SEISMIC ZONATION FOR LIFELINES AND UTILITIES. T.D. O Rourke 1 and S.-S. Jeon 2 ABSTRACT

Size: px
Start display at page:

Download "SEISMIC ZONATION FOR LIFELINES AND UTILITIES. T.D. O Rourke 1 and S.-S. Jeon 2 ABSTRACT"

Transcription

1 SEISMIC ZONATION FOR LIFELINES AND UTILITIES T.D. O Rourke 1 and S.-S. Jeon 2 ABSTRACT This paper focuses on the four principal uses of seismic zonation for lifelines and utilities: 1) hazard delineation, 2) physical loss estimation, 3) assessment of economic and social consequences, and 4) planning for emergency response and recovery. Emphasis is given to geographic information systems (GIS) and their application to pipeline networks in evaluating the spatial characteristics of earthquake effects. The paper examines the GIS databases for water supply performance obtained for the 1994 Northridge and 1995 Kobe earthquakes. Relationships among buried lifeline damage and various seismic parameters are examined, and the parameters that are statistically most significant are identified. Using GIS data from the Northridge earthquake, the relationships among pipeline repair rate, type of pipe, diameter, and various seismic parameters are assessed. The effects of permanent ground deformation (PGD) on buried lifelines are discussed. Air photo measurements of PGD and the spatial characteristics of ground deformation revealed by these measurements are described. Mapping procedures for PGD hazards, including probabilistic mapping techniques, are reviewed. Recent studies of economic losses from earthquake damage to lifelines in Shelby County, TN are used to explore the direct and indirect economic losses of lifeline systems. Introduction Seismic zonation has been defined in broad terms as the geographic delineation of variations in the potential for various earthquake hazards (Cluff and Pecker, 1995). From a geotechnical perspective, Finn (1991) refers to seismic microzonation as a procedure for improving estimates of seismic hazard for design by taking the effects of local site conditions into account. By virtually any definition, seismic zonation involves treatment of the spatial variability of seismic excitation, geotechnical conditions, and the characteristics of the built environment and communities affected by earthquakes. Lifelines are often grouped into six principal types of systems (in alphabetical order): electric power, gas and liquid fuels, telecommunications, transportation, wastewater facilities, and water supply. These systems share three common characteristics: geographical dispersion, interconnectivity, and diversity (O Rourke, 1998). Lifelines are geographically dispersed over broad areas, and are exposed to a wide range of seismic and geotechnical hazards, community 1, 2 Thomas R. Briggs Professor of Engineering and Graduate Research Assistant, respectively, School of Civil & Environmental Engineering, Cornell University, Ithaca, NY

2 uses, and interactions with other sectors of the built environment. They are interconnected and interdependent. Each lifeline system is composed of many interconnected facilities and is influenced by the performance of other lifeline systems. Lifeline performance is related to the characteristics of many diverse components; most lifeline networks have been built over many years and function with parts produced according to different construction and/or manufacturing techniques, standards, and design procedures. Given the characteristics of lifelines and the goals of seismic zonation, it is natural to combine the two and apply zonation for more effective engineering and management of critical transportation and utility systems. There has been substantial effort in recent years in applying seismic zonation to lifeline networks with many examples available in the proceedings of previous seismic zonation conferences (e.g., Earthquake Engineering Research Institute, 1991 and 1995). This paper focuses on the four principal uses of seismic zonation for lifelines and utilities: 1) earthquake hazard delineation, 2) physical loss estimation, 3) assessment of economic and social consequences, and 4) planning for emergency response and recovery. Pipeline systems, in particular, are used to illustrate current trends in seismic zonation and lifeline engineering. Pipeline networks are an essential part of water, wastewater, gas, and liquid fuel conveyance systems, and are used extensively in telecommunication and electric power networks. The paper begins with an examination of GIS, followed by a discussion of buried pipeline response to earthquakes. The principal uses of seismic zonation are covered by describing recent investigations that are relevant for each use and summarizing the important lessons learned for future applications. Geographic Information Systems GIS has been defined as a set of tools for the input, storage and retrieval, manipulation and analysis, and output of spatial data (Marble, et al., 1984). It is also a problem solving process, organized with respect to spatial and attribute data, that can be integrated with various geographic technologies (e.g., remote sensing, global positioning systems, computer-aided design, etc.) for support of decision making (Malezewski, 1999). GIS can be viewed, therefore, as a system for integrating data from various disciplines and sources to guide planning and management about a specific geographic area or site. It is advantageous to think of GIS in terms of the different types of databases used to characterize civil infrastructure systems (CIS). As proposed by Uy and O Rourke (2000), CIS involve both the physical environment and the social and economic characteristics of communities that are located within the physical environment. The different aspects of CIS can be divided into the two broad categories of societal and physical environment, which are shown in Fig. 1. Data about the societal environment is divided into demographic and economic information. Demographic information includes data on political boundaries, population, housing, and human hazards/security/vulnerability. Economic information includes personal and

3 CIVIL INFRASTRUCTURE SYSTEMS The Societal Environment The Physical Environment Demographic Economic Natural Environment Built Environment Figure 1. Civil Infrastructure Systems governmental income, personal and governmental spending, land and housing rent/value, trade (manufacturing, retail, wholesale), and other types of industries. The physical environment consists of the natural and built environments. The natural environment includes land use and land cover, topography, geology and seismology, water and air quality, sources of pollutants, wildlife/plant habitat, and natural hazards. Key elements of the built environment are public and private buildings and lifeline systems. The rapid development of computer mapping and visualization tools, embodied in GIS, provides a powerful basis for evaluating earthquakes effects on lifelines, as well as the consequences of these interactions on communities. It is not surprising, therefore, that GIS has become an engine for driving new methodologies and decision support systems focused on the spatial variation of potential earthquake effects. GIS, for example, is the backbone of the National Loss Estimation Methodology sponsored by FEMA and implemented through HAZUS computer software (National Institute for Building Science, 1997; Whitman, et al., 1997). GIS also has been harnessed to explore the engineering and socioeconomic impacts of earthquakes through multidisciplinary studies of the losses incurred by disruptions of water supply and electric power systems (Chang, et al., 1996; Shinozuka, et al., 1998). GIS Lifeline Earthquake Databases Advances in seismic zonation for lifelines and utilities have been influenced in a profound way by records of lifeline performance acquired after recent earthquakes, most notably the 1989 Loma Prieta, 1994 Northridge, and 1995 Kobe earthquakes. Data from the Northridge and Kobe earthquakes have been compiled in GISs of unprecedented size and complexity that allow for a detailed examination of the spatial relationships among lifeline damage, permanent and transient ground deformation, and the surface, subsurface, and groundwater conditions. A comprehensive investigation of water supply pipeline damage after the 1995 Kobe earthquake undertaken by the Japan Water Works Association (1996) has been described by

4 Shirozu, et al. (1996). The study was concentrated on seven water distribution systems, totaling over 12,000 km of pipelines and 2,885 earthquake related repairs. Data on location, mode of damage, material, diameter, and year of installation were collected and entered into a GIS database with approximately 13,000 photos. Digitized maps of the water distribution pipelines were made part of the GIS. Data on surficial geology, degree of liquefaction, seismic intensity, and vectors of PGD determined by air photo measurements (Hamada and Wakamatsu, 1996) were also included. Statistics were compiled for each of six types of pipe composition, summarizing the number of repairs, length of affected pipeline, repair rate (repairs divided by affected pipe length), and damage mode observed in either the pipe body or joints. The highest repair rates were incurred by steel pipelines with threaded couplings, asbestos cement (AC) pipelines, and cast iron (CI) pipelines. The overall repair rates for ductile iron (DI) and welded steel pipelines were approximately one third of that for CI mains, and the predominant mode of failure for DI pipelines was pullout at mechanical joints. DI pipelines equipped with earthquake-resistant restrained joints were not damaged, even in areas of liquefaction-induced PGD. Pipeline repair rates were inversely proportional to diameter and increased in direct proportion to peak ground acceleration. Repair rates in areas of liquefaction-induced PGD were 6 to 10 times higher than repair rates in areas of comparable peak ground acceleration with no PGD effects. The GIS database for the Kobe earthquake provides an exceptionally detailed and comprehensive assessment of earthquake performance in a large, geographically dispersed system. GIS for the 1994 Northridge earthquake provides a similar database for U.S. water distribution performance, and is discussed in detail in forthcoming sections of this paper. Pipeline Response to Earthquakes Earthquakes cause transient ground deformation (TGD) and permanent ground deformation (PGD), both of which affect underground pipelines. TGD is the dynamic response of the ground, and PGD is the irrecoverable movement that persists after shaking has stopped. PGD often involves large displacements, such as those associated with surface fault rupture and landslides. TGD can cause soil cracks and fissures triggered by pulses of strong motion that develop localized shear and tensile strains exceeding the strength of surficial soils. The principal causes of PGD have been summarized and discussed by O Rourke (1998). They are faulting, tectonic uplift and subsidence, and liquefaction, landslides, and densification of loose granular deposits. Liquefaction is the transformation of saturated cohesionless soil into a liquefied state or condition of substantially reduced shear strength (Youd, 1973). Liquefactioninduced pipeline deformation can be caused by lateral spread, flow failure, local subsidence, post-liquefaction consolidation, buoyancy effects, and loss of bearing (Youd, 1973; O Rourke, 1998). It is widely accepted that the most serious pipeline damage during earthquakes is caused by PGD. Furthermore, it is well recognized that liquefaction-induced PGD, especially lateral spread, is one of the most pervasive causes of earthquake-induced lifeline damage (Hamada and O Rourke, 1992; O Rourke and Hamada, 1992). Ground displacement patterns associated with earthquakes depend on PGD source, soil type, depth of ground water, slope, earthquake intensity at a given site, and duration of strong

5 ground shaking (O Rourke, 1998). It is not possible to model with accuracy the soil displacement patterns at all potentially vulnerable locations. Neverthless, it is possible to set upper bound estimates of deformation effects on buried lifelines by simplifying spatially distributed PGD as movement concentrated along planes of soil failure. Various modes of pipeline distortion caused by PGD are illustrated in Fig. 2. Pipelines crossing a fault plane subjected to oblique slip are shown in Fig. 2a. Reverse and normal faults promote compression and tension, respectively. Strike slip may induce compression or tension, depending on the angle of intersection between the pipeline and fault. Fig. 2b shows a pipeline crossing a lateral spread or landslide perpendicular to the general direction of soil movement. In this orientation, the pipeline is subject to bending strains and extension. As shown in Fig. 2c, the pipeline will undergo bending and either tension or compression at the margins of the slide when the crossing occurs at an oblique angle. Fig. 2d shows a pipeline oriented parallel to the general direction of soil displacement. At the head of the zone of soil movement, the displacements resemble normal faulting; under these conditions, the pipeline will be subjected to both bending and tensile strains. At the toe of the slide, the displaced soil produces compressive strains in the pipeline. s s Strike slip Fault plane Pipeline subject mainly to bending sv s d Legend s d - Dip slip s s - Strike slip s v - Vertical displacement s h - Thrust displacement Dip slip s h b) Perpendicular Crossing a) Three-Dimensional View Pipeline subject to compression and bending Pipeline subject to tension and bending Pipeline subject to Pipeline subject to tension and bending compression and bending c) Oblique Crossing d) Parallel Crossing Figure 2. Principal Modes of Soil-Pipeline Interaction Triggered by Earthquake-Induced PGD (O Rourke, 1998)

6 TGD generally induces much smaller levels of pipeline strain and deformation than PGD. Neverthless, TGD covers a broader area than PGD. Pipeline systems involve many different components, some of which are invariably weakened by corrosion and/or residual stress concentrations. It follows, therefore, that the effects of widespread TGD, rather than localized PGD, are more likely to overlap with weaker components. At least four principal types of TGD have been identified: 1) traveling P and S waves, 2) surface wave generation in large sedimentary basins, 3) vibration of relatively narrow soil-filled valleys, and 4) ground oscillation (O Rourke, 1998). This latter phenomenon was first described by Youd and Keefer (1994). It involves transient lateral shear strains and oscillatory horizontal movement of liquefiable soil relative to adjacent and underlying competent ground. Ground oscillation has been shown to be the principal cause of extensive pipeline damage in the Marina of San Francisco during the 1989 Loma Prieta earthquake (Pease and O Rourke, 1997). One of the principal challenges for seismic zonation and lifeline engineering is the identification of landforms, subsurface conditions, and wave propagation scenarios that can trigger PGD and various levels of TGD. During post-earthquake investigations, it is often difficult to collect sufficient data over broad geographic areas to distinguish all PGD zones from zones predominately influenced by TGD. As a planning and predictive exercise, the identification of PGD vs. TGD zones is especially problematic because of the spatial variability of soil and groundwater and the lack of specific information at most locations about the subsurface nature of the ground. A practical way to learn about the spatial variability of TGD and PGD effects is to study the relationships among pipeline damage, strong motion, and locations of observed permanent deformation for large, geographically dispersed systems. Recently, severe earthquakes have occurred in urbanized areas with large pipeline systems and relatively dense networks of strong motion instruments. In the next two sections, data on pipeline system behavior during the 1994 Northridge earthquake are examined and analyzed to illustrate regional patterns of TGD and PGD, and their corresponding influence on water distribution system performance. Earthquake Hazard Delineation This section is divided into two subsections dealing with liquefaction hazards and pipeline damage patterns. Liquefaction is a principal cause of PGD, and therefore potentially disruptive for underground facilities. Mapping and characterizing liquefaction hazards allow for the prediction of lifeline damage as well as the distribution of damage at liquefaction areas throughout the system. Conversely, the pattern of post-earthquake damage allows for the identification of seismic hazards at the locations of concentrated pipeline repair. In this section, earthquake hazard delineation is examined through the identification of liquefiable soils and their potential for lifeline damage, and through actual lifeline damage patterns as a means of identifying local PGD hazards, including liquefaction.

7 Liquefaction Hazards As mentioned previously, pipeline damage can be caused by various types of PGD triggered by liquefaction. The delineation of liquefaction hazards, therefore, is of primary interest in assessing the potential vulnerability of lifelines during an earthquake. Youd and Perkins (1978) developed procedures for identifying sedimentary deposits susceptible to liquefaction and combining maps of these deposits with the spatial delineation of liquefaction opportunity. To quantify opportunity, it is necessary to identify earthquake sources, provide estimates of the number and magnitude of earthquakes in the source zones, and apply source-distance relationships that link moment magnitude M w, and distance from source with the occurrence of liquefaction. On the basis of historical evidence of liquefaction-induced ground deformation, Youd and Perkins (1987) also developed a technique for compiling liquefaction hazard maps by mapping a parameter called the liquefaction severity index (LSI). The LSI represents the general maximum differential ground movement (in inches) associated with lateral spread that can be anticipated in active flood plains, deltas, or other areas of gently sloping Holocene fluvial deposits. By means of statistical correlations, Youd and Perkins developed an equation relating LSI, earthquake magnitude, and distance from the seismic energy source for data pertaining to western U.S. earthquakes. The equation, a model of seismic sources, and a published seismic risk algorithm were used to compile probabilistic LSI maps for southern California. Bartlett and Youd (1995) developed an empirical model on the basis of multiple linear regression (MLR) analyses for predicting the horizontal ground displacement resulting from liquefaction-induced lateral spread. They used data from Japanese and U.S. earthquakes, and distinguished two general types of lateral spread: 1) lateral spread towards a free face, and 2) lateral spread down a gentle slope where a free face is absent. An equation was proposed for predicting the magnitude of horizontal displacement as a function of six variables. Using a similar database, Bardet, et al. (1996a and b) proposed a four-parameter MLR model of the form: Log (D ) = b 0 + b off + b 1 M w + b 2 Log (R) + b 3 R + b 4 Log (W) + b 5 Log (S) +b 6 Log (T 15 ) (1) in which D is the horizontal displacement (m); M w the moment magnitude; R the nearest horizontal distance (km) to seismic energy source or fault rupture; S the slope (%) of the ground surface; W the free face ratio (%) defined as height of the free face divided by the distance from the free face to the location of displacement, T 15 the thickness (m) of saturated cohesionless soils (excluding depth > 20 m and clay content > 15%) with corrected standard penetration test values N1 60 < 15. In free-face cases, the term Log (S) is zero. In ground slope cases, the term Log (W) is zero. The b-coefficients were derived from MLR analyses, and are summarized by Bardet, et al. (1999a).

8 In Fig. 3 the horizontal displacements predicted by the MLR model of Bardet, et al. (1999a) are compared with liquefaction-induced lateral movements measured by means of air photos for Kawagishi-cho area of Niigata after the 1964 Niigata earthquake. The two sitespecific variables of the four-parameter MLR model are the thickness of liquefiable deposits, T 15, and the free-face ratio, W. The spatial distribution of T 15 is evaluated by interpolation procedures, as explained by Bardet, et al. (1999a). Figs. 3d and e show the borings and contours of T 15 determined from the borings, respectively. Fig. 3f shows the spatial variation of W, and Fig. 3c provides a three-dimensional plot of the ground surface taken from topographic maps of the area. The values of T 15 and W were calculated at 50 by 34 grid points evenly spaced on a 10.5-m grid interval. The predicted displacement contours are illustrated in Fig. 3b, which can be compared with the displacement contours determined from air photo measurements in Fig. 3a. The irregular pattern of lateral movement at site, with a locally high concentration of displacement, is not duplicated by the MLR model. The model is influenced strongly by W, and this parameter in Eq. 1 tends to control the pattern of predicted displacement, resulting in contours of predicted movement that are characteristically parallel to the free face. Even though local concentrations of displacement were not predicted by the model, the average magnitude of predicted displacements are nonetheless consistent with the measured movements. The MLR four-parameter model predicts mean values, and probabilistic methods were applied to determine confidence limits on lateral movement and the probability of exceeding some level of ground deformation (Bardet, et al., 1999b). Fig. 4 presents a map of the predicted probability of liquefaction-induced lateral spread larger than 2 m in the Kawagishi-cho area for an earthquake with similar magnitude and source-to-site characteristics as the 1964 Niigata earthquake. The parallel pattern of probability contours reflects the influence of W. Probabilitybased maps for liquefaction-induced displacements are consistent with the probabilistic procedures frequently followed for seismic hazard characterization, and are valuable for supporting decisions by lifeline operators regarding the earthquake risk incurred at key facilities. Lifeline Damage Patterns Seismic zonation generally involves the identification of seismic and geotechnical hazards followed by an assessment of the potential damage associated with such hazards. The process can be inverted for pipeline systems. When there are many repair locations, the pipeline network can be used as a grid with which to characterize the local densities of repair so that subsurface hazards can be located. Pipeline repair patterns for the 1989 Loma Prieta and 1906 San Francisco earthquakes were used successfully to supplement soil boring information and characterize liquefaction hazards in San Francisco (Pease and O Rourke, 1997; O Rourke and Pease, 1997). In fact, the combination of pipeline repair locations and soil borings was quite effective in delineating zones vulnerable to liquefaction at a scale consistent with the size of a city block. As previously mentioned, pipeline repair records in the Marina of San Francisco were evaluated relative to liquefiable soils at the site. The pattern of pipeline repairs was instrumental in identifying ground oscillation as the principal cause of damage, and in developing simplified models to estimate the deformation that can be triggered by this type of liquefaction phenomenon.

9 SHINAN RIVER (a) Observed Displacement (cm) (b) Predicted Displacement (cm) (c) Ground Surface (m) (d) Borehole Location (e) T15 (m) (f) Free-face Ratio H/L (%) Figure 3. Representation of Measured and Predicted Lateral Displacements and Key Surface and Subsurface Characteristics for MLR Model Prediction of Liquefaction-Induced Movement During the 1964 Niigata Earthquake (Bardet, et al., 1999b) ECHIGO RAILWAY LINE KAWAGISHI CHO ECHIGO RAILWAY BRIDGE SHINANO RIVER Figure 4. Probability of Liquefaction-Induced Lateral Spread Larger Than 2 m in the Kawagishicho Area Predicted by MLR Model (Bardet, et al., 1999b)

10 In this paper, the GIS database for water distribution system performance during the 1994 Northridge earthquake is used to delineate geotechnical hazards in the Los Angeles region. The earthquake-induced damage to water pipelines and the database developed to characterize this damage have been described elsewhere (O Rourke, et al., 1998; O Rourke and Toprak, 1997), and only the salient features of this work are summarized herein. GIS databases for repair locations, characteristics of damaged pipe, and lengths of distribution (pipe diameter < 600 mm) and trunk (pipe diameter 600 mm) lines according to pipe composition and size were assembled with ARC/INFO software. Nearly 10,000 km of distribution lines and over 1,000 km of trunk lines were digitized. Fig. 5 shows the portion of the Los Angeles water supply system most seriously affected by the Northridge earthquake superimposed on the topography of Los Angeles. The figure was developed from the GIS database, and shows all water supply pipelines plotted with a geospatial precision of ± 10 m throughout the San Fernando Valley, Santa Monica Mountains, and Los Angeles Basin. The rectilinear system of pipelines is equivalent to a giant strain gage. Seismic intensity in the form of pipeline damage can be measured and visualized by plotting pipeline repair rates and identifying the areas where the largest concentrations of damage rate occur. The resulting areas reflect the highest seismic intensities as expressed by the disruption to underground piping. To develop a properly calibrated strain gage, it is necessary to select a measurement grid with material having reasonably consistent properties and a damage threshold sensitive to the externally imposed loads being measured. Fig. 6 presents charts showing the relative lengths of trunk and distribution lines according to pipe composition. As shown by the pie chart, the most pervasive material in the Los Angeles distribution system is CI. The 7,800 km of CI pipelines have the broadest geographic coverage with sufficient density in all areas to qualify as an appropriate measurement grid. Moreover, CI is a brittle material subject to increased rates of damage at tensile strains on the order 250 to 500 µε. It is therefore sufficiently sensitive for monitoring variations in seismic disturbance. Fig. 7 presents a map of distribution pipeline repair locations and repair rate contours for CI pipeline damage. The repair rate contours were developed by dividing the map into 2 km x 2 km areas, determining the number of CI pipeline repairs in each area, and dividing the repairs by the distance of CI mains in that area. Contours then were drawn from the spatial distribution of repair rates, each of which was centered on its tributary area. A variety of grids were evaluated, and the 2 km x 2 km grid was found to provide a good representation of damage patterns for the map scale of the figure (Toprak, et al., 1999). The zones of highest seismic intensity are shown by areas of concentrated contours. In each instance, areas of concentrated contours correspond to zones where the geotechnical conditions are prone either to ground failure or amplification of strong motion. Each zone of concentrated damage is labeled in Fig. 8 according to its principal geotechnical characteristics. In effect, therefore, Fig. 7 is a seismic hazard map for the Los Angeles region, calibrated according to pipeline damage during the Northridge earthquake.

11 Figure 5. Map of Los Angeles Water Supply System Affected by Northridge Earthquake (O Rourke and Toprak, 1997) Concrete 18% Cast Iron 11% Ductile Iron 1% Trunk Lines : 1014 km Distribution Lines : km Riveted Steel 14% Asbestos 9% a) Trunk Lines Steel 11% Steel 56% Length (km) 1000 Concrete Riveted Steel Cast Iron Steel Asbestos Cement Ductile Iron Ductile Iron 4% Cast Iron 76% 100 LADWP LADWP MWD b) Distribution Lines c) Combined Lines Figure 6. Composition Statistics of Water Trunk and Distribution Lines in the City of Los Angeles (O Rourke and Toprak, 1997)

12 Figure 7. Cast Iron Pipeline Repair Rate Contours for the Northridge Earthquake (O Rourke and Toprak, 1997) Figure 8. Geotechnical Characteristics of the Areas of Concentrated Pipeline Damage After the Northridge Earthquake

13 Of special interest is the location of concentrated repair rate contours in the west central part of San Fernando Valley (designated in Fig. 8 as the area of soft clay deposits). This area was investigated by USGS researchers, who found it to be underlain by local deposits of soft, normally consolidated clay (Holzer, et al., 1999). Field vane shear tests disclosed clay with uncorrected, vane shear undrained strength, S uvst = kpa, at a depth of 5 m, just below the water table. USGS investigators concluded that the saturated sands underlying this site were not subjected to liquefaction during the Northridge earthquake. Newmark sliding block analyses reported by O Rourke (1998) provide strong evidence that near source pulses of high acceleration were responsible for sliding and lurching on the soft, normally consolidated clay deposit. The results of GIS analysis and site investigations have important ramifications because they show a clear relationship between PGD, concentrated pipeline damage, and the presence of previously unknown deposits of normally consolidated clay. With GIS, it is easy to divide a spatially distributed data set into arbitrarily sized areas. If the areas are delineated by a framework of equally spaced, vertical and horizontal lines, the resulting grid can be characterized by a single dimension representing one side of each area, n, and the number, N, of areas comprising the total area of the system, Nn 2. The choice of n can be regarded as a means of visually resolving the distribution of damage. Some practical questions emerge. Is there a useful relationship between n and the visualization of zones with high damage? What values of n represent the best choices for visualizing damage patterns? Toprak, et al. (1999) found a relationship between the area of the map covered by repair rate contours and the grid size, n, used to analyze the repair statistics. If the contour interval is chosen as the average repair rate for the entire system or portion of the system covered by the map, then the area in the contours represents the zones of highest (greater than average) earthquake intensity as reflected in pipeline damage. The area within the contour lines divided by an area closely related to the total area of the map, A C, is referred to as the threshold area coverage, TAC (Toprak, et al., 1999). Alternate thresholds may also be defined on the basis of the mean plus some measure of the variance. The relationship between TAC and grid size was explored for a variety of map sizes. Fig. 9 presents a map showing the location of pipeline damage in the City of Los Angeles on which are superimposed the rectangular outlines of several smaller areas. The visualization of damage patterns for the entire area of the LADWP system affected by the Northridge earthquake and for the smaller rectangular areas in Fig. 9 was investigated as a function of grid size. These data were supplemented by pipeline and damage databases for the San Francisco Marina after the 1989 Loma Prieta earthquake. A map of San Francisco and the Marina are shown at the same scale as the Los Angeles study area in Fig. 9. A hyperbolic relationship was shown to exist between TAC and the dimensionless grid size, defined as the square root of n 2, the area of an individual cell, divided by the total map area, A T. This relationship is illustrated in Fig. 10, for which a schematic of the parameters is provided by the inset diagram. The relationship was found to be valid over a wide range of different map scales spanning 1,200 km 2 for the entire Los Angeles water distribution system

14 Figure 9. LADWP and Marina Study Area (Toprak, et al., 1999) 0.6 Threshold Area Coverage,TAC Fit Curve All LA All SFV Section of SFV Sherman Oaks North of LA Basin San Francisco TAC = DGS / ( 1.68 * DGS ) Dimensionless Grid Size, DGS Figure 10. Hyperbolic Fit for Threshold Area Coverage and Dimensionless Grid Size (Toprak, et al., 1999)

15 affected by the Northridge earthquake to 1 km 2 of the San Francisco water distribution system in the Marina affected by the Loma Prieta earthquake (Toprak, et al., 1999). The data points refer to maps of various dimensions from which the relationship was developed. Physical Loss Estimation In this section, physical loss estimation will be examined with emphasis on the Northridge earthquake database. Loss estimation is addressed with respect to TGD and PGD effects. Transient Ground Deformation Effects The records from 241 Northridge earthquake strong motion instruments were examined, and the data from 164 corrected records were selected for regression analyses (O Rourke and Torprak, 1997). In this paper, additional studies were performed with data from 142 selected Northridge earthquake records processed and catalogued by Silva (2000), and made available online by the Pacific Engineering Earthquake Center. All records were chosen to represent free field motion. Fig. 11 shows the CI pipeline repair rate contours (see Fig. 7) superimposed on peak ground velocity (PGV) zones. The PGV zones were developed by interpolating the larger of the two horizontal components associated with each of 164 corrected motion sites. Using the GIS database, a pipeline repair rate was calculated for each PGV zone, and correlations were made between the repair rate and average PGV for each zone. As explained by O Rourke (1998), similar correlations were investigated for pipeline damage relative to spatially distributed peak ground acceleration, spectral acceleration and velocity, Arias Intensity, Modified Mercalli Intensity (MMI), and other indices of seismic response. By correlating damage with various seismic parameters, regressions were developed between repair rate and measures of seismic intensity. The most statistically significant correlations for both distribution and trunk line repair rates were found for PGV. The parameter, however, can be defined in several different ways. In attenuation relationships, PGV is commonly defined as the geometric mean of the two largest horizontal components (e.g., Campbell, 1997). PGV is also defined as the larger of the two horizontal components (e.g., Boore, et al., 1997), which is the value used in Fig. 11. PGV may also be defined as the maximum vector magnitude of the two horizontal components. Figs. 12a, b, and c show the CI repair rates for the Northridge earthquake regressed against the geometric mean PGV, maximum PGV, and maximum vector magnitude of PGV. The data from the 142 records processed and catalogued by Silva were used to develop these regressions. The plots indicate that the choice of PGV makes little difference in the statistical significance of the regressions. All are characterized by r 2 that are comparable, although the highest r 2 is associated with maximum PGV. Fig. 12d shows the maximum PGV regressed against the geometric mean for 162 strong motion records for the Northridge earthquake. In the remainder of this paper, the PGV cited will refer to the maximum PGV. If the forthcoming regression equations for PGV are to be used in conjunction with attenuation

16 Figure 11. Pipeline Repair Rate Contours Relative to Northridge Earthquake Peak Ground Velocity (O Rourke and Toprak, 1997) relationships based on the geometric mean, Fig. 12d can be applied to estimate maximum PGV, from predicted geometric means. As reported by O Rourke and Jeon (1999), statistics were compiled for the repair rates of CI, DI, and AC distribution lines, and regressions were developed for repair rate vs. PGV. The compilation of statistics for steel distribution pipelines showed that there were many different types of steel pipeline grouped within this category. Figs. 13a and b present pie charts for the lengths and earthquake repairs associated with the different types of steel pipelines. At least six different kinds of pipeline were identified after a careful review of the records. Matheson and Mannesman steel pipelines were installed primarily in the 1920s and 1930s. Most were installed without cement linings and with minimal coating. In addition, their wall thickness is generally less than that of other steel pipes with similar diameter. Matheson and Mannesman steel pipelines are vulnerable to corrosion, as are steel pipelines with threaded couplings. In the latter case, corrosion tends to concentrate at the threaded cross-sections. These types of pipelines did not perform well during previous U.S. and Japanese earthquakes (Katayama and Isoyama, 1980; Eguchi, 1982; O Rourke, et al., 1985).

17 Repair Rate (Number of Repairs/km) Fit Equation: log(y) = 1.09 * log(x) R-squared = 0.82 Repair Rate (Number of Repairs/km) Fit Equation: log(y) = 1.21 * log(x) R-squared = Geometric Mean PGV (cm/sec) Maximum PGV (cm/sec) (a) Geometric Mean (b) Maximum Repair Rate (Number of Repairs/km) Fit Equation: log(y) = 1.30 * log(x) R-squared = 0.77 Maximum PGV (cm/sec) Fit Equation: Y = 1.21 X R-squared = n = Maximum Vector Magnitude of PGV (cm/sec) (c) Maximum Vector Magnitude Geometric Mean PGV (cm/sec) (d) Maximum vs. Geometric Mean Figure 12. CI Repair Rate Regression with Geometric Mean, Maximum, and Maximum Vector Magnitude of PGV, and Relationship Between the Maximum and Geometric Mean PGVs

18 Threaded Couplings 4% Victaulic 14% Mannesman Matheson 3% 3% Riveted 1% Welded 75% Victaulic 7% Threaded Couplings 9% Mannesman 11% Riveted 1% Matheson 19% Unknown 10% Welded 43% Total Pipeline Length: 1018 km Total Repairs: 205 a) Steel Pipeline Length b) Steel Pipeline Repairs Repair Rate Welded Victaulic Threaded Couplings Matheson Mannesman Riveted c) Steel Pipeline Repair Rate Figure 13. Pipeline Lengths, Repairs, and Repair Rates for Various Types of Steel Pipeline in Service During the Northridge Earthquake Victaulic couplings are bolted, segmental, clamp-type mechanical couplings whose housings enclose a U-shaped rubber gasket (American Water Works Association, 1964). The gasket tends to deform and lose its initial water-tight characteristics under prolonged service. Riveted steel pipelines are older installations, which are prone to corrosion. Contact between the rivets and laminated steel of the pipe body promotes galvanic action between the two dissimilar metals. A welded slip joint is fabricated by inserting the straight end of one pipe into the bell end of another and joining the two sections with a circumferential fillet weld. The bell end is created by the pipe manufacturer by inserting a mandrel in one end of a straight pipe section, and expanding the steel into a flared, or bell casing. The pie charts in Fig. 13 show that this type of steel pipeline (refered to as welded) was the predominant type operated during the earthquake. The histogram in Fig. 13c indicates very high repair rates associated with Matheson, Manneson, and threaded steel pipelines. The lowest repair rates are associated with welded steel pipelines. Because of their broader coverage and greater aggregate length, regression analyses were performed for this type of steel pipeline.

19 Fig. 14a shows the repair rates for steel (Steel Distr.), CI, DI, and AC distribution lines regressed against PGV. The regressions indicate that the highest rate of damage for a given PGV was experienced by steel pipelines. This result at first seems surprising because steel pipelines are substantially more ductile than CI and AC pipelines. Steel distribution pipelines in Los Angeles, however, are used to carry the highest water pressures, installed in areas of relatively steep slopes susceptible to landslides, and are subject to corrosion that has been shown to intensify their damage rates in previous earthquakes (Isenberg, 1979). Comparatively high repair rates for steel pipelines were reported by Eidinger (1998) after the 1989 Loma Prieta earthquake. Fig. 14b compares the regression equations derived from the GIS database for the Northridge earthquake with the default regression currently used in HAZUS (National Institute for Building Sciences, 1997). The regression for the steel trunk lines (nominal diameter 600 mm) was developed according to similar procedures followed for the distribution pipelines. The steel trunk lines are constructed with welded slip joints. Virtually all the regressions developed from the Northridge GIS database plot significantly below the HAZUS default. This trend is especially true for steel trunk lines that show repair rates 10 to 20 times lower than those estimated with the HAZUS default. Fig. 14c presents the linear regression that was developed between CI pipeline repair rate and PGV on the basis of data from the Northridge and other U.S. earthquakes. By taking advantage of additional data, this regression provides a more comprehensive representation of repair rate trends. It is not significantly different from the regression in Fig. 12b, thereby implying a consistency between the Northridge earthquake trends and previous earthquake statistics. As explained by O Rourke and Jeon (1999), The regression relationship for the repair rate, RR, can be expressed as Log RR = Log K + α Log V P β Log D P (2) in which K, α, and β are constants, V P is PGV, and D P is the pipe diameter in cm. Eq. 2 can be rewritten as RR = K (V P /D P β/α ) α (3) in which V P /D P β/α is referred to as the scaled velocity that represents PGV normalized with respect to diameter. The exponent of D P is a scaling factor that accounts for the statistical relationship embodied in the database. This relationship is, in turn, a function of the strong motion and pipeline system characteristics. Fig. 14d shows the linear regression between repair rate and scaled velocity. Combining the PGV and D P into a common parameter offers a new tool for loss estimation. Scaled velocity combines the effects of PGV and nominal diameter, and thus accounts for the two most important variables affecting earthquake damage to pipeline of a particular composition.

20 Repair Rate (Number of Repairs/km) Fit Equation (Steel Distr.): log(y) = 0.88 * log(x) R-squared = 0.90 Steel Distr. CI DI AC Fit Equation (CI): log(y) = 1.21 * log(x) R-squared = 0.84 Fit Equation (DI): log(y) = 1.83 * log(x) R-squared = 0.73 Fit Equation (AC): log(y) = 2.26 * log(x) R-squared = PGV (cm/sec) (a) Steel Distr., CI, DI, and AC Repair Rate (Number of Reparis/km) fffdsfd HAZUS AC DI CI Steel Distr. Steel Trunk PGV (cm/sec) (b) Regressions vs. HAZUS Default Repair Rate (Number of Repairs/km) Fit Equation: log(y) = 1.55 * log(x) R-squared = Northridge 1989 Loma Prieta 1987 Whittier Narrows 1971 San Fernando (south) PGV (cm/sec) (c) Combined CI Database Repair Rate (Number of Repairs/km) aaa Fit Equation: RR = (V P /D P ) R-squared = Scaled Velocity V P /D P 1.021, ((cm/sec)/cm ) (d) Scaled Velocity Figure 14. Regression for the Repair Rates of Various Types of Pipelines vs. PGV and Scaled Velocity

21 The regressions in Fig. 14 were developed after the data were screened for lengths of pipeline that represent approximately 1.5 to 2.5 % of the total length or population for each type of pipe affected by the earthquake (O Rourke and Jeon, 1999). This procedure reduces the influence of local erratic effects that bias the data derived from small lengths of pipeline. The use of this filtering procedure leads to statistically significant trends. The regressions are applicable only for PGV 75 cm/s. For the Northridge earthquake, zones with PGV exceeding 75 cm/sec generally correspond to locations where PGD, from sources such as liquefaction and landsliding, was observed. Hence, this screening technique tends to remove damage associated with PGD, resulting in correlations relevant for TGD. Permanent Ground Deformation Effects Among the most notable research accomplishments in recent years is the work of Hamada and coworkers (Hamada, et al., 1986; Hamada and O Rourke, 1992) in the use of stereo-pair air photos before and after an earthquake to perform photogrammetric analysis of large ground deformation. This process has influenced the way engineers evaluate soil displacements by providing a global view of deformation that allows patterns of distortion to be quantified and related to geologic and topographic characteristics. After the Northridge earthquake, pre- and post- earthquake air photo measurements in the Van Norman Complex were analyzed as part of collaborative research between U.S. and Japanese engineers (Sano, et al., 1999; O Rourke, et al., 1998). Air photos taken before and after the earthquake were acquired by U.S. team members and analyzed through advanced photogrammetric techniques by Japanese team members. Ground movements from this initial set of measurements were corrected for tectonic deformation to yield movements caused principally by liquefaction and landslides. The area near the intersection of Balboa Blvd. and Rinaldi St. has been identified as a location of liquefaction (Holzer, et al., 1999) where significant damage to gas transmission and water trunk lines was incurred. Ground strains were calculated in this area from the air photo measurements of horizontal displacement by superimposing regularly spaced grids with GIS software onto the maps of horizontal displacement and calculating the mean displacement for each grid. Grid dimensions of 100 m x 100 m were found to provide the best results (Sano, et al., 1999). As illustrated in Fig. 15, ground strain contours, pipeline system, and repair locations were combined using GIS, after which repair rates corresponding to the areas delineated by a particular contour interval were calculated. Fig. 16 shows the repair rate contours for CI mains superimposed on the areal distribution of ground strains, identified by various shades and tones. In the study area, there were 34 repairs to CI water distribution mains and 2 for steel water distribution pipelines. There were 5 water trunk line repairs in the area. The repair rate contours were developed by dividing the map into 100 m x 100 m cells, determining the number of CI pipeline repairs in each cell, and dividing the repairs by the length of the distribution mains in that cell. The intervals of strain and repair rate contours are (0.1%) and 5 repairs/km, respectively. The zones of high tensile (+) and compressive (-) strains coincide well with the locations of high repair rate.

22 Surface Analysis Contour Interpolation Ground Strains Ground Strain Contours Overlay Repair Rate (Repairs/Length) vs. Ground Strain Length in Each Strain Range Pipeline System Overlay Repairs in Each Strain Range Pipeline Repairs Figure 15. Procedure for Calculating Repair Rate in Each Strain Range (O Rourke, et al., 1998) Figure 16. Distributions of CI Repair Rate and Ground Strain (O Rourke, et al., 1998)

GIS Characterization of the Los Angeles Water Supply, Earthquake Effects, and Pipeline Damage

GIS Characterization of the Los Angeles Water Supply, Earthquake Effects, and Pipeline Damage GIS Characterization of the Los Angeles Water Supply, Earthquake Effects, and Pipeline Damage by Thomas D. O Rourke, Selcuk Toprak and Sang-Soo Jeon, Cornell University Research Objectives The objectives

More information

Advanced GIS for Loss Estimation and Rapid Post-Earthquake Assessment of Building Damage

Advanced GIS for Loss Estimation and Rapid Post-Earthquake Assessment of Building Damage Advanced GIS for Loss Estimation and Rapid Post-Earthquake Assessment of Building Damage Thomas D. O Rourke and Sang-Soo Jeon, Cornell University and Ronald T. Eguchi and Charles K. Huyck, Image Cat, Inc.

More information

Cornell University LADWP SHORT COURSE & WORKSHOP

Cornell University LADWP SHORT COURSE & WORKSHOP CASE STUDY: LIFELINE RESILIENCE- LOS ANGELES DEPARTMENT OF WATER & POWER Tom O Rourke Cornell University 1200 km2 Los Angeles N 200 km 40 km Los Angeles Department of Water and Power (LADWP) Serves 4.0

More information

SEISMIC DAMAGE ESTIMATION PROCEDURE FOR WATER SUPPLY PIPELINES

SEISMIC DAMAGE ESTIMATION PROCEDURE FOR WATER SUPPLY PIPELINES SEISMIC DAMAGE ESTIMATION PROCEDURE FOR WATER SUPPLY PIPELINES Ryoji ISOYAMA 1, Eisuke ISHIDA 2, Kiyoji YUNE 3 And Toru SHIROZU 4 SUMMARY This paper presents a practical procedure for estimating damage

More information

Assessment of Interdependent Lifeline Networks Performance in Earthquake Disaster Management

Assessment of Interdependent Lifeline Networks Performance in Earthquake Disaster Management Performance in Earthquake Disaster Management Hüseyin Can Ünen Istanbul Technical University, Turkey unen@itu.edu.tr Muhammed Şahin Istanbul Technical University, Turkey sahin@itu.edu.tr Amr S. Elnashai

More information

Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE

Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE To satisfy the performance goals of the NEHRP Recommended Seismic Provisions, a number of characteristics are important to the

More information

Modeling earthquake impact on urban lifeline systems: advances and integration in loss estimation

Modeling earthquake impact on urban lifeline systems: advances and integration in loss estimation Modeling earthquake impact on urban lifeline systems: advances and integration in loss estimation S. E. Chang University of Washington A. Z. Rose Pennsylvania State University M. Shinozuka University of

More information

EARTHQUAKE MAGNITUDE

EARTHQUAKE MAGNITUDE EARTHQUAKE MAGNITUDE Earliest measure of earthquake size Dimensionless number measured various ways, including M L local magnitude m b body wave magnitude M s surface wave magnitude M w moment magnitude

More information

Urban infrastructure systems such as water and electric power networks

Urban infrastructure systems such as water and electric power networks Assessing the Role of Lifeline Systems in Community Disaster Resilience by Stephanie E. Chang and Christopher Chamberlin Research Objectives The objective of this research is to advance the state-of-the-art

More information

Sewers Float and other aspects of Sewer Performance in Earthquakes

Sewers Float and other aspects of Sewer Performance in Earthquakes Sewers Float and other aspects of Sewer Performance in Earthquakes Presented by Donald Ballantyne, PE Niigata Japan, 1964 Overview Introduction Earthquake Hazards Historic Damage Seattle 1965 Loma Prieta

More information

Earthquake: A vibration caused by the sudden breaking or frictional sliding of rock in the Earth. Fault: A fracture on which one body of rock slides

Earthquake: A vibration caused by the sudden breaking or frictional sliding of rock in the Earth. Fault: A fracture on which one body of rock slides Earthquake: A vibration caused by the sudden breaking or frictional sliding of rock in the Earth. Fault: A fracture on which one body of rock slides past another. Focus: The location where a fault slips

More information

EARTHQUAKE BASICS. LIQUEFACTION What it is and what to do about it

EARTHQUAKE BASICS. LIQUEFACTION What it is and what to do about it EARTHQUAKE BASICS BRIEF NO. 1 LIQUEFACTION EARTHQUAKE BASICS LIQUEFACTION What it is and what to do about it Purpose This pamphlet, the first in a series, has been written by members of the Earthquake

More information

TOPOGRAPHIC MAPS. RELIEF (brown) Hills, valleys, mountains, plains, etc. WATER. land boundaries, etc. CULTURAL

TOPOGRAPHIC MAPS. RELIEF (brown) Hills, valleys, mountains, plains, etc. WATER. land boundaries, etc. CULTURAL TOPOGRAPHIC MAPS MAP 2-D REPRESENTATION OF THE EARTH S SURFACE TOPOGRAPHIC MAP A graphic representation of the 3-D configuration of the earth s surface. This is it shows elevations (third dimension). It

More information

Dip is the vertical angle perpendicular to strike between the imaginary horizontal plane and the inclined planar geological feature.

Dip is the vertical angle perpendicular to strike between the imaginary horizontal plane and the inclined planar geological feature. Geological Visualization Tools and Structural Geology Geologists use several visualization tools to understand rock outcrop relationships, regional patterns and subsurface geology in 3D and 4D. Geological

More information

Recent Earthquakes: Implications for U.S. Water Utilities [Project #4408]

Recent Earthquakes: Implications for U.S. Water Utilities [Project #4408] Recent Earthquakes: Implications for U.S. Water Utilities [Project #4408] ORDER NUMBER: 4408 DATE AVAILABLE: July 2012 PRINCIPAL INVESTIGATORS: John Eidinger and Craig A. Davis PROJECT PURPOSE: The purpose

More information

Seismic Analysis and Design of Steel Liquid Storage Tanks

Seismic Analysis and Design of Steel Liquid Storage Tanks Vol. 1, 005 CSA Academic Perspective 0 Seismic Analysis and Design of Steel Liquid Storage Tanks Lisa Yunxia Wang California State Polytechnic University Pomona ABSTRACT Practicing engineers face many

More information

Understanding the Seismic Vulnerability of Water Systems

Understanding the Seismic Vulnerability of Water Systems Understanding the Seismic Vulnerability of Water Systems Lessons Learned and What You Can Do Donald Ballantyne October 2, 2013 Regional Water Providers Consortium Board Overview Oregon Resilience Plan

More information

METHOD OF STATEMENT FOR STATIC LOADING TEST

METHOD OF STATEMENT FOR STATIC LOADING TEST Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

More information

Keynote 2: What is Landslide Hazard? Inventory Maps, Uncertainty, and an Approach to Meeting Insurance Industry Needs

Keynote 2: What is Landslide Hazard? Inventory Maps, Uncertainty, and an Approach to Meeting Insurance Industry Needs Keynote 2: What is Landslide Hazard? Inventory Maps, Uncertainty, and an Approach to Meeting Insurance Industry Needs Jeffrey R Keaton Richard J Roth, Jr Amec Foster Wheeler Los Angeles, USA Consulting

More information

POST-EVENT DATA COLLECTION USING MOBILE GIS/GPS AND DEVELOPMENT OF SEISMIC EVALUATION TECHNIQUE FOR DAMAGE

POST-EVENT DATA COLLECTION USING MOBILE GIS/GPS AND DEVELOPMENT OF SEISMIC EVALUATION TECHNIQUE FOR DAMAGE POST-EVENT DATA COLLECTION USING MOBILE GIS/GPS AND DEVELOPMENT OF SEISMIC EVALUATION TECHNIQUE FOR DAMAGE Satoshi IWAI 1 And Hiroyuki KAMEDA 2 SUMMARY This paper presents mobile system for post-event

More information

CONE PENETRATION TESTING AND SITE EXPLORATION IN EVALUATING THE LIQUEFACTION RESISTANCE OF SANDS AND SILTY SANDS ABSTRACT

CONE PENETRATION TESTING AND SITE EXPLORATION IN EVALUATING THE LIQUEFACTION RESISTANCE OF SANDS AND SILTY SANDS ABSTRACT CONE PENETRATION TESTING AND SITE EXPLORATION IN EVALUATING THE LIQUEFACTION RESISTANCE OF SANDS AND SILTY SANDS E. J. Newman 1, T. D. Stark 2, and S. M. Olson 3 ABSTRACT Refined relationships between

More information

Figure 2.31. CPT Equipment

Figure 2.31. CPT Equipment Soil tests (1) In-situ test In order to sound the strength of the soils in Las Colinas Mountain, portable cone penetration tests (Japan Geotechnical Society, 1995) were performed at three points C1-C3

More information

Important Points: Timing: Timing Evaluation Methodology Example Immediate First announcement of building damage

Important Points: Timing: Timing Evaluation Methodology Example Immediate First announcement of building damage 3.3. Evaluation of Building Foundation Damage Basic Terminology: Damage: Destruction, deformation, inclination and settlement of a building foundation caused by an earthquake. Damage grade: Degree of danger

More information

Analysis of natech risk for pipelines: A review

Analysis of natech risk for pipelines: A review Analysis of natech risk for pipelines: A review Roberta Piccinelli, Elisabeth Krausmann 2013 Report EUR 26371 EN European Commission Joint Research Centre Institute for the Protection and Security of the

More information

Measuring the Condition of Prestressed Concrete Cylinder Pipe

Measuring the Condition of Prestressed Concrete Cylinder Pipe Measuring the Condition of Prestressed Concrete Cylinder Pipe John Marshall, P.E.I, I J.W. Marshall and Associates, and Paul S. Fisk, President NDT Corporation Introduction Prestressed Concrete Cylinder

More information

Performance of Pipes During Earthquakes

Performance of Pipes During Earthquakes Performance of Pipes During Earthquakes March 28-31, 2011, Long Beach, CA Camille George Rubeiz, PE Director of Engineering, Plastics Pipe Institute Crubeiz@plasticpipe.org Japan March 2011 EQ: Failures

More information

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars

Report on. Wind Resistance of Signs supported by. Glass Fiber Reinforced Concrete (GFRC) Pillars Report on Wind Resistance of Signs supported by Glass Fiber Reinforced Concrete (GFRC) Pillars Prepared for US Sign and Fabrication Corporation January, 2006 SUMMARY This study found the attachment of

More information

Creation of Soil Liquefaction Susceptibility Maps for San Luis Obispo & Marin Counties using Geographic Information Systems.

Creation of Soil Liquefaction Susceptibility Maps for San Luis Obispo & Marin Counties using Geographic Information Systems. Creation of Soil Liquefaction Susceptibility Maps for San Luis Obispo & Marin Counties using Geographic Information Systems. Amelia M. Lowman December 2009 Dr. Lynn E. Moody Adviser Earth and Soil Sciences

More information

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver

More information

6.0 Results of Risk Analyses

6.0 Results of Risk Analyses 6. Results of Risk Analyses A risk analysis of the optimized embankment designs for the Salton Sea restoration project was conducted jointly by Kleinfelder and representatives from Reclamation. A risk

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

Chapter 7 Analysis of Soil Borings for Liquefaction Resistance

Chapter 7 Analysis of Soil Borings for Liquefaction Resistance Chapter 7 Analysis of Soil Borings for Liquefaction Resistance 7.1. Introduction. This chapter addresses the analysis of subsurface soil data to determine the factor of safety against liquefaction and

More information

SEISMIC DAMAGE ASSESSMENT OF POTABLE WATER PIPELINES

SEISMIC DAMAGE ASSESSMENT OF POTABLE WATER PIPELINES 4th International Conference on Earthquake Engineering Taipei, Taiwan October 1-13, 006 Paper No. 47 SEISMIC DAMAGE ASSESSMENT OF POTABLE WATER PIPELINES Chin-Hsun Yeh 1, Ban-Jwu Shih, Che-Hao Chang, W.Y.

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

Evaluation of Fire Protection Capacity in Disasters Based on Disaster Resilience Curve

Evaluation of Fire Protection Capacity in Disasters Based on Disaster Resilience Curve Evaluation of Fire Protection Capacity in Disasters Based on Disaster Resilience Curve N. Hirayama, T. Yamada, M. Wada, S. Itoh, and C. A. Davis ABSTRACT After the 2011 Tohoku disaster, water supply utilities

More information

FATIGUE CONSIDERATION IN DESIGN

FATIGUE CONSIDERATION IN DESIGN FATIGUE CONSIDERATION IN DESIGN OBJECTIVES AND SCOPE In this module we will be discussing on design aspects related to fatigue failure, an important mode of failure in engineering components. Fatigue failure

More information

AmericanLifelinesAlliance

AmericanLifelinesAlliance AmericanLifelinesAlliance A public-private partnership to reduce risk to utility and transportation systems from natural hazards and manmade threats Seismic Guidelines for Water Pipelines March 2005 AmericanLifelinesAlliance

More information

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode INDIRECT METHODS SOUNDING OR PENETRATION TESTS STANDARD PENETRATION TEST (SPT) Reference can be made to IS 2131 1981 for details on SPT. It is a field edtest to estimate e the penetration e resistance

More information

PROHITECH WP3 (Leader A. IBEN BRAHIM) A short Note on the Seismic Hazard in Israel

PROHITECH WP3 (Leader A. IBEN BRAHIM) A short Note on the Seismic Hazard in Israel PROHITECH WP3 (Leader A. IBEN BRAHIM) A short Note on the Seismic Hazard in Israel Avigdor Rutenberg and Robert Levy Technion - Israel Institute of Technology, Haifa 32000, Israel Avi Shapira International

More information

SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS

SUPPLEMENTAL TECHNICAL SPECIFICATIONS BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS July 14, 2015 1.0 GENERAL BI-DIRECTIONAL STATIC LOAD TESTING OF DRILLED SHAFTS This work shall consist of furnishing all materials, equipment, labor, and incidentals necessary for conducting bi-directional

More information

Earthquake damage in wastewater systems and postearthquake repair methods; limitation and practice

Earthquake damage in wastewater systems and postearthquake repair methods; limitation and practice Earthquake damage in wastewater systems and postearthquake repair methods; limitation and practice M. R. Zare 1, S. Wilkinson 2, R. Potangaroa 3 1. PhD candidate, University of Auckland, Auckland, New

More information

CHAPTER 2 HYDRAULICS OF SEWERS

CHAPTER 2 HYDRAULICS OF SEWERS CHAPTER 2 HYDRAULICS OF SEWERS SANITARY SEWERS The hydraulic design procedure for sewers requires: 1. Determination of Sewer System Type 2. Determination of Design Flow 3. Selection of Pipe Size 4. Determination

More information

Determination of source parameters from seismic spectra

Determination of source parameters from seismic spectra Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: pb65@gmx.net

More information

AN ANALYSIS OF FIRE SPRINKLER SYSTEM FAILURES DURING THE NORTHRIDGE EARTHQUAKE AND COMPARISON WITH THE SEISMIC DESIGN STANDARD FOR THESE SYSTEMS

AN ANALYSIS OF FIRE SPRINKLER SYSTEM FAILURES DURING THE NORTHRIDGE EARTHQUAKE AND COMPARISON WITH THE SEISMIC DESIGN STANDARD FOR THESE SYSTEMS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2136 AN ANALYSIS OF FIRE SPRINKLER SYSTEM FAILURES DURING THE NORTHRIDGE EARTHQUAKE AND COMPARISON WITH

More information

A COMPUTER ANALYSIS OF THE VINCENT THOMAS SUSPENSION BRIDGE

A COMPUTER ANALYSIS OF THE VINCENT THOMAS SUSPENSION BRIDGE A COMPUTER ANALYSIS OF THE VINCENT THOMAS SUSPENSION BRIDGE 81 Raymond W. Wolfe Hany J. Farran A COMPUTER ANALYSIS OF THE VINCENT THOMAS SUSPENSION BRIDGE Civil Engineering Civil Engineering Given the

More information

KCC Event Brief: 2014 La Habra Earthquake

KCC Event Brief: 2014 La Habra Earthquake KAREN CLARK & COMPANY KCC Event Brief: 2014 La Habra Earthquake June 2014 2 COPLEY PLACE BOSTON, MA 02116 T: 617.423.2800 F: 617.423.2808 Overview On Friday, March 28, 2014 at 9:09pm, a magnitude 5.1 earthquake

More information

SEISMIC CAPACITY OF EXISTING RC SCHOOL BUILDINGS IN OTA CITY, TOKYO, JAPAN

SEISMIC CAPACITY OF EXISTING RC SCHOOL BUILDINGS IN OTA CITY, TOKYO, JAPAN SEISMIC CAPACITY OF EXISTING RC SCHOOL BUILDINGS IN OTA CITY, TOKYO, JAPAN Toshio OHBA, Shigeru TAKADA, Yoshiaki NAKANO, Hideo KIMURA 4, Yoshimasa OWADA 5 And Tsuneo OKADA 6 SUMMARY The 995 Hyogoken-nambu

More information

Earthquakes. Earthquakes: Big Ideas. Earthquakes

Earthquakes. Earthquakes: Big Ideas. Earthquakes Earthquakes Earthquakes: Big Ideas Humans cannot eliminate natural hazards but can engage in activities that reduce their impacts by identifying high-risk locations, improving construction methods, and

More information

12.510 Introduction to Seismology Spring 2008

12.510 Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 04/30/2008 Today s

More information

Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics. Stress. What you ll learn: Motivation Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

More information

Greens functions - solution for earthʼs surface movement due to a slipping patch at depth

Greens functions - solution for earthʼs surface movement due to a slipping patch at depth Greens functions - solution for earthʼs surface movement due to a slipping patch at depth Need to know slip distribution along the fault as a function of time No closed-form solution for Greens functions

More information

Seismic Risk Prioritization of RC Public Buildings

Seismic Risk Prioritization of RC Public Buildings Seismic Risk Prioritization of RC Public Buildings In Turkey H. Sucuoğlu & A. Yakut Middle East Technical University, Ankara, Turkey J. Kubin & A. Özmen Prota Inc, Ankara, Turkey SUMMARY Over the past

More information

Contents. Specific and total risk. Definition of risk. How to express risk? Multi-hazard Risk Assessment. Risk types

Contents. Specific and total risk. Definition of risk. How to express risk? Multi-hazard Risk Assessment. Risk types Contents Multi-hazard Risk Assessment Cees van Westen United Nations University ITC School for Disaster Geo- Information Management International Institute for Geo-Information Science and Earth Observation

More information

Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico

Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico Analysis of the Response Under Live Loads of Two New Cable Stayed Bridges Built in Mexico Roberto Gómez, Raul Sánchez-García, J.A. Escobar and Luis M. Arenas-García Abstract In this paper we study the

More information

bi directional loading). Prototype ten story

bi directional loading). Prototype ten story NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

More information

Chapter 7 Earthquake Hazards Practice Exam and Study Guide

Chapter 7 Earthquake Hazards Practice Exam and Study Guide Chapter 7 Earthquake Hazards Practice Exam and Study Guide 1. Select from the following list, all of the factors that affect the intensity of ground shaking. a. The magnitude of the earthquake b. Rather

More information

The successful integration of 3D seismic into the mining process: Practical examples from Bowen Basin underground coal mines

The successful integration of 3D seismic into the mining process: Practical examples from Bowen Basin underground coal mines Geophysics 165 Troy Peters The successful integration of 3D seismic into the mining process: Practical examples from Bowen Basin underground coal mines This paper discusses how mine staff from a number

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

Chincha and Cañete, Peru, Based

Chincha and Cañete, Peru, Based Reconstruction of Ica, Pisco, Chincha and Cañete, Peru, Based on Updated Hazard Maps Julio Kuroiwa Professor emeritus National University of Engineering and UNDP Reconstruction Program/Sustainable Cities.

More information

SPECIFICATIONS, LOADS, AND METHODS OF DESIGN

SPECIFICATIONS, LOADS, AND METHODS OF DESIGN CHAPTER Structural Steel Design LRFD Method Third Edition SPECIFICATIONS, LOADS, AND METHODS OF DESIGN A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural

More information

Structural Integrity Analysis

Structural Integrity Analysis Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces

More information

NOTES on the CONE PENETROMETER TEST

NOTES on the CONE PENETROMETER TEST GE 441 Advanced Engineering Geology & Geotechnics Spring 2004 Introduction NOTES on the CONE PENETROMETER TEST The standardized cone-penetrometer test (CPT) involves pushing a 1.41-inch diameter 55 o to

More information

Session: HDPE Pipe Test Rafael Ortega, Vice President, Lockwood, Andrews & Newnam

Session: HDPE Pipe Test Rafael Ortega, Vice President, Lockwood, Andrews & Newnam Session: HDPE Pipe Test Rafael Ortega, Vice President, Lockwood, Andrews & Newnam Education Master of Business Administration University of Houston, 1985 Bachelor of Science, Civil Engineering University

More information

Emergency Spillways (Sediment basins)

Emergency Spillways (Sediment basins) Emergency Spillways (Sediment basins) DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short-Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent [1] [1]

More information

NUMERICAL INVESTIGATION OF SEISMIC ISOLATION FOR SINGLE- TOWER CABLE STAYED BRIDGES

NUMERICAL INVESTIGATION OF SEISMIC ISOLATION FOR SINGLE- TOWER CABLE STAYED BRIDGES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 1552 NUMERICAL INVESTIGATION OF SEISMIC ISOLATION FOR SINGLE- TOWER CABLE STAYED BRIDGES Charles B. CHADWELL

More information

Predicting Seismic Vulnerable Zones using GIS. Outline of the presentation. Objectives. Risk Mapping Overview Factor Maps. Three levels of Zonation

Predicting Seismic Vulnerable Zones using GIS. Outline of the presentation. Objectives. Risk Mapping Overview Factor Maps. Three levels of Zonation Predicting Seismic Vulnerable Zones using GIS by K.S.A. Dinesh Kumar Research Scholar, Anna University & Lecturer in Civil Engineering Dept. National Institute of Technical Teachers Training & Research

More information

4.6 GEOLOGIC AND SEISMIC HAZARDS

4.6 GEOLOGIC AND SEISMIC HAZARDS 4.6 GEOLOGIC AND SEISMIC HAZARDS This Section describes the current conditions relating to the geologic and seismic characteristics of the City of Cypress. This Section concludes with an analysis of geologic

More information

(1) Discuss the determination of the need for public visitation. Visitor center density within 100 miles.

(1) Discuss the determination of the need for public visitation. Visitor center density within 100 miles. Chapter 4 Specifications Designs 3. Visitors Centers 3. Visitors Centers. The Introduction (Chapter 1) for these design data collection guidelines contains additional information concerning: preparing

More information

Critical factors for restoration of water supply pipelines in the Hutt City, New Zealand after a magnitude 7.5 earthquake from the Wellington fault

Critical factors for restoration of water supply pipelines in the Hutt City, New Zealand after a magnitude 7.5 earthquake from the Wellington fault The th October -7, 008, Beijing, China Critical factors for restoration of water supply pipelines in the Hutt City, New Zealand after a magnitude 7.5 earthquake from the Wellington fault John X. Zhao,

More information

Using GIS for Assessing Earthquake Hazards of San Francisco Bay, California, USA

Using GIS for Assessing Earthquake Hazards of San Francisco Bay, California, USA Using GIS for Assessing Earthquake Hazards of San Francisco Bay, California, USA Marzieh Zeinali Department of Resource Analysis, Saint Mary s University of Minnesota, Minneapolis, MN 55404 Keywords: San

More information

Mapping landslides for the insurance industry lessons from earthquakes

Mapping landslides for the insurance industry lessons from earthquakes Mapping landslides for the insurance industry lessons from earthquakes J.R. Keaton MACTEC Engineering and Consulting, Inc., Los Angeles, CA, USA R.J. Roth, Jr. Consulting Insurance Actuary, Huntington

More information

RESTORING THE LOS ANGELES WATER SUPPLY SYSTEM FOLLOWING AN EARTHQUAKE

RESTORING THE LOS ANGELES WATER SUPPLY SYSTEM FOLLOWING AN EARTHQUAKE RESTORING THE LOS ANGELES WATER SUPPLY SYSTEM FOLLOWING AN EARTHQUAKE T.H.P. Tabucchi 1, R.A. Davidson 2, and S. Brink 3 1 Catastrophe Risk Analyst, Risk Management Solutions, Inc., Newark, CA, USA 2 Associate

More information

Toma Danila Dragos. National Institute for Earth Physics Romania

Toma Danila Dragos. National Institute for Earth Physics Romania Toma Danila Dragos National Institute for Earth Physics Romania Before: evaluate the hazard and risk, be prepared for worst case scenario Natural or antropic disaster After: quickly evaluate the situation

More information

Vulnerability of Industrial Components to Soil Liquefaction

Vulnerability of Industrial Components to Soil Liquefaction 421 A publication of CHEMICAL ENGINEERINGTRANSACTIONS VOL. 36, 2014 Guest Editors:Valerio Cozzani, Eddy de Rademaeker Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-27-3; ISSN 2283-9216 The Italian

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges 7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

More information

Meeting the Challenge of Pipeline Emergency Repair

Meeting the Challenge of Pipeline Emergency Repair Meeting the Challenge of Pipeline Emergency Repair Michael R. McReynolds, PE, SE 1 Tao Peng, PE, SE 2 ABSTRACTS The Metropolitan Water District of Southern California (MWD) is the nation s largest provider

More information

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Guidance for Flood Risk Analysis and Mapping. Changes Since Last FIRM

Guidance for Flood Risk Analysis and Mapping. Changes Since Last FIRM Guidance for Flood Risk Analysis and Mapping Changes Since Last FIRM May 2014 This guidance document supports effective and efficient implementation of flood risk analysis and mapping standards codified

More information

ABSTRACT. Keywords: natural gas pipeline, normal fault motion, permanent ground deformation, axial strain INTRODUCTION

ABSTRACT. Keywords: natural gas pipeline, normal fault motion, permanent ground deformation, axial strain INTRODUCTION Paper No. DOASC DESIGN OF A NATURAL GAS PIPELINE SUBJECT TO PERMANENT GROUND DEFORMATION AT NORMAL FAULTS: A PARAMETRIC STUDY ON NUMERICAL VS. SEMI-ANALYTICAL PROCEDURES Stavros A. SAVIDIS 1, Winfried

More information

PAPAMOA EAST URBAN DEVELOPMENT PART 1 AREA LIQUEFACTION HAZARD REVIEW Technical Report

PAPAMOA EAST URBAN DEVELOPMENT PART 1 AREA LIQUEFACTION HAZARD REVIEW Technical Report PAPAMOA EAST URBAN DEVELOPMENT PART 1 AREA LIQUEFACTION HAZARD REVIEW Technical Report Tauranga District Council Papamoa East Urban Development Strategy Part 1 Area Liquefaction Hazard Review Technical

More information

THE ROLE OF GEOTECHNICAL FACTORS IN NORTHRIDGE EARTHQUAKE RESIDENTIAL DAMAGE

THE ROLE OF GEOTECHNICAL FACTORS IN NORTHRIDGE EARTHQUAKE RESIDENTIAL DAMAGE THE ROLE OF GEOTECHNICAL FACTORS IN NORTHRIDGE EARTHQUAKE RESIDENTIAL DAMAGE Neven Matasovic Jack Caldwell Paul Guptill GeoSyntec Consultants GeoSyntec Consultants GeoSyntec Consultants 2100 Main Street,

More information

A PROCEDURE FOR RISK MITIGATION OF WATER SUPPLY SYSTEM IN LARGE AND POPULATED CITIES

A PROCEDURE FOR RISK MITIGATION OF WATER SUPPLY SYSTEM IN LARGE AND POPULATED CITIES A PROCEDURE FOR RISK MITIGATION OF WATER SUPPLY SYSTEM IN LARGE AND POPULATED CITIES Mahmood Hosseini 1 and Hazhir Moshirvaziri 2 1 Associate Professor, Structural Engineering Research Center, International

More information

THE STUDY ON A DISASTER PREVENTION/MITIGATION BASIC PLAN IN ISTANBUL PART 2 - EVALUATION OF URBAN VULNERABILITY -

THE STUDY ON A DISASTER PREVENTION/MITIGATION BASIC PLAN IN ISTANBUL PART 2 - EVALUATION OF URBAN VULNERABILITY - 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1361 THE STUDY ON A DISASTER PREVENTION/MITIGATION BASIC PLAN IN ISTANBUL PART 2 - EVALUATION OF URBAN

More information

SECTION 8 Industrial Facilities Field Investigation

SECTION 8 Industrial Facilities Field Investigation SECTION 8 Industrial Facilities Field Investigation Types of Data to Be Collected and Recorded Warehouses, manufacturing facilities, energy-producing facilities, and factories should be inspected for performance

More information

720 Contour Grading. General. References. Resources. Definitions

720 Contour Grading. General. References. Resources. Definitions 720 Contour Grading General Contour grading directs water to a desired point, prevents erosion, provides noise deflection, provides visual fit of the facility into the landscape, and protects desirable

More information

ASSESSMENT OF SHEAR WAVE VELOCITY FROM INDIRECT INSITU TESTS

ASSESSMENT OF SHEAR WAVE VELOCITY FROM INDIRECT INSITU TESTS Proceedings of Indian Geotechnical Conference IGC-2014 December 18-20, 2014, Kakinada, India ASSESSMENT OF SHEAR WAVE VELOCITY FROM INDIRECT INSITU TESTS Kant, L., M. Tech Student, Department of Earthquake

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:!

INSITU TESTS! Shear Vanes! Shear Vanes! Shear Vane Test! Sensitive Soils! Insitu testing is used for two reasons:! In-situ Testing! Insitu Testing! Insitu testing is used for two reasons:! To allow the determination of shear strength or penetration resistance or permeability of soils that would be difficult or impossible

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE

TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE TECHNICAL SPECIFICATION SERIES 8000 PRECAST CONCRETE TECHNICAL SPECIFICATION PART 8000 - PRECAST CONCRETE TABLE OF CONTENTS Item Number Page 8100 PRECAST CONCRETE CONSTRUCTION - GENERAL 8-3 8101 General

More information

Appendix A: Acceptable pipe and fitting materials

Appendix A: Acceptable pipe and fitting materials Watercare Services Limited Water and Code of Practice Content from the NZS 4404:2010 Land development and subdivision infrastructure has been reproduced for use in the Infrastructure Design s Manual for

More information

Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard Penetration Tests (SPT)

Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard Penetration Tests (SPT) RESEARCH ARTICLE OPEN ACCESS Evaluation of Post-liquefaction Reconsolidation Settlement based on Standard Penetration Tests (SPT) AlketaNdoj*,VeronikaHajdari* *Polytechnic University of Tirana, Department

More information

Appendix C - Risk Assessment: Technical Details. Appendix C - Risk Assessment: Technical Details

Appendix C - Risk Assessment: Technical Details. Appendix C - Risk Assessment: Technical Details Appendix C - Risk Assessment: Technical Details Page C1 C1 Surface Water Modelling 1. Introduction 1.1 BACKGROUND URS Scott Wilson has constructed 13 TUFLOW hydraulic models across the London Boroughs

More information

Technical #2 Discussion

Technical #2 Discussion Technical #2 Breakdown of teams? Need a scenario to do lifeline work Lifelines and Transportation: ASCE took a lead role in Seattle working with public works and municipalities and DOT. Political topic

More information

ENCE 4610 Foundation Analysis and Design

ENCE 4610 Foundation Analysis and Design This image cannot currently be displayed. ENCE 4610 Foundation Analysis and Design Shallow Foundations Total and Differential Settlement Schmertmann s Method This image cannot currently be displayed. Strength

More information

Tutorial - PEST. Visual MODFLOW Flex. Integrated Conceptual & Numerical Groundwater Modeling

Tutorial - PEST. Visual MODFLOW Flex. Integrated Conceptual & Numerical Groundwater Modeling Tutorial - PEST Visual MODFLOW Flex Integrated Conceptual & Numerical Groundwater Modeling PEST with Pilot Points Tutorial This exercise demonstrates some of the advanced and exiting opportunities for

More information

Embedded Parts Introduction - Anchors

Embedded Parts Introduction - Anchors In the plant construction or process plants such as chemical, petrochemical, gas or power plants various disciplines are brought into contact and built on each other. Civil, mechanical, electro technical

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information