How Eastern Bank Uses Big Data to Better Serve & Protect its Customers!

Size: px
Start display at page:

Download "How Eastern Bank Uses Big Data to Better Serve & Protect its Customers!"

Transcription

1 How Eastern Bank Uses Big Data to Better Serve & Protect its Customers! Brian Griffith Principal Data Engineer

2 Agenda! Introduction Eastern Bank & the banking industry Data architecture and our big data journey Challenges Use Case: Debit card anomaly detection 2

3 @bwgriffith! Database developer and engineer for 15 years Working in the big data space for about 5 years Blizzard Entertainment Irvine, CA Localytics Boston, MA Eastern Bank, helping engineer their next generation data platform 3

4 Eastern Bank! 197 year old mutual bank (largest of its kind in the country) Leader in corporate social responsibility 8 th most charitable business in Massachusetts ~1 Million customers 4 Organizations: Banking: Eastern Bank Insurance: Eastern Insurance Group Wealth: Eastern Wealth Management R & D and Product Dev: Eastern Labs 4

5 Banking is Evolving! Customer activity moving more into the mobile space Diverse services continuously emerging Customers value personalized service Relevant value added services Personal relationships 5

6 Positioned for the Best of Both Worlds! Like larger banks, leverage data in a manner that allows us to offer improved features and convenience Like smaller banks, leverage data in a manner that allows us to offer more customized services and relationships 6

7 7

8 Past Data Architecture Issues! Customer data lives in transaction silos 3 Major data entities: Insurance, wealth, and banking Data access via in-house or out-sourced solution Impedes analysis Regulatory compliance Technical Debt Auditing 3 rd party dependencies 8

9 Data Architecture Goals! Abstraction from source systems Scale horizontally, not vertically Complete ownership of depth and breadth of our data Improve data quality and stewardship Drive iterative analytics throughout the enterprise Make the bank smarter 9

10 Data Architecture! Tx Data Warehouse Customer Master Big Data Store Eastern endeavors to be relationship-driven, not transaction driven. In a digital economy, face to face interactions continue to decline. We need to rely on data integration and analytics to know our customers to best meet their evolving needs Our Data Architecture is built on four interdependent tiers each with its own capabilities and contributions to the overall enterprise platform 10

11 Hadoop! Tx Data Warehouse Customer Master Big Data Store Can be a significant driver of customer intimacy in an increasingly digital world Allows us to leverage data we ve never thought of as Customer Data before Goes beyond what a customer has with us gives visibility into what a customer does with us through behavioral analytics Scales ability to store with ability to process Platform natively supports data analytics languages and machine learning tools Fast processing enables iterative exploration 11

12 Architecture Diagram! 12

13 Big Data Challenges! 13

14 Challenges! Governance! Ingestion Data Lineage Data Quality Managing growth Balancing what data we can keep vs data we should keep Security Personal Identifiable Information (PII) Mask and limit view of data Driving Consumption If you build it, they will come ß Does not work by itself Constant evangelism Need to demonstrate value! 14

15 Data Science! 15

16 Hadoop Data Science! Fraud Detection Proof of Concept

17 Fraud in the Financial Industry! An Introduction! In 2012, there was 31.1 million fraudulent transactions, with a value of $6.1 billion 1 1 The 2013 Federal Reserve Payments Study 17

18 Debit Card Fraud! Industry wide debit card fraud has been rising at an significant rate > 400% in the last 3 years! Mostly due to breaches at large, national retailers 18

19 Use Case Generation! Develop process to work in conjunction with existing fraud detection tools Existing tools mostly rules based Leverage Hadoop to traverse broad customer history for anomalous patterns Behavioral analysis 19

20 Fraud Use Case Workflow! DATA testing and validating features iteratively TESTING FEATURES sample trans & claims to build training data scoring model will identify suspicious accounts the day after fraud happens TRAINING identify account behavior patterns indicative of fraud 20

21 Data! Claims Customer reported Only use customer s first claim Model trained on all available transaction data 21

22 s! Variables indicative of fraud, formatted for machine learning Example: dollarratio = Ratio of dollar spend today vs hx Values calculated by comparing variables today vs history Ratios, log(n), binary, etc Higher value = more suspicious Hadoop performance 22

23 Building and Evaluating the Model 100% ROC for TestModel 140 False Positive Rate for TestModel % 100 Fraud Detection Rate 60% 40% 20% training testing reference False Positive Ratio testing 0% 0% 20% 40% 60% 80% 100% Total Accounts Receiver operating characteristic shows model tuning. Reviewing 20% of accounts finds ~80% of anomalies. Reference line shows predicted result of random sample. 0 0% 20% 40% 60% 80% 100% Fraud Detection Rate Weight Std Error Z p(> Z ) (Intercept) < 2e-16 dollarratio < 2e-16 23

24 Scoring! How anomalous were a day s transactions Value range: Comparing a day to customer s history Assigned to each unique account Function of weights & feature values 24

25 25

26 Results & Testing! ACCOUNT Score xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

27 Results & Testing! dollarratio = 6 ACCOUNT Score xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

28 Results & Testing! ACCOUNT Score xxxxxxxx Merchant Amount Timestamp JETBLUE AIRW $2, /30/15 9:35 AM 28

29 Results & Testing! ACCOUNT Score xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

30 Results & Testing! ACCOUNT Score xxxxxxxx Merchant Amount Timestamp Internet Vendor $ /30/15 3:42 AM Internet Vendor $3.01 4/30/15 3:42 AM Internet Vendor $2.46 4/30/15 3:42 AM Internet Vendor $1.49 4/30/15 3:42 AM Internet Vendor $ /30/15 3:42 AM 30

31 Iterating! Build new features Remove ineffective features Address feature interaction. Minimize False Positives Try Different Algorithms 31

32 Next Steps! Real time w/ Spark & MLLib Get closer to when fraud actually occurs Expanded customer reach via notifications Improved customer service More agile feedback loop based on customer assessment 32

33 Other Uses! Comparing customer behaviors day over day has carry over to many uses cases: Predicting churn Customer segmentation & personas Predicting Customer Lifetime Value (CLV) 33

34 Wrap up! Banking is evolving Hadoop addresses a very large gap in our architecture Empowers us to know more about our customers through all of their interactions with us Needs to be governed Customer fraud detection only the tip of the iceberg 34

35 Special Thanks! Mark Leonard (Eastern Bank) SVP, Data & Development Director Joe Blue (MapR) Data Scientist 35

36 Thank You!! 36

Mastering Big Data. Steve Hoskin, VP and Chief Architect INFORMATICA MDM. October 2015

Mastering Big Data. Steve Hoskin, VP and Chief Architect INFORMATICA MDM. October 2015 Mastering Big Data Steve Hoskin, VP and Chief Architect INFORMATICA MDM October 2015 Agenda About Big Data MDM and Big Data The Importance of Relationships Big Data Use Cases About Big Data Big Data is

More information

Preventing Health Care Fraud

Preventing Health Care Fraud Preventing Health Care Fraud Project: Predictive Modeling for Fraud Detection at MassHealth Category: Improving State Operations Commonwealth of Massachusetts Executive Office of Health and Human Services

More information

Preventing Healthcare Fraud through Predictive Modeling. Category: Improving State Operations

Preventing Healthcare Fraud through Predictive Modeling. Category: Improving State Operations Preventing Healthcare Fraud through Predictive Modeling Category: Improving State Operations Commonwealth of Massachusetts Executive Office of Health and Human Services Project initiated: July 2012 Project

More information

Hurwitz ValuePoint: Predixion

Hurwitz ValuePoint: Predixion Predixion VICTORY INDEX CHALLENGER Marcia Kaufman COO and Principal Analyst Daniel Kirsch Principal Analyst The Hurwitz Victory Index Report Predixion is one of 10 advanced analytics vendors included in

More information

How Financial Services Firms Can Benefit From Streaming Analytics

How Financial Services Firms Can Benefit From Streaming Analytics How Financial Services Firms Can Benefit From Streaming Analytics > 2 VITRIA TECHNOLOGY, INC. > How Financial Services Firms Can Benefit From Streaming Analytics Streaming Analytics: Why It s Important

More information

National Bank MDM initiative

National Bank MDM initiative National Bank MDM initiative MDM & Data Governance Canada Summit Raphael Colsenet Manager, BI Data Modeling and Master Data Management June 2011 Agenda National Bank @ a glance Why adopt MDM? The proof

More information

A New Era Of Analytic

A New Era Of Analytic Penang egovernment Seminar 2014 A New Era Of Analytic Megat Anuar Idris Head, Project Delivery, Business Analytics & Big Data Agenda Overview of Big Data Case Studies on Big Data Big Data Technology Readiness

More information

Addressing Risk Data Aggregation and Risk Reporting Ben Sharma, CEO. Big Data Everywhere Conference, NYC November 2015

Addressing Risk Data Aggregation and Risk Reporting Ben Sharma, CEO. Big Data Everywhere Conference, NYC November 2015 Addressing Risk Data Aggregation and Risk Reporting Ben Sharma, CEO Big Data Everywhere Conference, NYC November 2015 Agenda 1. Challenges with Risk Data Aggregation and Risk Reporting (RDARR) 2. How a

More information

CONNECTING DATA WITH BUSINESS

CONNECTING DATA WITH BUSINESS CONNECTING DATA WITH BUSINESS Big Data and Data Science consulting Business Value through Data Knowledge Synergic Partners is a specialized Big Data, Data Science and Data Engineering consultancy firm

More information

Data Lake In Action: Real-time, Closed Looped Analytics On Hadoop

Data Lake In Action: Real-time, Closed Looped Analytics On Hadoop 1 Data Lake In Action: Real-time, Closed Looped Analytics On Hadoop 2 Pivotal s Full Approach It s More Than Just Hadoop Pivotal Data Labs 3 Why Pivotal Exists First Movers Solve the Big Data Utility Gap

More information

Understanding Your Customer Journey by Extending Adobe Analytics with Big Data

Understanding Your Customer Journey by Extending Adobe Analytics with Big Data SOLUTION BRIEF Understanding Your Customer Journey by Extending Adobe Analytics with Big Data Business Challenge Today s digital marketing teams are overwhelmed by the volume and variety of customer interaction

More information

Predictive Analytics: Turn Information into Insights

Predictive Analytics: Turn Information into Insights Predictive Analytics: Turn Information into Insights Pallav Nuwal Business Manager; Predictive Analytics, India-South Asia pallav.nuwal@in.ibm.com +91.9820330224 Agenda IBM Predictive Analytics portfolio

More information

Detecting Anomalous Behavior with the Business Data Lake. Reference Architecture and Enterprise Approaches.

Detecting Anomalous Behavior with the Business Data Lake. Reference Architecture and Enterprise Approaches. Detecting Anomalous Behavior with the Business Data Lake Reference Architecture and Enterprise Approaches. 2 Detecting Anomalous Behavior with the Business Data Lake Pivotal the way we see it Reference

More information

Bringing Strategy to Life Using an Intelligent Data Platform to Become Data Ready. Informatica Government Summit April 23, 2015

Bringing Strategy to Life Using an Intelligent Data Platform to Become Data Ready. Informatica Government Summit April 23, 2015 Bringing Strategy to Life Using an Intelligent Platform to Become Ready Informatica Government Summit April 23, 2015 Informatica Solutions Overview Power the -Ready Enterprise Government Imperatives Improve

More information

S T R A T E G I C P A R T N E R S H I P D A T A, N E T O W R K S P E O P L E, P R O C E S S, T E C H N O L O G Y, Europe

S T R A T E G I C P A R T N E R S H I P D A T A, N E T O W R K S P E O P L E, P R O C E S S, T E C H N O L O G Y, Europe S T R A T E G I C P A R T N E R S H I P WHERE INNOVATION BEGINS Web-enabled, transparent, optimized business processes, extensive data analytics, continuously innovated business solution for the P&C /

More information

Statement of. Mark Nelsen. Senior Vice President, Risk Products and Business Intelligence. Visa Inc. House Ways & Means Subcommittee.

Statement of. Mark Nelsen. Senior Vice President, Risk Products and Business Intelligence. Visa Inc. House Ways & Means Subcommittee. Statement of Mark Nelsen Senior Vice President, Risk Products and Business Intelligence Visa Inc. House Ways & Means Subcommittee on Oversight Hearing on The Use of Data to Stop Medicare Fraud March 24,

More information

2020 ANALYTICS ANALYTICS IS COMING OF AGE: TURNING AN ACADEMIC TOPIC INTO BUSINESS VALUE

2020 ANALYTICS ANALYTICS IS COMING OF AGE: TURNING AN ACADEMIC TOPIC INTO BUSINESS VALUE 2020 ANALYTICS ANALYTICS IS COMING OF AGE: TURNING AN ACADEMIC TOPIC INTO BUSINESS VALUE IMAM HOQUE 2020 ANALYTICS TOPICS Introduction to the latest techniques o A hybrid approach o Modelling real real-

More information

WHITE PAPER. Talend Infosense Solution Brief Master Data Management for Health Care Reference Data

WHITE PAPER. Talend Infosense Solution Brief Master Data Management for Health Care Reference Data WHITE PAPER Talend Infosense Solution Brief Master Data Management for Health Care Reference Data Table of contents BUSINESS ISSUE: SOCIAL COLLABORATION AND DATA STEWARDSHIP... 5 BUSINESS ISSUE: FEEDBACK

More information

Nuxeo Insights: The Evolution of Content in the Software-Defined Enterprise!

Nuxeo Insights: The Evolution of Content in the Software-Defined Enterprise! Nuxeo Insights: The Evolution of Content in the Software-Defined Enterprise How Content-Centric Business Applications are Redefining Content, Big Data and Enterprise Content Management The Evolution of

More information

Safe Harbor Statement

Safe Harbor Statement Defining a Roadmap to Big Data Success Robert Stackowiak, Oracle Vice President, Big Data 17 November 2015 Safe Harbor Statement The following is intended to outline our general product direction. It is

More information

More Data in Less Time

More Data in Less Time More Data in Less Time Leveraging Cloudera CDH as an Operational Data Store Daniel Tydecks, Systems Engineering DACH & CE Goals of an Operational Data Store Load Data Sources Traditional Architecture Operational

More information

Reporting, Visualization & Predictive Analytics on Big Data. 2013, Pentaho. All Rights Reserved. pentaho.com. Worldwide +1 (866) 660-7555

Reporting, Visualization & Predictive Analytics on Big Data. 2013, Pentaho. All Rights Reserved. pentaho.com. Worldwide +1 (866) 660-7555 Reporting, Visualization & Predictive Analytics on Big Data 2013, Pentaho. All Rights Reserved. pentaho.com. Worldwide +1 (866) 660-7555 Your Hosts Today Davy Nys VP EMEA & APAC Pentaho Chuck Yarbrough

More information

Fraud Solution for Financial Services

Fraud Solution for Financial Services Fraud Solution for Financial Services Transforming Fraud Detection and Prevention in Banks and Financial Services In the digital age, the implications of financial crime against banks and other financial

More information

www.hcltech.com Get Ready for Tomorrow, Today. Redefine Your Security Intelligence

www.hcltech.com Get Ready for Tomorrow, Today. Redefine Your Security Intelligence www.hcltech.com Get Ready for Tomorrow, Today. Redefine Your Security Intelligence Balancing Accessibility and Risk The challenge before enterprises is to provide accessibility and protect their online

More information

Cloud Integration and the Big Data Journey - Common Use-Case Patterns

Cloud Integration and the Big Data Journey - Common Use-Case Patterns Cloud Integration and the Big Data Journey - Common Use-Case Patterns A White Paper August, 2014 Corporate Technologies Business Intelligence Group OVERVIEW The advent of cloud and hybrid architectures

More information

The Future of Business Analytics is Now! 2013 IBM Corporation

The Future of Business Analytics is Now! 2013 IBM Corporation The Future of Business Analytics is Now! 1 The pressures on organizations are at a point where analytics has evolved from a business initiative to a BUSINESS IMPERATIVE More organization are using analytics

More information

Flexible Business Process Management enabled by SOA Full support of BPM life cycle Closing the gap between Business & IT

Flexible Business Process Management enabled by SOA Full support of BPM life cycle Closing the gap between Business & IT Flexible Business Process Management enabled by SOA Full support of BPM life cycle Closing the gap between Business & IT Collaborative Development IT Clean hand-off to IT with Business Models, Metrics

More information

Improving CSR Efficiency in the Utilities Contact Center

Improving CSR Efficiency in the Utilities Contact Center Improving CSR Efficiency in the Utilities Contact Center UtiliPoint International, Inc. with Jacada Ltd. June 4, 2008 Ethan L. Cohen Mr. Cohen is Sr. Director of Utility & Energy Technology at UtiliPoint

More information

Information-Driven Transformation in Retail with the Enterprise Data Hub Accelerator

Information-Driven Transformation in Retail with the Enterprise Data Hub Accelerator Introduction Enterprise Data Hub Accelerator Retail Sector Use Cases Capabilities Information-Driven Transformation in Retail with the Enterprise Data Hub Accelerator Introduction Enterprise Data Hub Accelerator

More information

Extend your analytic capabilities with SAP Predictive Analysis

Extend your analytic capabilities with SAP Predictive Analysis September 9 11, 2013 Anaheim, California Extend your analytic capabilities with SAP Predictive Analysis Charles Gadalla Learning Points Advanced analytics strategy at SAP Simplifying predictive analytics

More information

FUJITSU Retail Solution Market Place Future-proofing Retail by architecting for tomorrow

FUJITSU Retail Solution Market Place Future-proofing Retail by architecting for tomorrow FUJITSU Retail Solution Market Place Future-proofing Retail by architecting for tomorrow Contents Creating a Retail Solution for today s needs and business requirements is relatively easy The Retail Journey

More information

Customized Report- Big Data

Customized Report- Big Data GINeVRA Digital Research Hub Customized Report- Big Data 1 2014. All Rights Reserved. Agenda Context Challenges and opportunities Solutions Market Case studies Recommendations 2 2014. All Rights Reserved.

More information

Warranty Fraud Detection & Prevention

Warranty Fraud Detection & Prevention Warranty Fraud Detection & Prevention Venky Rao North American Predictive Analytics Segment Leader Agenda IBM SPSS Predictive Analytics for Warranties: Case Studies Why address the Warranties process:

More information

Modern Payment Fraud Prevention at Big Data Scale

Modern Payment Fraud Prevention at Big Data Scale This whitepaper discusses Feedzai s machine learning and behavioral profiling capabilities for payment fraud prevention. These capabilities allow modern fraud systems to move from broad segment-based scoring

More information

How to Run a Successful Big Data POC in 6 Weeks

How to Run a Successful Big Data POC in 6 Weeks Executive Summary How to Run a Successful Big Data POC in 6 Weeks A Practical Workbook to Deploy Your First Proof of Concept and Avoid Early Failure Executive Summary As big data technologies move into

More information

Cisco IT Hadoop Journey

Cisco IT Hadoop Journey Cisco IT Hadoop Journey Srini Desikan, Program Manager IT 2015 MapR Technologies 1 Agenda Hadoop Platform Timeline Key Decisions / Lessons Learnt Data Lake Hadoop s place in IT Data Platforms Use Cases

More information

Banking On A Customer-Centric Approach To Data

Banking On A Customer-Centric Approach To Data Banking On A Customer-Centric Approach To Data Putting Content into Context to Enhance Customer Lifetime Value No matter which company they interact with, consumers today have far greater expectations

More information

Higher Business ROI with Optimized Prediction

Higher Business ROI with Optimized Prediction Higher Business ROI with Optimized Prediction Yottamine s Unique and Powerful Solution Forward thinking businesses are starting to use predictive analytics to predict which future business events will

More information

Converging Technologies: Real-Time Business Intelligence and Big Data

Converging Technologies: Real-Time Business Intelligence and Big Data Have 40 Converging Technologies: Real-Time Business Intelligence and Big Data Claudia Imhoff, Intelligent Solutions, Inc Colin White, BI Research September 2013 Sponsored by Vitria Technologies, Inc. Converging

More information

Big Data Open Source Stack vs. Traditional Stack for BI and Analytics

Big Data Open Source Stack vs. Traditional Stack for BI and Analytics Big Data Open Source Stack vs. Traditional Stack for BI and Analytics Part I By Sam Poozhikala, Vice President Customer Solutions at StratApps Inc. 4/4/2014 You may contact Sam Poozhikala at spoozhikala@stratapps.com.

More information

the challenge our mission our advisors

the challenge our mission our advisors corporate overview the challenge Organizations are spending billions of dollars a year on security products, however recent security breaches have proven that the traditional security solutions are not

More information

The Enterprise Data Hub and The Modern Information Architecture

The Enterprise Data Hub and The Modern Information Architecture The Enterprise Data Hub and The Modern Information Architecture Dr. Amr Awadallah CTO & Co-Founder, Cloudera Twitter: @awadallah 1 2013 Cloudera, Inc. All rights reserved. Cloudera Overview The Leader

More information

Introducing SAP Fraud Management. Jérôme Pugnet

Introducing SAP Fraud Management. Jérôme Pugnet Introducing SAP Fraud Management Jérôme Pugnet LEARNING POINTS Impacts and Challenges of Fraud How Big is the Problem? Fraud is Typically Found Without Technology: an Undetected Potential! What are the

More information

Real World Application and Usage of IBM Advanced Analytics Technology

Real World Application and Usage of IBM Advanced Analytics Technology Real World Application and Usage of IBM Advanced Analytics Technology Anthony J. Young Pre-Sales Architect for IBM Advanced Analytics February 21, 2014 Welcome Anthony J. Young Lives in Austin, TX Focused

More information

T13 TESTING SOA SOFTWARE: THE HEADLESS DILEMMA. John Michelsen itko, Inc. BIO PRESENTATION 10/19/2006 1:30:00 PM

T13 TESTING SOA SOFTWARE: THE HEADLESS DILEMMA. John Michelsen itko, Inc. BIO PRESENTATION 10/19/2006 1:30:00 PM BIO PRESENTATION T13 10/19/2006 1:30:00 PM TESTING SOA SOFTWARE: THE HEADLESS DILEMMA John Michelsen itko, Inc. International Conference on Software Testing Analysis and Review October 16-20, 2006 Anaheim,

More information

A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY

A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY A TECHNICAL WHITE PAPER ATTUNITY VISIBILITY Analytics for Enterprise Data Warehouse Management and Optimization Executive Summary Successful enterprise data management is an important initiative for growing

More information

BIG DATA STRATEGY. Rama Kattunga Chair at American institute of Big Data Professionals. Building Big Data Strategy For Your Organization

BIG DATA STRATEGY. Rama Kattunga Chair at American institute of Big Data Professionals. Building Big Data Strategy For Your Organization BIG DATA STRATEGY Rama Kattunga Chair at American institute of Big Data Professionals Building Big Data Strategy For Your Organization In this session What is Big Data? Prepare your organization Building

More information

An Oracle White Paper November 2011. Financial Crime and Compliance Management: Convergence of Compliance Risk and Financial Crime

An Oracle White Paper November 2011. Financial Crime and Compliance Management: Convergence of Compliance Risk and Financial Crime An Oracle White Paper November 2011 Financial Crime and Compliance Management: Convergence of Compliance Risk and Financial Crime Disclaimer The following is intended to outline our general product direction.

More information

Bridge Development and Operations for faster delivery of applications

Bridge Development and Operations for faster delivery of applications Technical white paper Bridge Development and Operations for faster delivery of applications HP Continuous Delivery Automation software Table of contents Application lifecycle in the current business scenario

More information

IBM Security X-Force Threat Intelligence

IBM Security X-Force Threat Intelligence IBM Security X-Force Threat Intelligence Use dynamic IBM X-Force data with IBM Security QRadar to detect the latest Internet threats Highlights Automatically feed IBM X-Force data into IBM QRadar Security

More information

SUSTAINING COMPETITIVE DIFFERENTIATION

SUSTAINING COMPETITIVE DIFFERENTIATION SUSTAINING COMPETITIVE DIFFERENTIATION Maintaining a competitive edge in customer experience requires proactive vigilance and the ability to take quick, effective, and unified action E M C P e r s pec

More information

Software AG Fast Big Data Solutions. Come la gestione realtime dei dati abilita nuovi scenari di business per le Banche

Software AG Fast Big Data Solutions. Come la gestione realtime dei dati abilita nuovi scenari di business per le Banche Software AG Fast Big Data Solutions Come la gestione realtime dei dati abilita nuovi scenari di business per le Banche Software AG Fast Big Data Solutions Get there faster Vittorio Carosone Regional Sales

More information

SAS. Fraud Management. Overview. Real-time scoring of all transactions for fast, accurate fraud detection. Challenges PRODUCT BRIEF

SAS. Fraud Management. Overview. Real-time scoring of all transactions for fast, accurate fraud detection. Challenges PRODUCT BRIEF PRODUCT BRIEF SAS Fraud Management Real-time scoring of all transactions for fast, accurate fraud detection Overview Organizations around the globe lose approximately 5 percent of annual revenues to fraud,

More information

Advertising Automation SOFTWARE OVERVIEW

Advertising Automation SOFTWARE OVERVIEW Advertising Automation SOFTWARE OVERVIEW Nanigans powers the world s most successful in-house advertising teams. Automate your customer acquisition and remarketing campaigns using Nanigans, with programmatic

More information

Customer loyalty is hard to come by: Technology is the answer

Customer loyalty is hard to come by: Technology is the answer Customer loyalty is hard to come by: Technology is the answer CARD LINKED MARKETING Gone are the days when a customer would stay with the same bank for 20+ years, taking out mortgages, loans and making

More information

The Principles of the Business Data Lake

The Principles of the Business Data Lake The Principles of the Business Data Lake The Business Data Lake Culture eats Strategy for Breakfast, so said Peter Drucker, elegantly making the point that the hardest thing to change in any organization

More information

Solving data residency and privacy compliance challenges Delivering business agility, regulatory compliance and risk reduction

Solving data residency and privacy compliance challenges Delivering business agility, regulatory compliance and risk reduction Solving data residency and privacy compliance challenges Delivering business agility, regulatory compliance and risk reduction Introduction In today s dynamic business environment, corporation s intangible

More information

IBM Software A Journey to Adaptive MDM

IBM Software A Journey to Adaptive MDM IBM Software A Journey to Adaptive MDM What is Master Data? Why is it Important? A Journey to Adaptive MDM Contents 2 MDM Business Drivers and Business Value 4 MDM is a Journey 7 IBM MDM Portfolio An Adaptive

More information

Big Data Support Services. Service Definition

Big Data Support Services. Service Definition 1 3 Big Data Support Services Service Definition BIG DATA SUPPORT SERVICES Service Description The Big Data Support Services are part of the Cognizant Information Management service family. Providing a

More information

Are You Big Data Ready?

Are You Big Data Ready? ACS 2015 Annual Canberra Conference Are You Big Data Ready? Vladimir Videnovic Business Solutions Director Oracle Big Data and Analytics Introduction Introduction What is Big Data? If you can't explain

More information

LEVERAGING BIG DATA & ANALYTICS TO IMPROVE EFFICIENCY. Bill Franks Chief Analytics Officer Teradata July 2013

LEVERAGING BIG DATA & ANALYTICS TO IMPROVE EFFICIENCY. Bill Franks Chief Analytics Officer Teradata July 2013 LEVERAGING BIG DATA & ANALYTICS TO IMPROVE EFFICIENCY Bill Franks Chief Analytics Officer Teradata July 2013 Agenda Defining The Problem Defining The Opportunity Analytics For Compliance Analytics For

More information

BUILT FOR THE SPEED OF BUSINESS. Copyright 2013 Pivotal. All rights reserved.

BUILT FOR THE SPEED OF BUSINESS. Copyright 2013 Pivotal. All rights reserved. BUILT FOR THE SPEED OF BUSINESS 1 2 Pivotal Real Time Intelligence Paul Davey GM & CTO Telecommunications industry Real-Time Intelligence Introduction Sample video Solution architecture Conclusion 3 Introduction

More information

Enable Business Agility and Speed Empower your business with proven multidomain master data management (MDM)

Enable Business Agility and Speed Empower your business with proven multidomain master data management (MDM) Enable Business Agility and Speed Empower your business with proven multidomain master data management (MDM) Customer Viewpoint By leveraging a well-thoughtout MDM strategy, we have been able to strengthen

More information

Delivering information you can trust. IBM InfoSphere Master Data Management Server 9.0. Producing better business outcomes with trusted data

Delivering information you can trust. IBM InfoSphere Master Data Management Server 9.0. Producing better business outcomes with trusted data Delivering information you can trust IBM InfoSphere Master Data Management Server 9.0 Producing better business outcomes with trusted data Every day, organizations generate and collect a veritable landscape

More information

Accenture and SAP: Delivering Visual Data Discovery Solutions for Agility and Trust at Scale

Accenture and SAP: Delivering Visual Data Discovery Solutions for Agility and Trust at Scale Accenture and SAP: Delivering Visual Data Discovery Solutions for Agility and Trust at Scale 2 Today s data-driven enterprises are ramping up demands on their business intelligence (BI) teams for agility

More information

The Importance of Data Quality for Intelligent Data Analytics:

The Importance of Data Quality for Intelligent Data Analytics: The Importance of Data Quality for Intelligent Data Analytics: Optimizing the Financial and Operational Performance of IT White Paper IT decisions are only as good as the data they re based on. And that

More information

NASSCOM. Copyright 2014

NASSCOM. Copyright 2014 1 Copyright 2014 NASSCOM International Youth Center, Teen Murti Marg, Chanakyapuri, New Delhi 110 021, India Phone: 91-11-23010199, Fax: 91-11-23015452 E-mail: research@nasscom.in First Print: July 2014

More information

Ensighten Data Layer (EDL) The Missing Link in Data Management

Ensighten Data Layer (EDL) The Missing Link in Data Management The Missing Link in Data Management Introduction Digital properties are a nexus of customer centric data from multiple vectors and sources. This is a wealthy source of business-relevant data that can be

More information

The SAS Transformation Project Deploying SAS Customer Intelligence for a Single View of the Customer

The SAS Transformation Project Deploying SAS Customer Intelligence for a Single View of the Customer Paper 3353-2015 The SAS Transformation Project Deploying SAS Customer Intelligence for a Single View of the Customer ABSTRACT Pallavi Tyagi, Jack Miller and Navneet Tuteja, Slalom Consulting. Building

More information

Leveraging Data Analytics and Continuous Auditing. Internal Audit. January 9, 2014

Leveraging Data Analytics and Continuous Auditing. Internal Audit. January 9, 2014 Leveraging Data Analytics and Continuous Auditing to Transform Internal Audit January 9, 2014 Presenter Introductions John Isenberg, Director KPMG Risk Consulting Dallas Cortnye King, Manager KPMG Risk

More information

Databricks. A Primer

Databricks. A Primer Databricks A Primer Who is Databricks? Databricks vision is to empower anyone to easily build and deploy advanced analytics solutions. The company was founded by the team who created Apache Spark, a powerful

More information

How can Big Data help an Insurance Company?

How can Big Data help an Insurance Company? www.pwc.com/it/digitaltransformation Big Data Milan, 4th December 2014 PwC headquarter How can Big Data help an Insurance Company? Massimo Iengo Director PwC Speaker Massimo Iengo Director, Digital Strategy

More information

Banking. the way we see it. Customer Cross-Sell. Using advanced analytics and creating a marketing-it partnership to increase cross-sell penetration

Banking. the way we see it. Customer Cross-Sell. Using advanced analytics and creating a marketing-it partnership to increase cross-sell penetration Banking the way we see it Customer Cross-Sell Using advanced analytics and creating a marketing-it partnership to increase cross-sell penetration Contents 1 Executive Summary 3 2 Current Situation 4 2.1

More information

The Next Wave of Data Management. Is Big Data The New Normal?

The Next Wave of Data Management. Is Big Data The New Normal? The Next Wave of Data Management Is Big Data The New Normal? Table of Contents Introduction 3 Separating Reality and Hype 3 Why Are Firms Making IT Investments In Big Data? 4 Trends In Data Management

More information

How the Past Changes the Future of Fraud

How the Past Changes the Future of Fraud How the Past Changes the Future of Fraud Addressing payment card fraud with models that evaluate multiple risk dimensions through intelligence Card fraud costs the U.S. card payments industry an estimated

More information

Symantec to Acquire PGP Corporation and GuardianEdge Technolgies, Inc. April 29, 2010

Symantec to Acquire PGP Corporation and GuardianEdge Technolgies, Inc. April 29, 2010 Symantec to Acquire PGP Corporation and GuardianEdge Technolgies, Inc. April 29, 2010 Forward Looking Statements This presentation contains forward looking statements within the meaning of U.S. federal

More information

PREDICTIVE ANALYTICS IN FRAUD

PREDICTIVE ANALYTICS IN FRAUD PREDICTIVE ANALYTICS IN FRAUD Click Scott to White edit Master subtitle style Business Development Manager Why predict? Organizations that use predictive business performance metrics will increase their

More information

Vertafore Analytics: Turning Raw Data Into Revenue A CASE STUDY

Vertafore Analytics: Turning Raw Data Into Revenue A CASE STUDY Vertafore Analytics: Turning Raw Data Into Revenue A CASE STUDY Summary OPPORTUNITY Turn raw data into an analytics product Overview When Vertafore wanted to turn raw data into Vertafore Analytics an intelligence

More information

Three steps to put Predictive Analytics to Work

Three steps to put Predictive Analytics to Work Three steps to put Predictive Analytics to Work The most powerful examples of analytic success use Decision Management to deploy analytic insight in day to day operations helping organizations make more

More information

Customer-centric default management Taking collections to the next level

Customer-centric default management Taking collections to the next level Experience the commitment ISSUE PAPER Customer-centric default management Taking collections to the next level This issue paper describes how customer-centric default management can generate both short-term

More information

Whitepaper Data Governance Roadmap for IT Executives Valeh Nazemoff

Whitepaper Data Governance Roadmap for IT Executives Valeh Nazemoff Whitepaper Data Governance Roadmap for IT Executives Valeh Nazemoff The Challenge IT Executives are challenged with issues around data, compliancy, regulation and making confident decisions on their business

More information

SMART AND SECURE PAYMENT PROCESSING SOLUTIONS, SIMPLIFIED

SMART AND SECURE PAYMENT PROCESSING SOLUTIONS, SIMPLIFIED SMART AND SECURE PAYMENT PROCESSING SOLUTIONS, SIMPLIFIED Complex omnichannel commerce and payments environment THE OPPORTUNITY: Simplify and secure the digital payments experience and maximize its revenue

More information

We believe First Data is well positioned to take advantage of all of these trends given the breadth of our solutions and our global operating

We believe First Data is well positioned to take advantage of all of these trends given the breadth of our solutions and our global operating Given recent payment data breaches, clients are increasingly demanding robust security and fraud solutions; and Financial institutions continue to outsource and leverage technology providers given their

More information

Analytics: The real-world use of big data

Analytics: The real-world use of big data Findings from the research collaboration of IBM Institute for Business Value and Saïd Business School, University of Oxford Analytics: The real-world use of big data How innovative enterprises extract

More information

Leveraging Information to Drive Insurer Growth

Leveraging Information to Drive Insurer Growth KNOWLEDGENT INSIGHTS volume 2 no. 5 March 27, 2012 Leveraging Information to Drive Insurer Growth In the highly competitive insurance industry, leveraging information has become a key focal point for driving

More information

Crossing the DevOps Chasm

Crossing the DevOps Chasm SOLUTION BRIEF Application Delivery Solutions from CA Technologies Crossing the DevOps Chasm Can improved collaboration and automation between Development and IT Operations deliver business value more

More information

Databricks. A Primer

Databricks. A Primer Databricks A Primer Who is Databricks? Databricks was founded by the team behind Apache Spark, the most active open source project in the big data ecosystem today. Our mission at Databricks is to dramatically

More information

It All Starts with Log Management:

It All Starts with Log Management: : Leveraging the Best in Database Security, Security Event Management and Change Management to Achieve Transparency LogLogic, Inc 110 Rose Orchard Way, Ste. 200 San Jose, CA 95134 United States US Toll

More information

IRMAC SAS INFORMATION MANAGEMENT, TRANSFORMING AN ANALYTICS CULTURE. Copyright 2012, SAS Institute Inc. All rights reserved.

IRMAC SAS INFORMATION MANAGEMENT, TRANSFORMING AN ANALYTICS CULTURE. Copyright 2012, SAS Institute Inc. All rights reserved. IRMAC SAS INFORMATION MANAGEMENT, TRANSFORMING AN ANALYTICS CULTURE ABOUT THE PRESENTER Marc has been with SAS for 10 years and leads the information management practice for canada. Marc s area of specialty

More information

Driving the Digital Transformation

Driving the Digital Transformation Driving the Digital Transformation Wall Street Technology Association Digitization and the Virtual Enterprise October 22, 2015 Bill Belanger Senior Director Workflow Automation Financial Services Agenda:

More information

Big Data, Big Banks and Unleashing Big Opportunities

Big Data, Big Banks and Unleashing Big Opportunities Big, Big Banks and Unleashing Big Opportunities Big, Big Banks and Unleashing Big Opportunities Big, Big Banks and Unleashing Big Opportunities A retailer using Big to the full could increase its operating

More information

Rethinking Your Finance Functions

Rethinking Your Finance Functions Rethinking Your Finance Functions Budgeting, Planning & Technology BDO Canada Daniel Caringi ( dcaringi@bdo.ca ) September 25th, 2014 A journey of a thousand miles must begin with a single step. - Lao

More information

Data Mining + Business Intelligence. Integration, Design and Implementation

Data Mining + Business Intelligence. Integration, Design and Implementation Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution

More information

AMBIT LOAN ORIGINATION A New Approach

AMBIT LOAN ORIGINATION A New Approach AMBIT LOAN ORIGINATION A New Approach Overview A key area of focus for many banks is loan origination; a part of banking still typified by fragmented, paper-based, largely manual activities, and characterized

More information

Introduction to Business Intelligence

Introduction to Business Intelligence IBM Software Group Introduction to Business Intelligence Vince Leat ASEAN SW Group 2007 IBM Corporation Discussion IBM Software Group What is Business Intelligence BI Vision Evolution Business Intelligence

More information

Exceptional Customer Experience AND Credit Risk Management: How to Achieve Both

Exceptional Customer Experience AND Credit Risk Management: How to Achieve Both Exceptional Customer Experience AND Credit Risk Management: How to Achieve Both Lynn Brunner Experian and the marks used herein are service marks or registered trademarks of Experian Information Solutions,

More information

> Cognizant Analytics for Banking & Financial Services Firms

> Cognizant Analytics for Banking & Financial Services Firms > Cognizant for Banking & Financial Services Firms Actionable insights help banks and financial services firms in digital transformation Challenges facing the industry Economic turmoil, demanding customers,

More information

Nuix to Know. Master your Data

Nuix to Know. Master your Data Nuix to Know Master your Data OUR VISION WHAT PROBLEMS DO WE SOLVE? At the heart of many of the world s most critical issues lies the need to investigate digital information. Herein lies a very big problem:

More information

Advertising Automation SOFTWARE OVERVIEW

Advertising Automation SOFTWARE OVERVIEW Advertising Automation SOFTWARE OVERVIEW Nanigans powers the world s most successful in-house advertising teams. Automate your customer acquisition and remarketing campaigns using Nanigans, with programmatic

More information

MASTERCARD S CAREER PATH JOURNEY FOR GLOBAL IT/OPERATIONS AND BEYOND

MASTERCARD S CAREER PATH JOURNEY FOR GLOBAL IT/OPERATIONS AND BEYOND MERCER WEBCAST MASTERCARD S CAREER PATH JOURNEY FOR GLOBAL IT/OPERATIONS AND BEYOND MAY 29, 2014 Anna Orgera, Mercer Rick Leone, MasterCard Worldwide Today s Speakers Anna Orgera Partner Mercer +1 212

More information