhD Chief Planning and Research Officer, Cabrillo College Founder, Knowledge Discovery Laboratories Table of contents Introduction..............................................................2

More information

Role of Customer Response Models in Customer Solicitation Center s Direct Marketing Campaign

Role of Customer Response Models in Customer Solicitation Center s Direct Marketing Campaign Role of Customer Response Models in Customer Solicitation Center s Direct Marketing Campaign Arun K Mandapaka, Amit Singh Kushwah, Dr.Goutam Chakraborty Oklahoma State University, OK, USA ABSTRACT Direct

More information

A Property & Casualty Insurance Predictive Modeling Process in SAS

A Property & Casualty Insurance Predictive Modeling Process in SAS Paper AA-02-2015 A Property & Casualty Insurance Predictive Modeling Process in SAS 1.0 ABSTRACT Mei Najim, Sedgwick Claim Management Services, Chicago, Illinois Predictive analytics has been developing

More information

Predictive Modeling Techniques in Insurance

Predictive Modeling Techniques in Insurance Predictive Modeling Techniques in Insurance Tuesday May 5, 2015 JF. Breton Application Engineer 2014 The MathWorks, Inc. 1 Opening Presenter: JF. Breton: 13 years of experience in predictive analytics

More information

WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat

WebFOCUS RStat. RStat. Predict the Future and Make Effective Decisions Today. WebFOCUS RStat Information Builders enables agile information solutions with business intelligence (BI) and integration technologies. WebFOCUS the most widely utilized business intelligence platform connects to any enterprise

More information

Mining Marketing Data

Mining Marketing Data 1:1 Marketing or CRM Mining Marketing Data The basis of 1:1 marketing is share of customer not just market share. So Instead of selling as many products as possible to who ever will buy them. We try to

More information

USING LOGIT MODEL TO PREDICT CREDIT SCORE

USING LOGIT MODEL TO PREDICT CREDIT SCORE USING LOGIT MODEL TO PREDICT CREDIT SCORE Taiwo Amoo, Associate Professor of Business Statistics and Operation Management, Brooklyn College, City University of New York, (718) 951-5219, Tamoo@brooklyn.cuny.edu

More information

Nine Common Types of Data Mining Techniques Used in Predictive Analytics

Nine Common Types of Data Mining Techniques Used in Predictive Analytics 1 Nine Common Types of Data Mining Techniques Used in Predictive Analytics By Laura Patterson, President, VisionEdge Marketing Predictive analytics enable you to develop mathematical models to help better

More information

Linda K. Muthén Bengt Muthén. Copyright 2008 Muthén & Muthén www.statmodel.com. Table Of Contents

Linda K. Muthén Bengt Muthén. Copyright 2008 Muthén & Muthén www.statmodel.com. Table Of Contents Mplus Short Courses Topic 2 Regression Analysis, Eploratory Factor Analysis, Confirmatory Factor Analysis, And Structural Equation Modeling For Categorical, Censored, And Count Outcomes Linda K. Muthén

More information

Modeling Customer Lifetime Value Using Survival Analysis An Application in the Telecommunications Industry

Modeling Customer Lifetime Value Using Survival Analysis An Application in the Telecommunications Industry Paper 12028 Modeling Customer Lifetime Value Using Survival Analysis An Application in the Telecommunications Industry Junxiang Lu, Ph.D. Overland Park, Kansas ABSTRACT Increasingly, companies are viewing

More information

Business Analytics and Credit Scoring

Business Analytics and Credit Scoring Study Unit 5 Business Analytics and Credit Scoring ANL 309 Business Analytics Applications Introduction Process of credit scoring The role of business analytics in credit scoring Methods of logistic regression

More information

Marketing Strategies for Retail Customers Based on Predictive Behavior Models

Marketing Strategies for Retail Customers Based on Predictive Behavior Models Marketing Strategies for Retail Customers Based on Predictive Behavior Models Glenn Hofmann HSBC Salford Systems Data Mining 2005 New York, March 28 30 0 Objectives Inform about effective approach to direct

More information

Application of SAS! Enterprise Miner in Credit Risk Analytics. Presented by Minakshi Srivastava, VP, Bank of America

Application of SAS! Enterprise Miner in Credit Risk Analytics. Presented by Minakshi Srivastava, VP, Bank of America Application of SAS! Enterprise Miner in Credit Risk Analytics Presented by Minakshi Srivastava, VP, Bank of America 1 Table of Contents Credit Risk Analytics Overview Journey from DATA to DECISIONS Exploratory

More information

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science TNS EX A MINE BehaviourForecast Predictive Analytics for CRM 1 TNS BehaviourForecast Why is BehaviourForecast relevant for you? The concept of analytical Relationship Management (acrm) becomes more and

More information

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4.

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4. Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví Pavel Kříž Seminář z aktuárských věd MFF 4. dubna 2014 Summary 1. Application areas of Insurance Analytics 2. Insurance Analytics

More information

Easily Identify Your Best Customers

Easily Identify Your Best Customers IBM SPSS Statistics Easily Identify Your Best Customers Use IBM SPSS predictive analytics software to gain insight from your customer database Contents: 1 Introduction 2 Exploring customer data Where do

More information

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

More information

Use Data Mining Techniques to Assist Institutions in Achieving Enrollment Goals: A Case Study

Use Data Mining Techniques to Assist Institutions in Achieving Enrollment Goals: A Case Study Use Data Mining Techniques to Assist Institutions in Achieving Enrollment Goals: A Case Study Tongshan Chang The University of California Office of the President CAIR Conference in Pasadena 11/13/2008

More information

Potential Value of Data Mining for Customer Relationship Marketing in the Banking Industry

Potential Value of Data Mining for Customer Relationship Marketing in the Banking Industry Advances in Natural and Applied Sciences, 3(1): 73-78, 2009 ISSN 1995-0772 2009, American Eurasian Network for Scientific Information This is a refereed journal and all articles are professionally screened

More information

Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios

Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios Accurately and Efficiently Measuring Individual Account Credit Risk On Existing Portfolios By: Michael Banasiak & By: Daniel Tantum, Ph.D. What Are Statistical Based Behavior Scoring Models And How Are

More information

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not. Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification

More information

Predicting Successful Completion of the Nursing Program: An Analysis of Prerequisites and Demographic Variables

Predicting Successful Completion of the Nursing Program: An Analysis of Prerequisites and Demographic Variables Predicting Successful Completion of the Nursing Program: An Analysis of Prerequisites and Demographic Variables Introduction In the summer of 2002, a research study commissioned by the Center for Student

More information

Data Mining Applications in Fund Raising

Data Mining Applications in Fund Raising Data Mining Applications in Fund Raising Nafisseh Heiat Data mining tools make it possible to apply mathematical models to the historical data to manipulate and discover new information. In this study,

More information

Predictive Dynamix Inc Turning Business Experience Into Better Decisions

Predictive Dynamix Inc Turning Business Experience Into Better Decisions Overview Geospatial Data Mining for Market Intelligence By Paul Duke, Predictive Dynamix, Inc. Copyright 2000-2001. All rights reserved. Today, there is a huge amount of information readily available describing

More information

Overview. Data Mining. Predicting Stock Market Returns. Predicting Health Risk. Wharton Department of Statistics. Wharton

Overview. Data Mining. Predicting Stock Market Returns. Predicting Health Risk. Wharton Department of Statistics. Wharton Overview Data Mining Bob Stine www-stat.wharton.upenn.edu/~bob Applications - Marketing: Direct mail advertising (Zahavi example) - Biomedical: finding predictive risk factors - Financial: predicting returns

More information

Predicting Customer Default Times using Survival Analysis Methods in SAS

Predicting Customer Default Times using Survival Analysis Methods in SAS Predicting Customer Default Times using Survival Analysis Methods in SAS Bart Baesens Bart.Baesens@econ.kuleuven.ac.be Overview The credit scoring survival analysis problem Statistical methods for Survival

More information

ElegantJ BI. White Paper. The Competitive Advantage of Business Intelligence (BI) Forecasting and Predictive Analysis

ElegantJ BI. White Paper. The Competitive Advantage of Business Intelligence (BI) Forecasting and Predictive Analysis ElegantJ BI White Paper The Competitive Advantage of Business Intelligence (BI) Forecasting and Predictive Analysis Integrated Business Intelligence and Reporting for Performance Management, Operational

More information

Prediction of Stock Performance Using Analytical Techniques

Prediction of Stock Performance Using Analytical Techniques 136 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013 Prediction of Stock Performance Using Analytical Techniques Carol Hargreaves Institute of Systems Science National University

More information

CoolaData Predictive Analytics

CoolaData Predictive Analytics CoolaData Predictive Analytics 9 3 6 About CoolaData CoolaData empowers online companies to become proactive and predictive without having to develop, store, manage or monitor data themselves. It is an

More information

M15_BERE8380_12_SE_C15.7.qxd 2/21/11 3:59 PM Page 1. 15.7 Analytics and Data Mining 1

M15_BERE8380_12_SE_C15.7.qxd 2/21/11 3:59 PM Page 1. 15.7 Analytics and Data Mining 1 M15_BERE8380_12_SE_C15.7.qxd 2/21/11 3:59 PM Page 1 15.7 Analytics and Data Mining 15.7 Analytics and Data Mining 1 Section 1.5 noted that advances in computing processing during the past 40 years have

More information

not possible or was possible at a high cost for collecting the data.

not possible or was possible at a high cost for collecting the data. Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their day-to-day

More information

Decision Trees from large Databases: SLIQ

Decision Trees from large Databases: SLIQ Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values

More information

Data Mining Lab 5: Introduction to Neural Networks

Data Mining Lab 5: Introduction to Neural Networks Data Mining Lab 5: Introduction to Neural Networks 1 Introduction In this lab we are going to have a look at some very basic neural networks on a new data set which relates various covariates about cheese

More information

THE HYBRID CART-LOGIT MODEL IN CLASSIFICATION AND DATA MINING. Dan Steinberg and N. Scott Cardell

THE HYBRID CART-LOGIT MODEL IN CLASSIFICATION AND DATA MINING. Dan Steinberg and N. Scott Cardell THE HYBID CAT-LOGIT MODEL IN CLASSIFICATION AND DATA MINING Introduction Dan Steinberg and N. Scott Cardell Most data-mining projects involve classification problems assigning objects to classes whether

More information

Predicting Customer Churn in the Telecommunications Industry An Application of Survival Analysis Modeling Using SAS

Predicting Customer Churn in the Telecommunications Industry An Application of Survival Analysis Modeling Using SAS Paper 114-27 Predicting Customer in the Telecommunications Industry An Application of Survival Analysis Modeling Using SAS Junxiang Lu, Ph.D. Sprint Communications Company Overland Park, Kansas ABSTRACT

More information

How to Exploit the Homogeneity of Data in Predictive Score Development

How to Exploit the Homogeneity of Data in Predictive Score Development How to Exploit the Homogeneity of Data in Predictive Score Development A presentation of case studies on how the homogeneity of data was exploited to increase the discriminatory power of a predictive score

More information

Title. Introduction to Data Mining. Dr Arulsivanathan Naidoo Statistics South Africa. OECD Conference Cape Town 8-10 December 2010.

Title. Introduction to Data Mining. Dr Arulsivanathan Naidoo Statistics South Africa. OECD Conference Cape Town 8-10 December 2010. Title Introduction to Data Mining Dr Arulsivanathan Naidoo Statistics South Africa OECD Conference Cape Town 8-10 December 2010 1 Outline Introduction Statistics vs Knowledge Discovery Predictive Modeling

More information

Customer and Business Analytic

Customer and Business Analytic Customer and Business Analytic Applied Data Mining for Business Decision Making Using R Daniel S. Putler Robert E. Krider CRC Press Taylor &. Francis Group Boca Raton London New York CRC Press is an imprint

More information

11. Analysis of Case-control Studies Logistic Regression

11. Analysis of Case-control Studies Logistic Regression Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

More information

Data Mining Techniques Chapter 6: Decision Trees

Data Mining Techniques Chapter 6: Decision Trees Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................

More information

Behavior Model to Capture Bank Charge-off Risk for Next Periods Working Paper

Behavior Model to Capture Bank Charge-off Risk for Next Periods Working Paper 1 Behavior Model to Capture Bank Charge-off Risk for Next Periods Working Paper Spring 2007 Juan R. Castro * School of Business LeTourneau University 2100 Mobberly Ave. Longview, Texas 75607 Keywords:

More information

An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century

An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century Nora Galambos, PhD Senior Data Scientist Office of Institutional Research, Planning & Effectiveness Stony Brook University AIRPO

More information

Predictive Dynamix Inc

Predictive Dynamix Inc Predictive Modeling Technology Predictive modeling is concerned with analyzing patterns and trends in historical and operational data in order to transform data into actionable decisions. This is accomplished

More information

STATISTICA. Financial Institutions. Case Study: Credit Scoring. and

STATISTICA. Financial Institutions. Case Study: Credit Scoring. and Financial Institutions and STATISTICA Case Study: Credit Scoring STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table of Contents INTRODUCTION: WHAT

More information

Customer Life Time Value

Customer Life Time Value Customer Life Time Value Tomer Kalimi, Jacob Zahavi and Ronen Meiri Contents Introduction... 2 So what is the LTV?... 2 LTV in the Gaming Industry... 3 The Modeling Process... 4 Data Modeling... 5 The

More information

Assessing Data Mining: The State of the Practice

Assessing Data Mining: The State of the Practice Assessing Data Mining: The State of the Practice 2003 Herbert A. Edelstein Two Crows Corporation 10500 Falls Road Potomac, Maryland 20854 www.twocrows.com (301) 983-3555 Objectives Separate myth from reality

More information

Data Mining is the process of knowledge discovery involving finding

Data Mining is the process of knowledge discovery involving finding using analytic services data mining framework for classification predicting the enrollment of students at a university a case study Data Mining is the process of knowledge discovery involving finding hidden

More information

15.564 Information Technology I. Business Intelligence

15.564 Information Technology I. Business Intelligence 15.564 Information Technology I Business Intelligence Outline Operational vs. Decision Support Systems What is Data Mining? Overview of Data Mining Techniques Overview of Data Mining Process Data Warehouses

More information

Data Mining. Nonlinear Classification

Data Mining. Nonlinear Classification Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15

More information

Finding Supporters. Political Predictive Analytics Using Logistic Regression. Multivariate Solutions

Finding Supporters. Political Predictive Analytics Using Logistic Regression. Multivariate Solutions Finding Supporters Political Predictive Analytics Using Logistic Regression Multivariate Solutions What is Logistic Regression? In a political application, logistic regression can describe the outcome

More information

Empowering the Digital Marketer With Big Data Visualization

Empowering the Digital Marketer With Big Data Visualization Conclusions Paper Empowering the Digital Marketer With Big Data Visualization Insights from the DMA Annual Conference Preview Webinar Series Big Digital Data, Visualization and Answering the Question:

More information

Predictive Modeling in Workers Compensation 2008 CAS Ratemaking Seminar

Predictive Modeling in Workers Compensation 2008 CAS Ratemaking Seminar Predictive Modeling in Workers Compensation 2008 CAS Ratemaking Seminar Prepared by Louise Francis, FCAS, MAAA Francis Analytics and Actuarial Data Mining, Inc. www.data-mines.com Louise.francis@data-mines.cm

More information

IBM SPSS Direct Marketing 19

IBM SPSS Direct Marketing 19 IBM SPSS Direct Marketing 19 Note: Before using this information and the product it supports, read the general information under Notices on p. 105. This document contains proprietary information of SPSS

More information

Business Analytics and Data Mining for CRM Business Analytics and Data Mining for CRM: Jumpstart workshop

Business Analytics and Data Mining for CRM Business Analytics and Data Mining for CRM: Jumpstart workshop : Jumpstart workshop Date and Place: Bangalore, Sep 1 st (Sat) and 2 nd (Sun) 2012 Registration Link: http://compegence.com/open-programs.php http://compegence.com/workshop-analytics-for-crm.php Audience:

More information

KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES

KnowledgeSTUDIO HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES HIGH-PERFORMANCE PREDICTIVE ANALYTICS USING ADVANCED MODELING TECHNIQUES Translating data into business value requires the right data mining and modeling techniques which uncover important patterns within

More information

Scoring of Bank Customers for a Life Insurance Campaign

Scoring of Bank Customers for a Life Insurance Campaign Scoring of Bank Customers for a Life Insurance Campaign by Brian Schwartz and Jørgen Lauridsen Discussion Papers on Business and Economics No. 5/2007 FURTHER INFORMATION Department of Business and Economics

More information

Gordon S. Linoff Founder Data Miners, Inc. gordon@data-miners.com

Gordon S. Linoff Founder Data Miners, Inc. gordon@data-miners.com Survival Data Mining Gordon S. Linoff Founder Data Miners, Inc. gordon@data-miners.com What to Expect from this Talk Background on survival analysis from a data miner s perspective Introduction to key

More information

Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner A Beginner s Guide

Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner A Beginner s Guide Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner A Beginner s Guide Olivia Parr-Rud From Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner. Full book available

More information

Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com

Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com SPSS-SA Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com SPSS-SA Training Brochure 2009 TABLE OF CONTENTS 1 SPSS TRAINING COURSES FOCUSING

More information

Name: Srinivasan Govindaraj Title: Big Data Predictive Analytics

Name: Srinivasan Govindaraj Title: Big Data Predictive Analytics Name: Srinivasan Govindaraj Title: Big Data Predictive Analytics Please note the following IBM s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice

More information

MAXIMIZING RETURN ON DIRECT MARKETING CAMPAIGNS

MAXIMIZING RETURN ON DIRECT MARKETING CAMPAIGNS MAXIMIZING RETURN ON DIRET MARKETING AMPAIGNS IN OMMERIAL BANKING S 229 Project: Final Report Oleksandra Onosova INTRODUTION Recent innovations in cloud computing and unified communications have made a

More information

The Predictive Data Mining Revolution in Scorecards:

The Predictive Data Mining Revolution in Scorecards: January 13, 2013 StatSoft White Paper The Predictive Data Mining Revolution in Scorecards: Accurate Risk Scoring via Ensemble Models Summary Predictive modeling methods, based on machine learning algorithms

More information

ENHANCED CONFIDENCE INTERPRETATIONS OF GP BASED ENSEMBLE MODELING RESULTS

ENHANCED CONFIDENCE INTERPRETATIONS OF GP BASED ENSEMBLE MODELING RESULTS ENHANCED CONFIDENCE INTERPRETATIONS OF GP BASED ENSEMBLE MODELING RESULTS Michael Affenzeller (a), Stephan M. Winkler (b), Stefan Forstenlechner (c), Gabriel Kronberger (d), Michael Kommenda (e), Stefan

More information

Comparing the Results of Support Vector Machines with Traditional Data Mining Algorithms

Comparing the Results of Support Vector Machines with Traditional Data Mining Algorithms Comparing the Results of Support Vector Machines with Traditional Data Mining Algorithms Scott Pion and Lutz Hamel Abstract This paper presents the results of a series of analyses performed on direct mail

More information

Data Mining. Dr. Saed Sayad. University of Toronto 2010 saed.sayad@utoronto.ca. http://chem-eng.utoronto.ca/~datamining/

Data Mining. Dr. Saed Sayad. University of Toronto 2010 saed.sayad@utoronto.ca. http://chem-eng.utoronto.ca/~datamining/ Data Mining Dr. Saed Sayad University of Toronto 2010 saed.sayad@utoronto.ca http://chem-eng.utoronto.ca/~datamining/ 1 Data Mining Data mining is about explaining the past and predicting the future by

More information

Free Trial - BIRT Analytics - IAAs

Free Trial - BIRT Analytics - IAAs Free Trial - BIRT Analytics - IAAs 11. Predict Customer Gender Once we log in to BIRT Analytics Free Trial we would see that we have some predefined advanced analysis ready to be used. Those saved analysis

More information

Lecture 10: Regression Trees

Lecture 10: Regression Trees Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,

More information

Some Essential Statistics The Lure of Statistics

Some Essential Statistics The Lure of Statistics Some Essential Statistics The Lure of Statistics Data Mining Techniques, by M.J.A. Berry and G.S Linoff, 2004 Statistics vs. Data Mining..lie, damn lie, and statistics mining data to support preconceived

More information

STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and

STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and Clustering Techniques and STATISTICA Case Study: Defining Clusters of Shopping Center Patrons STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table

More information

A Robust Method for Solving Transcendental Equations

A Robust Method for Solving Transcendental Equations www.ijcsi.org 413 A Robust Method for Solving Transcendental Equations Md. Golam Moazzam, Amita Chakraborty and Md. Al-Amin Bhuiyan Department of Computer Science and Engineering, Jahangirnagar University,

More information

Quick Start. Creating a Scoring Application. RStat. Based on a Decision Tree Model

Quick Start. Creating a Scoring Application. RStat. Based on a Decision Tree Model Creating a Scoring Application Based on a Decision Tree Model This Quick Start guides you through creating a credit-scoring application in eight easy steps. Quick Start Century Corp., an electronics retailer,

More information

An Introduction to Survival Analysis

An Introduction to Survival Analysis An Introduction to Survival Analysis Dr Barry Leventhal Henry Stewart Briefing on Marketing Analytics 19 th November 2010 Agenda Survival Analysis concepts Descriptive approach 1 st Case Study which types

More information

Easily Identify the Right Customers

Easily Identify the Right Customers PASW Direct Marketing 18 Specifications Easily Identify the Right Customers You want your marketing programs to be as profitable as possible, and gaining insight into the information contained in your

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

Data Mining. SPSS Clementine 12.0. 1. Clementine Overview. Spring 2010 Instructor: Dr. Masoud Yaghini. Clementine

Data Mining. SPSS Clementine 12.0. 1. Clementine Overview. Spring 2010 Instructor: Dr. Masoud Yaghini. Clementine Data Mining SPSS 12.0 1. Overview Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Types of Models Interface Projects References Outline Introduction Introduction Three of the common data mining

More information

Best Practices in Data Mining. Executive Summary

Best Practices in Data Mining. Executive Summary Executive Summary Prepared by: Database & Marketing Technology Council Authors: Richard Boire, Paul Tyndall, Greg Carriere, Rob Champion Released: August 2003 Executive Summary Canadian marketers have

More information

Data Mining for Model Creation. Presentation by Paul Below, EDS 2500 NE Plunkett Lane Poulsbo, WA USA 98370 paul.below@eds.

Data Mining for Model Creation. Presentation by Paul Below, EDS 2500 NE Plunkett Lane Poulsbo, WA USA 98370 paul.below@eds. Sept 03-23-05 22 2005 Data Mining for Model Creation Presentation by Paul Below, EDS 2500 NE Plunkett Lane Poulsbo, WA USA 98370 paul.below@eds.com page 1 Agenda Data Mining and Estimating Model Creation

More information

Methods for Interaction Detection in Predictive Modeling Using SAS Doug Thompson, PhD, Blue Cross Blue Shield of IL, NM, OK & TX, Chicago, IL

Methods for Interaction Detection in Predictive Modeling Using SAS Doug Thompson, PhD, Blue Cross Blue Shield of IL, NM, OK & TX, Chicago, IL Paper SA01-2012 Methods for Interaction Detection in Predictive Modeling Using SAS Doug Thompson, PhD, Blue Cross Blue Shield of IL, NM, OK & TX, Chicago, IL ABSTRACT Analysts typically consider combinations

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.7 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Linear Regression Other Regression Models References Introduction Introduction Numerical prediction is

More information

Practical Data Science with Azure Machine Learning, SQL Data Mining, and R

Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be

More information

Experian TAPS SM Total Annual Plastic Spend

Experian TAPS SM Total Annual Plastic Spend Experian TAPS SM Total Annual Plastic Spend The first commercially available spend algorithm built from credit data Experian and the marks used herein are service marks or registered trademarks of Experian

More information

White Paper. Data Mining for Business

White Paper. Data Mining for Business White Paper Data Mining for Business January 2010 Contents 1. INTRODUCTION... 3 2. WHY IS DATA MINING IMPORTANT?... 3 FUNDAMENTALS... 3 Example 1...3 Example 2...3 3. OPERATIONAL CONSIDERATIONS... 4 ORGANISATIONAL

More information

Statistics in Retail Finance. Chapter 6: Behavioural models

Statistics in Retail Finance. Chapter 6: Behavioural models Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural

More information

Gerry Hobbs, Department of Statistics, West Virginia University

Gerry Hobbs, Department of Statistics, West Virginia University Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit

More information

EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d.

EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d. EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER ANALYTICS LIFECYCLE Evaluate & Monitor Model Formulate Problem Data Preparation Deploy Model Data Exploration Validate Models

More information

Decision Trees What Are They?

Decision Trees What Are They? Decision Trees What Are They? Introduction...1 Using Decision Trees with Other Modeling Approaches...5 Why Are Decision Trees So Useful?...8 Level of Measurement... 11 Introduction Decision trees are a

More information

Pentaho Data Mining Last Modified on January 22, 2007

Pentaho Data Mining Last Modified on January 22, 2007 Pentaho Data Mining Copyright 2007 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For the latest information, please visit our web site at www.pentaho.org

More information

Understanding Characteristics of Caravan Insurance Policy Buyer

Understanding Characteristics of Caravan Insurance Policy Buyer Understanding Characteristics of Caravan Insurance Policy Buyer May 10, 2007 Group 5 Chih Hau Huang Masami Mabuchi Muthita Songchitruksa Nopakoon Visitrattakul Executive Summary This report is intended

More information