Advanced In-Database Analytics

Size: px
Start display at page:

Download "Advanced In-Database Analytics"

Transcription

1 Advanced In-Database Analytics Tallinn, Sept. 25th, 2012 Mikko-Pekka Bertling, BDM Greenplum EMEA 1

2 That sounds complicated? 2

3 Who can tell me how best to solve this 3

4 What are the main mathematical functions?? MULTIPLICATION DIVISION ADDITION 4

5 So What s the Problem? How many of you have tried to run complex queries that cannot complete? How many of you would love for your IT or other execs to just understand the basic maths?? How many of you would like your analytics to be part of every business process? 5

6 The Platform Data Science Application Development 6

7 THE PLATFORM Greenplum UAP Unified Analytics Platform for Big Data Greenplum Database for structured data Greenplum HD, Enterprise-ready Hadoop for unstructured data Greenplum Chorus, the social platform for data science The Platform Application Development 7

8 Introducing EMC Greenplum Data Computing Appliance DATA IN. DECISIONS OUT. Delivering the fastest data loading and best price/performance ratio in the data warehousing industry 8

9 EMC Greenplum Data Computing Appliance Performance, scalability, reliability, and reduced TCO for data warehousing/business intelligence environments Extreme performance Optimized for fast query execution and unmatched data loading Rapidly deployable Purpose-built data warehousing appliance Reduced TCO Consolidate data marts for lower costs Private cloud-ready Data and computing are automatically optimized and distributed Highly available Self-healing and fully redundant Elastic scalability Expand capacity and performance online Advanced backup and disaster recovery Leverage industry-leading Data Domain backup and recovery 9

10 Benefits of an Appliance Approach EMC GREENPLUM DATA COMPUTING APPLIANCE Compute Storage Database Network Rapidly deployable in days, not weeks or months Appliance packaging and pre-tuning assures predictable performance Dramatically simplifies data warehouse and analytics infrastructure Reduces administration overhead Scale-out architecture; simply expand capacity and performance as needed Designed for rapid analysis of data volumes from less than a terabyte, scaling into the petabytes One support structure 10

11 EMC Greenplum Database Fastest data loading Advanced analytics DATA IN IN-DATABASE ANALYTICS DECISIONS OUT Scatter/Gather Streaming technology for the world s fastest data loading Eliminate data load bottlenecks Clean and integrate new data Several loading options, ranging from bulk load updates to microbatching for near real-time processing Optimized for fast query execution and linear scalability Move processing closer to data Shared-nothing, massively parallel processing (MPP) scale-out architecture Computing is automatically optimized and distributed across resources Provides the best concurrent multiworkload performance Unified data access for greater insight and value from data Enable parallel analysis across the enterprise Open platform with broad language support Certified enterprise connectivity and integration with most business intelligence; extract, transform, and load (ETL); and management products 11

12 TB/hour Industry s Fastest Data-Loading Rate Scatter/Gather Streaming technology for the industry s fastest data loading 5X 2X Eliminate data-load bottlenecks Remove additional loading tiers Parallel everywhere Netezza TwinFin Teradata Oracle Exadata EMC Greenplum Data Computing Appliance 12

13 EMC Greenplum Data Computing Appliance Architecture Flexible framework for processing large datasets SQL MapReduce Master Master Segment Segment Segment Segment Segment Massively parallel processing (MPP) architecture Shared-nothing architecture No single coordinator or performance bottleneck MPP everywhere Query optimization across segment servers Automated failover High reliability and availability Linear scalability I/O optimized 13

14 Shared-Nothing Architecture Massively Parallel Processing (MPP) Interconnect Most scalable database architecture Optimized for business intelligence and analytics Provides automatic parallelization No need for manual partitioning or tuning Just load and query like any database Tables are distributed across segments Each table has a subset of the rows Loading Extremely scalable and I/O optimized All nodes can scan and process in parallel No I/O contention among segments Linear scalability by adding nodes Each node adds storage, query performance, and loading performance 14

15 High Availability Self-healing and rapid recovery Master Master Segment Segment Segment Segment Master server data protection RAID protection for drive failures Replicated transaction logs for server failure On server failure Standby server-activated Administrator alerted Segment server data protection RAID protection for drive failures Mirrored segments for server failures On server failure Mirrored segments take over with no loss of service Fast online differential recovery 15

16 Self-Healing Automatic Failover Master servers Master servers Network Interconnect Segment servers Greenplum provides automatic failover using a selfhealing physical block replication architecture Key benefits of this architecture : Automatic failure detection and failover to mirror segments Fast differential recovery and sync (while fully online/readwrite) Improved write performance and reduced network load 16

17 Integrated EMC Data Domain Backup EMC Greenplum Data Computing Appliance Segment server NFS shares Twinax/ Fibre Channel cables Two 10 Gb IP links EMC Data Domain DD880 Backup and recovery With EMC Data Domain/ Greenplum native utility Reduces storage backup requirements Deduplicates data Fast, reliable data recovery Reduced recovery time Flexible and efficient Designate backup intervals Point-in-time copies 17

18 Proven Deployments of EMC Greenplum Database Sample use cases across industries with Greenplum Telecommunications, Media, and Entertainment Understand customer behaviors to reduce customer churn rates and develop customer loyalty programs Retail Analyze supply chain to optimize and cut costs Internet Clickstream analytics for ad targeting and market research Financial Services Detect and prevent fraud Credit scoring to reduce credit risk Pharmaceutical Analytics for drug discovery and development 18

19 Greenplum Data Computing Appliance Is Complementary to Enterprise Data Warehouse Enterprise Data Warehouse Single source of truth One logical model Heavy data governance and quality Operational reporting Financial consolidation Greenplum Data Computing Appliance Source of all the raw data (often 10-times the size of the enterprise data warehouse) Self-service infrastructure to support multiple data marts and sandboxes Rapid analytic iteration and business-led solutions 19

20 The Need for Consolidation: Data in a Typical Enterprise Enterprise data warehouse ~10% of data Data marts and personal databases ~90% of data Data is everywhere corporate enterprise data warehouse, hundreds of data marts, shadow databases, and spreadsheets The goal of centralizing all data in a single enterprise data warehouse has proven untenable 20

21 GREENPLUM DATABASE MADlib In-Database Analytical Functions Descriptive Statistics Quantile Profile CountMin (Cormode-Muthukrishnan) Sketch-based Estimator FM (Flajolet-Martin) Sketch-based Estimator MFV (Most Frequent Values) Sketchbased Estimator Frequency Histogram Bar Chart Box Plot Chart Latent Dirichlet Allocation Topic Modeling Modeling Correlation Matrix Association Rule Mining K-Means Clustering Naïve Bayes Classification Linear Regression Logistic Regression Support Vector Machines SVD Matrix Factorisation Decision Trees/CART 21

22 GREENPLUM HD Mahout Analytical Functions for Hadoop Sampling of Algorithms in Mahout Today: Collaborative Filtering User-based, Item-based recommenders K-Means Clustering Fuzzy K-Means Clustering Mean Shift Clustering Dirichlet Process Clustering Latent Dirichlet Allocation Singular Value Decomposition Parallel Frequent Pattern mining Complementary Naïve Bayes Classifier Random Forest Decision Tree-Based Classifier Java collections (previously Colt) Many more are included or are in development Plus, a robust and growing user community 22

23 Powerful Partner Ecosystem ANALYTICS BUSINESS INTELLIGENCE DATA INTEGRATION INDUSTRY Discovix TECHNOLOGY 23

24 So What s the Problem? How many of you have tried to run complex queries that cannot complete? How many of you would love for your IT or other execs to just understand the basic maths?? How many of you would like your analytics to be part of every business process? 24

25 Greenplum Analytics Lab Data Science Leverage the expertise of Greenplum s Data Scientists t 25

26 So What s the Problem? How many of you have tried to run complex queries that cannot complete? How many of you would love for your IT or other execs to just understand the basic maths?? How many of you would like your analytics to be part of every business process? 26

27 Application Development Pivotal Labs The Execution Engine To Quickly Create And Deploy Big Data Applications 27

28 GREENPLUM DELIVERS THE PREDICTIVE ENTERPRISE 28

29 The Predictive Enterprise Predictive Enterprise Data Driven Decisions Deliver maximum business value from all the available data Predict outcomes using advanced analytics Leverage data science to gain deep insight about the business Turn insight into action with new applications 29

30 LET S GET STARTED 30

31

Greenplum Database. Getting Started with Big Data Analytics. Ofir Manor Pre Sales Technical Architect, EMC Greenplum

Greenplum Database. Getting Started with Big Data Analytics. Ofir Manor Pre Sales Technical Architect, EMC Greenplum Greenplum Database Getting Started with Big Data Analytics Ofir Manor Pre Sales Technical Architect, EMC Greenplum 1 Agenda Introduction to Greenplum Greenplum Database Architecture Flexible Database Configuration

More information

Big Data Analytics. with EMC Greenplum and Hadoop. Big Data Analytics. Ofir Manor Pre Sales Technical Architect EMC Greenplum

Big Data Analytics. with EMC Greenplum and Hadoop. Big Data Analytics. Ofir Manor Pre Sales Technical Architect EMC Greenplum Big Data Analytics with EMC Greenplum and Hadoop Big Data Analytics with EMC Greenplum and Hadoop Ofir Manor Pre Sales Technical Architect EMC Greenplum 1 Big Data and the Data Warehouse Potential All

More information

EMC/Greenplum Driving the Future of Data Warehousing and Analytics

EMC/Greenplum Driving the Future of Data Warehousing and Analytics EMC/Greenplum Driving the Future of Data Warehousing and Analytics EMC 2010 Forum Series 1 Greenplum Becomes the Foundation of EMC s Data Computing Division E M C A CQ U I R E S G R E E N P L U M Greenplum,

More information

Collaborative Big Data Analytics. Copyright 2012 EMC Corporation. All rights reserved.

Collaborative Big Data Analytics. Copyright 2012 EMC Corporation. All rights reserved. Collaborative Big Data Analytics 1 Big Data Is Less About Size, And More About Freedom TechCrunch!!!!!!!!! Total data: bigger than big data 451 Group Findings: Big Data Is More Extreme Than Volume Gartner!!!!!!!!!!!!!!!

More information

EMC CUSTOMER UPDATE. 31 mei 2011 Fort Voordorp. Bart Sjerps. Greenplum Data Warehouse. Copyright 2011 EMC Corporation. All rights reserved.

EMC CUSTOMER UPDATE. 31 mei 2011 Fort Voordorp. Bart Sjerps. Greenplum Data Warehouse. Copyright 2011 EMC Corporation. All rights reserved. EMC CUSTOMER UPDATE 31 mei 2011 Fort Voordorp Bart Sjerps Greenplum Data Warehouse 1 Introduction & Agenda What is Data warehousing? And what s Business Intelligence? Evolution in the Data Warehouse Business

More information

EMC GREENPLUM DATABASE

EMC GREENPLUM DATABASE EMC GREENPLUM DATABASE Driving the future of data warehousing and analytics Essentials A shared-nothing, massively parallel processing (MPP) architecture supports extreme performance on commodity infrastructure

More information

EMC BACKUP MEETS BIG DATA

EMC BACKUP MEETS BIG DATA EMC BACKUP MEETS BIG DATA Strategies To Protect Greenplum, Isilon And Teradata Systems 1 Agenda Big Data: Overview, Backup and Recovery EMC Big Data Backup Strategy EMC Backup and Recovery Solutions for

More information

Mike Maxey. Senior Director Product Marketing Greenplum A Division of EMC. Copyright 2011 EMC Corporation. All rights reserved.

Mike Maxey. Senior Director Product Marketing Greenplum A Division of EMC. Copyright 2011 EMC Corporation. All rights reserved. Mike Maxey Senior Director Product Marketing Greenplum A Division of EMC 1 Greenplum Becomes the Foundation of EMC s Big Data Analytics (July 2010) E M C A C Q U I R E S G R E E N P L U M For three years,

More information

Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing

Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Wayne W. Eckerson Director of Research, TechTarget Founder, BI Leadership Forum Business Analytics

More information

Copyright 2012 EMC Corporation. All rights reserved.

Copyright 2012 EMC Corporation. All rights reserved. 1 Greenplum UAP Enabling Big Data Analytics Brendon Moran Data Scientist 2 Agenda Background On Greenplum And Big Data Analytics Greenplum UAP Greenplum: Not Just Infrastructure Pivotal Labs Customers

More information

Integrated Grid Solutions. and Greenplum

Integrated Grid Solutions. and Greenplum EMC Perspective Integrated Grid Solutions from SAS, EMC Isilon and Greenplum Introduction Intensifying competitive pressure and vast growth in the capabilities of analytic computing platforms are driving

More information

Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features

Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features Oracle Advanced Analytics 12c & SQLDEV/Oracle Data Miner 4.0 New Features Charlie Berger, MS Eng, MBA Sr. Director Product Management, Data Mining and Advanced Analytics charlie.berger@oracle.com www.twitter.com/charliedatamine

More information

Using Attunity Replicate with Greenplum Database Using Attunity Replicate for data migration and Change Data Capture to the Greenplum Database

Using Attunity Replicate with Greenplum Database Using Attunity Replicate for data migration and Change Data Capture to the Greenplum Database White Paper Using Attunity Replicate with Greenplum Database Using Attunity Replicate for data migration and Change Data Capture to the Greenplum Database Abstract This white paper explores the technology

More information

Up Your R Game. James Taylor, Decision Management Solutions Bill Franks, Teradata

Up Your R Game. James Taylor, Decision Management Solutions Bill Franks, Teradata Up Your R Game James Taylor, Decision Management Solutions Bill Franks, Teradata Today s Speakers James Taylor Bill Franks CEO Chief Analytics Officer Decision Management Solutions Teradata 7/28/14 3 Polling

More information

HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics

HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics ESSENTIALS EMC ISILON Use the industry's first and only scale-out NAS solution with native Hadoop

More information

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica

More information

I/O Considerations in Big Data Analytics

I/O Considerations in Big Data Analytics Library of Congress I/O Considerations in Big Data Analytics 26 September 2011 Marshall Presser Federal Field CTO EMC, Data Computing Division 1 Paradigms in Big Data Structured (relational) data Very

More information

EMC Greenplum Driving the Future of Data Warehousing and Analytics. Tools and Technologies for Big Data

EMC Greenplum Driving the Future of Data Warehousing and Analytics. Tools and Technologies for Big Data EMC Greenplum Driving the Future of Data Warehousing and Analytics Tools and Technologies for Big Data Steven Hillion V.P. Analytics EMC Data Computing Division 1 Big Data Size: The Volume Of Data Continues

More information

Big Data and Its Impact on the Data Warehousing Architecture

Big Data and Its Impact on the Data Warehousing Architecture Big Data and Its Impact on the Data Warehousing Architecture Sponsored by SAP Speaker: Wayne Eckerson, Director of Research, TechTarget Wayne Eckerson: Hi my name is Wayne Eckerson, I am Director of Research

More information

2009 Oracle Corporation 1

2009 Oracle Corporation 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material,

More information

Oracle Database 12c Plug In. Switch On. Get SMART.

Oracle Database 12c Plug In. Switch On. Get SMART. Oracle Database 12c Plug In. Switch On. Get SMART. Duncan Harvey Head of Core Technology, Oracle EMEA March 2015 Safe Harbor Statement The following is intended to outline our general product direction.

More information

Big Data and Data Science: Behind the Buzz Words

Big Data and Data Science: Behind the Buzz Words Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing

More information

MASSIVEDATANEWS. Load and Go: Fast Data Loading with the Greenplum Data Computing Appliance (DCA)

MASSIVEDATANEWS. Load and Go: Fast Data Loading with the Greenplum Data Computing Appliance (DCA) Greenplum Data Computing Appliance (DCA) Introduction: Why Fast and Flexible Data Loading Matters Data loading is the beginning of the entire analytics process. Everything starts by getting data into the

More information

Protecting Big Data Data Protection Solutions for the Business Data Lake

Protecting Big Data Data Protection Solutions for the Business Data Lake White Paper Protecting Big Data Data Protection Solutions for the Business Data Lake Abstract Big Data use cases are maturing and customers are using Big Data to improve top and bottom line revenues. With

More information

WHITE PAPER. Harnessing the Power of Advanced Analytics How an appliance approach simplifies the use of advanced analytics

WHITE PAPER. Harnessing the Power of Advanced Analytics How an appliance approach simplifies the use of advanced analytics WHITE PAPER Harnessing the Power of Advanced How an appliance approach simplifies the use of advanced analytics Introduction The Netezza TwinFin i-class advanced analytics appliance pushes the limits of

More information

Data Lake In Action: Real-time, Closed Looped Analytics On Hadoop

Data Lake In Action: Real-time, Closed Looped Analytics On Hadoop 1 Data Lake In Action: Real-time, Closed Looped Analytics On Hadoop 2 Pivotal s Full Approach It s More Than Just Hadoop Pivotal Data Labs 3 Why Pivotal Exists First Movers Solve the Big Data Utility Gap

More information

Harnessing the power of advanced analytics with IBM Netezza

Harnessing the power of advanced analytics with IBM Netezza IBM Software Information Management White Paper Harnessing the power of advanced analytics with IBM Netezza How an appliance approach simplifies the use of advanced analytics Harnessing the power of advanced

More information

G-Cloud Big Data Suite Powered by Pivotal. December 2014. G-Cloud. service definitions

G-Cloud Big Data Suite Powered by Pivotal. December 2014. G-Cloud. service definitions G-Cloud Big Data Suite Powered by Pivotal December 2014 G-Cloud service definitions TABLE OF CONTENTS Service Overview... 3 Business Need... 6 Our Approach... 7 Service Management... 7 Vendor Accreditations/Awards...

More information

A financial software company

A financial software company A financial software company Projecting USD10 million revenue lift with the IBM Netezza data warehouse appliance Overview The need A financial software company sought to analyze customer engagements to

More information

Upgrading to Microsoft SQL Server 2008 R2 from Microsoft SQL Server 2008, SQL Server 2005, and SQL Server 2000

Upgrading to Microsoft SQL Server 2008 R2 from Microsoft SQL Server 2008, SQL Server 2005, and SQL Server 2000 Upgrading to Microsoft SQL Server 2008 R2 from Microsoft SQL Server 2008, SQL Server 2005, and SQL Server 2000 Your Data, Any Place, Any Time Executive Summary: More than ever, organizations rely on data

More information

SQL Server 2005 Features Comparison

SQL Server 2005 Features Comparison Page 1 of 10 Quick Links Home Worldwide Search Microsoft.com for: Go : Home Product Information How to Buy Editions Learning Downloads Support Partners Technologies Solutions Community Previous Versions

More information

Big Data and the Data Lake. February 2015

Big Data and the Data Lake. February 2015 Big Data and the Data Lake February 2015 My Vision: Our Mission Data Intelligence is a broad term that describes the real, meaningful insights that can be extracted from your data truths that you can act

More information

IBM Netezza High Capacity Appliance

IBM Netezza High Capacity Appliance IBM Netezza High Capacity Appliance Petascale Data Archival, Analysis and Disaster Recovery Solutions IBM Netezza High Capacity Appliance Highlights: Allows querying and analysis of deep archival data

More information

Innovative technology for big data analytics

Innovative technology for big data analytics Technical white paper Innovative technology for big data analytics The HP Vertica Analytics Platform database provides price/performance, scalability, availability, and ease of administration Table of

More information

BIG DATA-AS-A-SERVICE

BIG DATA-AS-A-SERVICE White Paper BIG DATA-AS-A-SERVICE What Big Data is about What service providers can do with Big Data What EMC can do to help EMC Solutions Group Abstract This white paper looks at what service providers

More information

The Data Mining Process

The Data Mining Process Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data

More information

Big + Fast + Safe + Simple = Lowest Technical Risk

Big + Fast + Safe + Simple = Lowest Technical Risk Big + Fast + Safe + Simple = Lowest Technical Risk The Synergy of Greenplum and Isilon Architecture in HP Environments Steffen Thuemmel (Isilon) Andreas Scherbaum (Greenplum) 1 Our problem 2 What is Big

More information

Integrating Netezza into your existing IT landscape

Integrating Netezza into your existing IT landscape Marco Lehmann Technical Sales Professional Integrating Netezza into your existing IT landscape 2011 IBM Corporation Agenda How to integrate your existing data into Netezza appliance? 4 Steps for creating

More information

Advanced Big Data Analytics with R and Hadoop

Advanced Big Data Analytics with R and Hadoop REVOLUTION ANALYTICS WHITE PAPER Advanced Big Data Analytics with R and Hadoop 'Big Data' Analytics as a Competitive Advantage Big Analytics delivers competitive advantage in two ways compared to the traditional

More information

A HIGH-PERFORMANCE, SCALABLE BIG DATA APPLIANCE LAURA CHU-VIAL, SENIOR PRODUCT MARKETING MANAGER JOACHIM RAHMFELD, VP FIELD ALLIANCES OF SAP

A HIGH-PERFORMANCE, SCALABLE BIG DATA APPLIANCE LAURA CHU-VIAL, SENIOR PRODUCT MARKETING MANAGER JOACHIM RAHMFELD, VP FIELD ALLIANCES OF SAP A HIGH-PERFORMANCE, SCALABLE BIG DATA APPLIANCE LAURA CHU-VIAL, SENIOR PRODUCT MARKETING MANAGER JOACHIM RAHMFELD, VP FIELD ALLIANCES OF SAP WEBTECH EDUCATIONAL SERIES A HIGH-PERFORMANCE, SCALABLE BIG

More information

Integrating a Big Data Platform into Government:

Integrating a Big Data Platform into Government: Integrating a Big Data Platform into Government: Drive Better Decisions for Policy and Program Outcomes John Haddad, Senior Director Product Marketing, Informatica Digital Government Institute s Government

More information

BIG DATA: FROM HYPE TO REALITY. Leandro Ruiz Presales Partner for C&LA Teradata

BIG DATA: FROM HYPE TO REALITY. Leandro Ruiz Presales Partner for C&LA Teradata BIG DATA: FROM HYPE TO REALITY Leandro Ruiz Presales Partner for C&LA Teradata Evolution in The Use of Information Action s ACTIVATING MAKE it happen! Insights OPERATIONALIZING WHAT IS happening now? PREDICTING

More information

Using an In-Memory Data Grid for Near Real-Time Data Analysis

Using an In-Memory Data Grid for Near Real-Time Data Analysis SCALEOUT SOFTWARE Using an In-Memory Data Grid for Near Real-Time Data Analysis by Dr. William Bain, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 IN today s competitive world, businesses

More information

Hadoop and Relational Database The Best of Both Worlds for Analytics Greg Battas Hewlett Packard

Hadoop and Relational Database The Best of Both Worlds for Analytics Greg Battas Hewlett Packard Hadoop and Relational base The Best of Both Worlds for Analytics Greg Battas Hewlett Packard The Evolution of Analytics Mainframe EDW Proprietary MPP Unix SMP MPP Appliance Hadoop? Questions Is Hadoop

More information

2015 Ironside Group, Inc. 2

2015 Ironside Group, Inc. 2 2015 Ironside Group, Inc. 2 Introduction to Ironside What is Cloud, Really? Why Cloud for Data Warehousing? Intro to IBM PureData for Analytics (IPDA) IBM PureData for Analytics on Cloud Intro to IBM dashdb

More information

Virtual Data Warehouse Appliances

Virtual Data Warehouse Appliances infrastructure (WX 2 and blade server Kognitio provides solutions to business problems that require acquisition, rationalization and analysis of large and/or complex data The Kognitio Technology and Data

More information

HP Vertica. Echtzeit-Analyse extremer Datenmengen und Einbindung von Hadoop. Helmut Schmitt Sales Manager DACH

HP Vertica. Echtzeit-Analyse extremer Datenmengen und Einbindung von Hadoop. Helmut Schmitt Sales Manager DACH HP Vertica Echtzeit-Analyse extremer Datenmengen und Einbindung von Hadoop Helmut Schmitt Sales Manager DACH Big Data is a Massive Disruptor 2 A 100 fold multiplication in the amount of data is a 10,000

More information

Introducing Oracle Exalytics In-Memory Machine

Introducing Oracle Exalytics In-Memory Machine Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle

More information

6.0, 6.5 and Beyond. The Future of Spotfire. Tobias Lehtipalo Sr. Director of Product Management

6.0, 6.5 and Beyond. The Future of Spotfire. Tobias Lehtipalo Sr. Director of Product Management 6.0, 6.5 and Beyond The Future of Spotfire Tobias Lehtipalo Sr. Director of Product Management Key peformance indicators Hundreds of Records Visual Data Discovery Millions of Records Data Mining or Data

More information

In-Memory Analytics for Big Data

In-Memory Analytics for Big Data In-Memory Analytics for Big Data Game-changing technology for faster, better insights WHITE PAPER SAS White Paper Table of Contents Introduction: A New Breed of Analytics... 1 SAS In-Memory Overview...

More information

Poslovni slučajevi upotrebe IBM Netezze

Poslovni slučajevi upotrebe IBM Netezze Poslovni slučajevi upotrebe IBM Netezze data at the Speed and with Simplicity businesses need 25. ožujak 2015. vedran.travica@hr.ibm.com Agenda A. IBM PureData for Analytics Netezza B. Scenarij 1.: Novi

More information

Big Data Technologies Compared June 2014

Big Data Technologies Compared June 2014 Big Data Technologies Compared June 2014 Agenda What is Big Data Big Data Technology Comparison Summary Other Big Data Technologies Questions 2 What is Big Data by Example The SKA Telescope is a new development

More information

BIG DATA What it is and how to use?

BIG DATA What it is and how to use? BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14

More information

SAS and Oracle: Big Data and Cloud Partnering Innovation Targets the Third Platform

SAS and Oracle: Big Data and Cloud Partnering Innovation Targets the Third Platform SAS and Oracle: Big Data and Cloud Partnering Innovation Targets the Third Platform David Lawler, Oracle Senior Vice President, Product Management and Strategy Paul Kent, SAS Vice President, Big Data What

More information

In-Database Analytics

In-Database Analytics Embedding Analytics in Decision Management Systems In-database analytics offer a powerful tool for embedding advanced analytics in a critical component of IT infrastructure. James Taylor CEO CONTENTS Introducing

More information

IBM Netezza 1000. High-performance business intelligence and advanced analytics for the enterprise. The analytics conundrum

IBM Netezza 1000. High-performance business intelligence and advanced analytics for the enterprise. The analytics conundrum IBM Netezza 1000 High-performance business intelligence and advanced analytics for the enterprise Our approach to data analysis is patented and proven. Minimize data movement, while processing it at physics

More information

Data Warehouse as a Service. Lot 2 - Platform as a Service. Version: 1.1, Issue Date: 05/02/2014. Classification: Open

Data Warehouse as a Service. Lot 2 - Platform as a Service. Version: 1.1, Issue Date: 05/02/2014. Classification: Open Data Warehouse as a Service Version: 1.1, Issue Date: 05/02/2014 Classification: Open Classification: Open ii MDS Technologies Ltd 2014. Other than for the sole purpose of evaluating this Response, no

More information

SEIZE THE DATA. 2015 SEIZE THE DATA. 2015

SEIZE THE DATA. 2015 SEIZE THE DATA. 2015 1 Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. BIG DATA CONFERENCE 2015 Boston August 10-13 Predicting and reducing deforestation

More information

How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time

How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first

More information

NextGen Infrastructure for Big DATA Analytics.

NextGen Infrastructure for Big DATA Analytics. NextGen Infrastructure for Big DATA Analytics. So What is Big Data? Data that exceeds the processing capacity of conven4onal database systems. The data is too big, moves too fast, or doesn t fit the structures

More information

Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015

Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib

More information

Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p.

Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p. Introduction p. xvii Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p. 9 State of the Practice in Analytics p. 11 BI Versus

More information

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014 5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for

More information

CitusDB Architecture for Real-Time Big Data

CitusDB Architecture for Real-Time Big Data CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing

More information

VIEWPOINT. High Performance Analytics. Industry Context and Trends

VIEWPOINT. High Performance Analytics. Industry Context and Trends VIEWPOINT High Performance Analytics Industry Context and Trends In the digital age of social media and connected devices, enterprises have a plethora of data that they can mine, to discover hidden correlations

More information

An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics

An Oracle White Paper November 2010. Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics An Oracle White Paper November 2010 Leveraging Massively Parallel Processing in an Oracle Environment for Big Data Analytics 1 Introduction New applications such as web searches, recommendation engines,

More information

SAS and Teradata Partnership

SAS and Teradata Partnership SAS and Teradata Partnership Ed Swain Senior Industry Consultant Energy & Resources Ed.Swain@teradata.com 1 Innovation and Leadership Teradata SAS Magic Quadrant for Data Warehouse Database Management

More information

HIGH PERFORMANCE ANALYTICS FOR TERADATA

HIGH PERFORMANCE ANALYTICS FOR TERADATA F HIGH PERFORMANCE ANALYTICS FOR TERADATA F F BORN AND BRED IN FINANCIAL SERVICES AND HEALTHCARE. DECADES OF EXPERIENCE IN PARALLEL PROGRAMMING AND ANALYTICS. FOCUSED ON MAKING DATA SCIENCE HIGHLY PERFORMING

More information

CONTENTS PREFACE 1 INTRODUCTION 1 2 DATA VISUALIZATION 19

CONTENTS PREFACE 1 INTRODUCTION 1 2 DATA VISUALIZATION 19 PREFACE xi 1 INTRODUCTION 1 1.1 Overview 1 1.2 Definition 1 1.3 Preparation 2 1.3.1 Overview 2 1.3.2 Accessing Tabular Data 3 1.3.3 Accessing Unstructured Data 3 1.3.4 Understanding the Variables and Observations

More information

Ramesh Bhashyam Teradata Fellow Teradata Corporation bhashyam.ramesh@teradata.com

Ramesh Bhashyam Teradata Fellow Teradata Corporation bhashyam.ramesh@teradata.com Challenges of Handling Big Data Ramesh Bhashyam Teradata Fellow Teradata Corporation bhashyam.ramesh@teradata.com Trend Too much information is a storage issue, certainly, but too much information is also

More information

Investor Presentation. Second Quarter 2015

Investor Presentation. Second Quarter 2015 Investor Presentation Second Quarter 2015 Note to Investors Certain non-gaap financial information regarding operating results may be discussed during this presentation. Reconciliations of the differences

More information

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, sborkar95@gmail.com Assistant Professor, Information

More information

White Paper. Unified Data Integration Across Big Data Platforms

White Paper. Unified Data Integration Across Big Data Platforms White Paper Unified Data Integration Across Big Data Platforms Contents Business Problem... 2 Unified Big Data Integration... 3 Diyotta Solution Overview... 4 Data Warehouse Project Implementation using

More information

Unified Data Integration Across Big Data Platforms

Unified Data Integration Across Big Data Platforms Unified Data Integration Across Big Data Platforms Contents Business Problem... 2 Unified Big Data Integration... 3 Diyotta Solution Overview... 4 Data Warehouse Project Implementation using ELT... 6 Diyotta

More information

ADVANCED ANALYTICS AND FRAUD DETECTION THE RIGHT TECHNOLOGY FOR NOW AND THE FUTURE

ADVANCED ANALYTICS AND FRAUD DETECTION THE RIGHT TECHNOLOGY FOR NOW AND THE FUTURE ADVANCED ANALYTICS AND FRAUD DETECTION THE RIGHT TECHNOLOGY FOR NOW AND THE FUTURE Big Data Big Data What tax agencies are or will be seeing! Big Data Large and increased data volumes New and emerging

More information

The Internet of Things and Big Data: Intro

The Internet of Things and Big Data: Intro The Internet of Things and Big Data: Intro John Berns, Solutions Architect, APAC - MapR Technologies April 22 nd, 2014 1 What This Is; What This Is Not It s not specific to IoT It s not about any specific

More information

EMC SOLUTION FOR AGILE AND ROBUST ANALYTICS ON HADOOP DATA LAKE WITH PIVOTAL HDB

EMC SOLUTION FOR AGILE AND ROBUST ANALYTICS ON HADOOP DATA LAKE WITH PIVOTAL HDB EMC SOLUTION FOR AGILE AND ROBUST ANALYTICS ON HADOOP DATA LAKE WITH PIVOTAL HDB ABSTRACT As companies increasingly adopt data lakes as a platform for storing data from a variety of sources, the need for

More information

Safe Harbor Statement

Safe Harbor Statement Safe Harbor Statement The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment

More information

ROME, 17-10-2013 BIG DATA ANALYTICS

ROME, 17-10-2013 BIG DATA ANALYTICS ROME, 17-10-2013 BIG DATA ANALYTICS BIG DATA FOUNDATIONS Big Data is #1 on the 2012 and the 2013 list of most ambiguous terms - Global language monitor 2 BIG DATA FOUNDATIONS Big Data refers to data sets

More information

ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION

ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION ORACLE BUSINESS INTELLIGENCE, ORACLE DATABASE, AND EXADATA INTEGRATION EXECUTIVE SUMMARY Oracle business intelligence solutions are complete, open, and integrated. Key components of Oracle business intelligence

More information

Netezza and Business Analytics Synergy

Netezza and Business Analytics Synergy Netezza Business Partner Update: November 17, 2011 Netezza and Business Analytics Synergy Shimon Nir, IBM Agenda Business Analytics / Netezza Synergy Overview Netezza overview Enabling the Business with

More information

Technical white paper. R you ready? Turning big data into big value with the HP Vertica Analytics Platform and R

Technical white paper. R you ready? Turning big data into big value with the HP Vertica Analytics Platform and R Technical white paper R you ready? Turning big data into big value with the HP Vertica Analytics Platform and R Table of contents Executive summary The data mining challenge Data mining implementation

More information

How to Enhance Traditional BI Architecture to Leverage Big Data

How to Enhance Traditional BI Architecture to Leverage Big Data B I G D ATA How to Enhance Traditional BI Architecture to Leverage Big Data Contents Executive Summary... 1 Traditional BI - DataStack 2.0 Architecture... 2 Benefits of Traditional BI - DataStack 2.0...

More information

SQL Server 2012 Parallel Data Warehouse. Solution Brief

SQL Server 2012 Parallel Data Warehouse. Solution Brief SQL Server 2012 Parallel Data Warehouse Solution Brief Published February 22, 2013 Contents Introduction... 1 Microsoft Platform: Windows Server and SQL Server... 2 SQL Server 2012 Parallel Data Warehouse...

More information

Universal PMML Plug-in for EMC Greenplum Database

Universal PMML Plug-in for EMC Greenplum Database Universal PMML Plug-in for EMC Greenplum Database Delivering Massively Parallel Predictions Zementis, Inc. info@zementis.com USA: 6125 Cornerstone Court East, Suite #250, San Diego, CA 92121 T +1(619)

More information

Information Architecture

Information Architecture The Bloor Group Actian and The Big Data Information Architecture WHITE PAPER The Actian Big Data Information Architecture Actian and The Big Data Information Architecture Originally founded in 2005 to

More information

EMC Federation Big Data Solutions. Copyright 2015 EMC Corporation. All rights reserved.

EMC Federation Big Data Solutions. Copyright 2015 EMC Corporation. All rights reserved. EMC Federation Big Data Solutions 1 Introduction to data analytics Federation offering 2 Traditional Analytics! Traditional type of data analysis, sometimes called Business Intelligence! Type of analytics

More information

How To Use Hp Vertica Ondemand

How To Use Hp Vertica Ondemand Data sheet HP Vertica OnDemand Enterprise-class Big Data analytics in the cloud Enterprise-class Big Data analytics for any size organization Vertica OnDemand Organizations today are experiencing a greater

More information

EMC DATA DOMAIN OPERATING SYSTEM

EMC DATA DOMAIN OPERATING SYSTEM EMC DATA DOMAIN OPERATING SYSTEM Powering EMC Protection Storage ESSENTIALS High-Speed, Scalable Deduplication Up to 58.7 TB/hr performance Reduces requirements for backup storage by 10 to 30x and archive

More information

Oracle Big Data SQL Technical Update

Oracle Big Data SQL Technical Update Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical

More information

EMC DATA DOMAIN OPERATING SYSTEM

EMC DATA DOMAIN OPERATING SYSTEM ESSENTIALS HIGH-SPEED, SCALABLE DEDUPLICATION Up to 58.7 TB/hr performance Reduces protection storage requirements by 10 to 30x CPU-centric scalability DATA INVULNERABILITY ARCHITECTURE Inline write/read

More information

INVESTOR PRESENTATION. First Quarter 2014

INVESTOR PRESENTATION. First Quarter 2014 INVESTOR PRESENTATION First Quarter 2014 Note to Investors Certain non-gaap financial information regarding operating results may be discussed during this presentation. Reconciliations of the differences

More information

An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database

An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database An Oracle White Paper June 2012 High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database Executive Overview... 1 Introduction... 1 Oracle Loader for Hadoop... 2 Oracle Direct

More information

VMware vsphere Data Protection

VMware vsphere Data Protection FREQUENTLY ASKED QUESTIONS VMware vsphere Data Protection vsphere Data Protection Advanced Overview Q. What is VMware vsphere Data Protection Advanced? A. VMware vsphere Data Protection Advanced is a backup

More information

SAP Real-time Data Platform. April 2013

SAP Real-time Data Platform. April 2013 SAP Real-time Data Platform April 2013 Agenda Introduction SAP Real Time Data Platform Overview SAP Sybase ASE SAP Sybase IQ SAP EIM Questions and Answers 2012 SAP AG. All rights reserved. 2 Introduction

More information

BIG DATA: FIVE TACTICS TO MODERNIZE YOUR DATA WAREHOUSE

BIG DATA: FIVE TACTICS TO MODERNIZE YOUR DATA WAREHOUSE BIG DATA: FIVE TACTICS TO MODERNIZE YOUR DATA WAREHOUSE Current technology for Big Data allows organizations to dramatically improve return on investment (ROI) from their existing data warehouse environment.

More information

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning

How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume

More information

EMC ISILON OneFS OPERATING SYSTEM Powering scale-out storage for the new world of Big Data in the enterprise

EMC ISILON OneFS OPERATING SYSTEM Powering scale-out storage for the new world of Big Data in the enterprise EMC ISILON OneFS OPERATING SYSTEM Powering scale-out storage for the new world of Big Data in the enterprise ESSENTIALS Easy-to-use, single volume, single file system architecture Highly scalable with

More information

Focus on the business, not the business of data warehousing!

Focus on the business, not the business of data warehousing! Focus on the business, not the business of data warehousing! Adam M. Ronthal Technical Product Marketing and Strategy Big Data, Cloud, and Appliances @ARonthal 1 Disclaimer Copyright IBM Corporation 2014.

More information

PARC and SAP Co-innovation: High-performance Graph Analytics for Big Data Powered by SAP HANA

PARC and SAP Co-innovation: High-performance Graph Analytics for Big Data Powered by SAP HANA PARC and SAP Co-innovation: High-performance Graph Analytics for Big Data Powered by SAP HANA Harnessing the combined power of SAP HANA and PARC s HiperGraph graph analytics technology for real-time insights

More information