Failure Rate Modeling Using Equipment Inspection Data

Size: px
Start display at page:

Download "Failure Rate Modeling Using Equipment Inspection Data"

Transcription

1 Failure Rate Modeling Using Equipment Inspection Data Richard E. Brown (SM)* 1Abstract System reliability models typically use average equipment failure rates. Even if these models are calibrated based on historical reliability indices, all like components within a calibrated region remain homogeneous. This paper presents a new method of customizing failure rates using equipment inspection data. This allows available inspection information to be reflected in system models, and allows for calibration based on interruption distributions rather than mean values. The paper begins by presenting a method to map equipment inspection data to a normalized condition score, and suggests a formula to convert this score into failure probability. The paper concludes by applying this methodology to a test system based on an actual distribution system, and shows that the incorporation of condition data leads to richer reliability models. Keywords predictive reliability assessment, equipment failure rate modeling, inspection-based ranking P I. INTRODUCTION OWER DELIVERY COMPANIES are under increasing pressure to provide higher levels of reliability for lower cost. The best way to pursue these goals is to plan, engineer, and operate power delivery systems based on quantitative models that are able to predict expected levels of reliability for potential capital and operational strategies. Doing so requires both system reliability models and component reliability models. Predictive reliability models are able to compute system reliability based on system topology, operational strategy, and component reliability data. The first distribution reliability model, developed by EPRI in 1978 [1], was not widely used due to conservative design and maintenance standards and, to a lesser extent, a lack of component reliability data. Eventually, certain utilities became interested in predictive reliability modeling and started developing inhouse tools [2-5]. Presently, most major commercial circuit analysis packages offer an integrated reliability module capable of predicting the interruption frequency and duration characteristics of equipment and customers. Advanced tools have extended this basic functionality to include momentary interruptions [6-7] and risk assessment [8-9]. *This paper is based on a paper of the same title to be published in IEEE Transactions on Power Systems. Richard Brown is with KEMA and can be reached at rebrown@ kema.com. The application of predictive reliability models has traditionally assigned average failure rate values to all components. Although simplistic, this approach produces useful results and can substantially reduce capital requirements while providing the same levels of predicted reliability [10]. Advanced tools have attempted to move beyond average failure rates by either calibrating failure rates based on historical system performance [11], or by using multistate weather models [12-13]. A few attempts have been made to compute failure rates as a function of parameters such as age [14], maintenance [15], or combinations of features [16], but these models tend to be system-specific and are not practicable for a majority of utilities at this time. The use of average component failure rates in system reliability models is always limiting and is potentially misleading [17]. Although generally acceptable for capital planning, the use of average values has two major drawbacks. First, average values cannot reflect the impact of relatively unreliable equipment and may overestimate the reliability of customers experiencing the worst levels of service. Second, average values cannot reflect the impact of maintenance activities and, therefore, preclude the use of predictive models for maintenance planning and overall cost optimization. Most utilities perform regular equipment inspections and have tacit knowledge that relates inspection data to the risk of equipment failure. Integration of this information into component reliability models can improve the accuracy of system reliability models and extend their ability to reflect equipment maintenance in results. Ideally, each class of equipment could be characterized by an equation that computes failure rate as a function of critical parameters. For example, power transformers might be characterized as a function of age, manufacturer, voltage, size, through-fault history, maintenance history, and inspection results. Unfortunately, in most cases the sample size of failed units is far too small to generate an accurate model, and other approaches must be pursued. This paper presents a practical method that uses equipment inspection data to assign relative condition rankings. These rankings are then mapped to a failure rate function based on worst-case units, average units, and best-case units. The paper then presents recommended failure rate models for a broad range of equipment, presents a method of calibration based on historical customer interruptions, and concludes by examining the impact of these techniques on a test system based on an actual distribution system.

2 II. INSPECTION-BASED CONDITION RANKING Typical power delivery companies perform periodic inspection on a majority of their electricity infrastructure. Utilities have various processes for collecting and recording inspection results. Paper forms stored in a multitude of departments make obtaining comprehensive system inspection results problematic. Many utilities, however, have migrated their inspection and maintenance programs to computerized maintenance management systems (CMMS) and data management systems that can be used as central warehouses for equipment inspection results. After a population of similar equipment has been inspected, it is desirable to rank their relative condition. Consider a piece of equipment with n inspection item results, (r 1, r 2, r n ). Further suppose that each inspection item result is normalized so that values correspond to the following: r i = 0 r i = ½ r i = 1 ; best inspection outcome ; average inspection outcome ; worst inspection outcome Each inspection item result, r i, is assigned a weight, w i, based on its relative importance to overall equipment condition. These weights are typically determined by the combined opinion of equipment designers and field service personnel, and are sometimes modified based on the particular experience of each utility. The final condition of a component is then calculated by taking the weighted average of inspection item results.by definition, a weighted average of 0 corresponds to the best possible condition, a weighted average of ½ corresponds to average condition, and a weighted average of 1 corresponds to the worst possible condition. n i= 1 Condition Score = w r w (1) i i n i= 1 After each piece of equipment is assigned a condition score between 0 and 1, equipment using the same inspection item weights can be ranked and prioritized for maintenance (typically considering cost and criticality as well as condition). This approach has been successfully applied to several utilities by the authors, and inspection forms and weights for most major pieces of power delivery equipment have been developed. In addition, inspection items have guidelines that suggest scores for various inspection outcomes. To illustrate, an inspection form for power transformers is shown in Table 1 and the scoring guideline for Age is shown in Table 2. It should also be noted that inspection items can also be related to external factors. For example, overhead lines can include inspection items related to vegetation, animals, and lightning. Scores for these items will reflect both the external condition (e.g., lightning flash density) and system mitigation efforts (e.g., arrestors, shield wire, and grounding). i Although useful for prioritizing maintenance activities, relative equipment condition ranking is less useful for rigorous reliability analysis. Since reliability assessment models require equipment failure rates, inspection results would ideally be mapped into a failure rate through a closed-form equation derived from regression models. As mentioned earlier, this is not presently feasible for most classes of equipment due to limited historical data. III. FAILURE RATE MODEL Although there is not enough historical data to map inspection results to failure rates through regression-based equations, interpolation is capable of providing approximate results. At a minimum, interpolation requires failure rates corresponding to the worst and best condition scores. Practically, it requires one or more interior points so that non-linear relationships can be determined. After exploring a variety of mapping functions, the authors have empirically found that an exponential model best describes the relationship between the normalized equipment condition of Eq. 1 and equipment failure rates. The specific formula chosen is: Table 1. Inspection Form for Power Transformers Criterion Weight Score Age (years of operation) 8 Condition of internal solid insulation 2 Oil type 1 Condition of core 2 Condition of inaccessible parts 1 Condition of tank 1 Condition of cooling system 1 Condition of tap changer 2 Condition of accessible parts 1 Condition of bushings 2 Experience with this transformer type 4 Transformer loading history 3 Number of extraordinary mechanical stresses 3 Number of extraordinary dielectric stresses 2 Noise level 1 Core and winding losses 2 Gas in oil analysis (current results) 5 Gas in oil analysis (trend in results) 4 Oil analysis 6 Sum 51 Weighted Average Table 2. Guideline for Power Transformer Age Age (years of operation) Score Less than

3 Greater than λ λ ( x) = Ae Bx + C = failure rate x = condition score Three data pairs are required to solve for the parameters A, B, and C. The previous section has developed a condition ranking methodology that, by definition, results in best, average, and worst condition scores of 0, ½, and 1, respectively. Therefore, three natural data pairs correspond to λ(0), λ(½), and λ(1). λ(½) can be approximated by taking the average failure rate across many components or by using average failure rates documented in relevant literature. λ(0) and λ(1) are more difficult to determine, but can be derived through benchmarking, statistical analysis, or heuristics. Given these three values, function parameters are determined as follows: A = λ B = 2ln C = λ 2 [ λ( ½) λ( 0) ] () 1 2λ( ½) + λ( 0) λ( ½) + A λ( 0) () 0 A A A detailed benchmarking of equipment failure rates is found in [18]. These results document low, typical, and high failure rates corresponding to system averages across a variety of systems. Assuming that (1) best-condition equipment have failure rates half that of best system averages, (2) average-condition equipment have failure rates of typical system averages, and (3) worst-condition equipment have failure rates twice that of best system averages, parameters for a variety of equipment are shown in Table 3. These parameters, based on historical failure studies such as [14], are useful in the absence of system specific data, but should be viewed as initial conditions for calibration, which is discussed in the next section. (2) (3) Failure Rate (/yr) Primary Trunk Cable Overhead Trunk Power Transformer (<25MVA) Power Transformer (>25MVA) Condition (p.u.) Figure 1. Selected Equipment Failure Rate Functions Failure rate graphs for some of the equipment in Table 3 are shown in Figure 1. These are simply plots of Eq. 2 using the stated A, B, and C parameters the displayed equipment. It is interesting to see that the range of failure rates of certain types of equipment is large, while other types have a more moderate range. This reflects the ranges found in a broad literature search which forms the basis of Table 3. IV. MODEL CALIBRATION After creating a system reliability model, it is desirable to adjust component reliability data so that predicted system reliability is equal to historical system reliability [11]. This process is called model calibration, and can be generalized as the identification of a set of parameters that minimize an error function. Traditionally, reliability parameters (such as equipment failure rates) either remained uncalibrated or were adjusted based on average system reliability. For example, it may be known that an analysis area has an average of 1.2 interruptions per customer per year. Based on this number, failure rates can be adjusted until the predicted average number of customer interruptions is equal to this historical value. After failure rates are calibrated, switching and repair times can be adjusted until predicted average interruption duration is also equal to historical values. Calibrating based on system averages is useful, but does not ensure that the predicted distribution of customer interruptions is equal to the historical distribution. That is, it does not ensure that either the most or least reliable customers are accurately represented only that the average across all customers reflects history. This is a subtle but important point; since customer satisfaction is largely determined by customers receiving below-average reliability, calibration of reliability distribution is arguably more important than calibration of average reliability. A system model with homogeneous failure rates will produce a distribution of expected customer reliability levels (e.g., customers close to the substation will generally

4 have better reliability than those at the end of the feeder). If components on this same system are assigned random failure rates such that average system reliability remains the same, the variance of expected customer reliability will tend to increase. That is, the best customers will tend to get better, the worst customers will tend to get worse, and fewer customers can expect average reliability. The distribution of expected customer reliability is critical to customer satisfaction and should, if possible, be calibrated to historical data. A practical way to accomplish this objective is to calibrate condition-mapping parameters so that a distribution-based error function is minimized. Such an error function can be based on one of three levels of granularity: (1) individual customer reliability, (2) histograms of customer reliability, or (3) statistical measures of customer reliability. An error function can be defined based on the difference between each customer s historical versus predicted reliability. This approach calibrates reliability to the customer level and utilizes historical data at the finest possible granu-

5 Table 3. Representative Failure Rate Model Parameters (λ values in failures per year) Description λ(0) λ(½) λ(1) A B C Overhead Equipment Overhead Lines Primary Trunk* Lateral Tap* Secondary & Service Drop* Pole Mounted Transformer Disconnect Switch Fuse Cutout Line Recloser Shunt Capacitor Voltage Regulator Underground Equipment Underground Cable Primary Cable* Secondary Cable* Elbow Connectors 3.E-05 6.E Cable Splices and Joints 3.E Padmount Transformers Padmount Switches AIS Substation Equipment Power Transformers Less than 25 MVA Bigger than 25 MVA Circuit Breakers Disconnect Switches Instrument Transformers Air Insulated Busbar GIS Substation Equipment GIS Bay (before 1985) GIS Bay (after 1985) * Line and cable failure rates are per circuit mile larity. However, historical customer reliability is stochastic in nature and will vary naturally from year to year. An error function can be defined based on the difference between each customer s historical versus predicted reliability. This approach calibrates reliability to the customer level and utilizes historical data at the finest possible granularity. However, historical customer reliability is stochastic in nature and will vary naturally from year to year. This is especially problematic with frequency measures. Although customers on average may experience 1 interruption per year, a large number of customers will not experience any interruptions in a given year. Calibrating these customers to historical data is misleading, making about 10 years of historical data for each customer desirable. Unfortunately, most feeders change enough over 10 years to make this method impractical. An error function can also use a histogram of customer interruptions as its basis. The historical histogram could be compared to the predicted histogram and parameters adjusted to minimize the chi-squared error (χ 2 ): n i= 1 ( h p ) 2 i i χ = (4) h i Where n is the number of bins, h is the historical bin value, and p is the predicted bin value. Using the chisquared error is attractive since it emphasized the distribution of expected customer reliability which is strongly correlated to customer satisfaction. Histograms will vary stochastically from year to year, but the large number of customers in typical calibration areas prevent this from becoming a major concern. Last, an error function can be based on statistical measures such as mean value (µ) and standard deviation (σ). The error function will typically consist of a weighted sum similar to the following: ( µ µ ') 2 + β ( σ σ ' ) 2 Error = α (5) Unlike the χ 2 error, this function allows relative weights to be assigned to mean and variance discrepancies (α and β). For example, a relatively large a value will ensure that predicted average customer reliability reflects historical average customer reliability while allowing relatively large mismatches in standard deviation. Once an error measure is defined, failure rate model parameters can be adjusted so that error is minimized. Since this process is over determined, the authors suggest using Table 3 for initial parameter values and using gradient de-

6 scent or hill climbing techniques for parameter adjustment. Calibration is computationally intensive since error sensitivity to parameters must be computed by actual parameter perturbation, but calibration need only be performed once. V. APPLICATION TO TEST SYSTEM The methodologies described in the previous two sections have been applied to a test system derived from an actual overhead distribution system in the Southern U.S. This model consists of three substations, 13 feeders, 130 miles of exposure, and a peak load of 100 MVA serving 13,000 customers. The analytical model consists of 4100 components. Customer historical failures are computed from fouryear historical averages. Equipment condition for this system was not available, and was therefore assigned for randomly for individual components based on a normal distribution with a 0.5 mean and a 0.2 standard deviation. Calibration for this test system is performed based on the chi-squared error of customer interruptions. Initial failure rates for all components are assigned based on λ(½) values in Table 3, and initial failure rates are computed based on condition and the parameters in Table 3. Calibration is performed by a variable-step local search that guarantees local optimality. A summary of calibration results for overhead lines is shown in Figure 2, and a visualization of calibrated results in shown in Figure 3. The shape of the uncalibrated histogram is similar to the historical histogram, but with a mean and mode worse than historical values. After calibration, the modes align, but the predicted histogram retains a slightly smaller variance. In fact, the historical histogram is subject to stochastic variance, and the inability of the expected value calibration to match this variance is immaterial and perhaps beneficial. Uncalibrated and calibrated failure rate parameters are shown in Table 4, and corresponding failure rate functions are shown in Figure 4. In effect, the calibration for this system did not change the failure rates for lines with good condition (less than 0.2), but drastically reduced the failure rates for lines with worse-than-average condition (greater than 0.5). These results are not unexpected, since this particular service territory is relatively homogeneous in both terrain and maintenance practice, and extremely wide variations in overhead line failure rates have not been historically observed. Table 4. Calibration Results for Overhead Line Parameters Uncalibrated Calibrated A B C χ 2 Error (% 2 ) % of Customers Failure Rate (/yr) Historical Uncalibrated Calibrated Interruptions (per year) Figure 2. Historical Versus Predicted Customer Interruptions Figure 3. Visualization of Calibrated Results Uncalibrated Calibrated Condition (p.u.) Figure 4. Overhead Line Failure Rate as a Function of Condition

7 It is important to note that, in this case, equipment conditions were assigned randomly, and some were very high. Even though actual equipment for this system may never reach this poor condition state, the calibration process compensated by ratcheting down the failure rates assigned to equipment with the highest condition scores. Once a system has been modeled and calibrated, it can be used as a base case to explore the impact of issues that may impact equipment condition such as equipment maintenance. Once the expected impact that a maintenance action will have on inspection items is determined, the system impact of maintenance can be quantified based on the new failure rate. This allows the cost effectiveness of maintenance to be determined and directly compared to the cost effectiveness of system approaches such as new construction, added switching and protection, and system reconfiguration. [3] G. Kjolle and Kjell Sand, RELRAD - An Analytical Approach for Distribution System Reliability Assessment, IEEE Transactions on Power Delivery, Vol. 7, No. 2, April 1992, pp VI. CONCLUSIONS Equipment failure rate models are required for electric utilities to plan, engineer, and operate their system at the highest levels of reliability for the lowest possible cost. Detailed models based on historical data and statistical regression are not feasible at the present time, but this paper presents an interpolation method based on normalized condition scores and best/average/worst condition assumptions. The equipment failure rate model developed in this paper allows condition heterogeneity to be reflected in equipment failure rates. Doing so more accurately reflects component criticality in system models, and allows the distribution of customer reliability to be more accurately reflected. Further, a calibration method has been presented that allows condition-mapping parameters to be tuned so that the predicted distribution of reliability matches the historical distribution of reliability. Finally, the use of this condition-based approach allows the impact of maintenance activities on condition to be anticipated and reflected in system models, enabling the efficacy of maintenance budgets to be compared with capital and operational budgets. This model is heuristic by nature, but adds a fundamental level of richness and usefulness to reliability modeling, especially when parameters are calibrated to historical data. In the short run, gathering more detailed information on equipment failure rates and condition will strengthen this approach. In the long run, this same information can ultimately be used to develop explicit failure rate models that eliminate the normalized condition assessment requirement. VII. REFERENCES [1] EPRI Report EL-2018, Development of Distribution Reliability and Risk Analysis Models, Aug [2] S. R. Gilligan, A Method for Estimating the Reliability of Distribution Circuits, IEEE Transactions on Power Delivery, Vol. 7, No. 2, April 1992, pp

8 [4] R.E. Brown, S. Gupta, S.S. Venkata, R.D. Christie, and R. Fletcher, Distribution System Reliability Assessment Using Hierarchical Markov Modeling, IEEE Transactions on Power Delivery, Vol. 11, No. 4, Oct., 1996, pp [5] Y-Y Hsu, L-M Chen, J-L Chen, et al., Application of a Microcomputer-Based Database Management System to Distribution System Reliability Evaluation, IEEE Transactions on Power Delivery, Vol. 5, No. 1, Jan. 1990, pp [6] C.M. Warren, The Effect of Reducing Momentary Outages on Distribution Reliability Indices, IEEE Transactions on Power Delivery, Vol. 7, No. 3, July, 1992, pp [7] R. Brown, S. Gupta, S.S. Venkata, R.D. Christie, and R. Fletcher, Distribution System Reliability Assessment: Momentary Interruptions and Storms, IEEE PES Summer Meeting, Denver, CO, June, [8] R. E. Brown and J. J. Burke, Managing the Risk of Performance Based Rates, IEEE Transactions on Power Systems, Vol. 15, No. 2, May 2000, pp [9] L. V. Trussell, Engineering Analysis in GIS, DistribuTECH Conference, Miami, FL, Feb [10] R. E. Brown and M. M. Marshall, Budget-Constrained Planning to Optimize Power System Reliability, IEEE Transactions on Power Systems, Vol. 15, No. 2, May 2000, pp [11] R. E. Brown, J. R. Ochoa, Distribution System Reliability: Default Data and Model Validation, IEEE Transactions on Power Systems, Vol. 13, No. 2, May 1998, pp [12] M. A. Rios, D. S. Kirschen, D. Jayaweera, D. P. Nedic, and R. N. Allan, Value of security: modeling time-dependent phenomena and weather conditions, IEEE Transactions on Power Systems, Vol. 17, No. 3, Aug 2002, pp [13] R. N. Allen, R. Billinton, I. Sjarief, L. Goel, and K. S. So, A Reliability Test System for Educational Purposes - Basic Distribution System Data and Results, IEEE Transactions on Power Systems, Vol. 6, No. 2, May [14] R. M. Bucci, R. V. Rebbapragada, A. J. McElroy, E. A. Chebli and S. Driller, Failure Predic-tion of Underground Distribution Feeder Cables, IEEE Transactions on Power Delivery, Vol. 9, No. 4, Oct. 1994, pp [15] D. T. Radmer, P. A. Kuntz, R. D. Christie, S. S. Venkata, and R. H. Fletcher, Predicting vegetation-related failure rates for overhead distribution feeders, IEEE Transactions on Power Delivery, Vol. 17, No. 4, Oct. 2002, pp [16] S. Gupta, A. Pahwa, R. E. Brown and S. Das, A Fuzzy Model for Overhead Distribution Feeders Failure Rates, NAPS 2002: 34th Annual North American Power Symposium, Tempe, AZ, Oct [17] J. B. Bowles, Commentary-caution: constant failure-rate models may be hazardous to your design, IEEE Transactions of Reliability, Vol. 51, No. 3, Sept. 2002, pp [18] R. E. Brown, Electric Power Distribution Reliability, Marcel Dekker, Inc., VIII. BIOGRAPHIES Richard E. Brown is a principal consultant with KEMA, and specializes in distribution reliability and asset management. He is the author or co-author of more than 50 technical papers and the book Electric Power Distribution Reliability. Dr. Brown received his BSEE, MSEE, and PhD from the University of Washington and his MBA from the University of North Carolina at Chapel Hill. He is a registered professional engineer, and can be reached at rebrown@kema.com.

Avoiding AC Capacitor Failures in Large UPS Systems

Avoiding AC Capacitor Failures in Large UPS Systems Avoiding AC Capacitor Failures in Large UPS Systems White Paper #60 Revision 0 Executive Summary Most AC power capacitor failures experienced in large UPS systems are avoidable. Capacitor failures can

More information

TRANSMISSION BUSINESS PERFORMANCE

TRANSMISSION BUSINESS PERFORMANCE Filed: 0-0- Tx 0-0 Rates Tab Schedule Page of TRANSMISSION BUSINESS PERFORMANCE.0 INTRODUCTION 0 Hydro One is focused on the strategic goals and performance targets in the area of safety, customer satisfaction,

More information

How the National Grid System Operates. Chris Gorman Lead Account Executive Syracuse

How the National Grid System Operates. Chris Gorman Lead Account Executive Syracuse How the National Grid System Operates Chris Gorman Lead Account Executive Syracuse 2 Parts of the Electric System Parts of the Electric System 1. Generating Station: Produces Electricity. 2. Transmission

More information

Governor s Two-Storm Panel: Distribution Infrastructure Hardening Options and Recommendations

Governor s Two-Storm Panel: Distribution Infrastructure Hardening Options and Recommendations Governor s Two-Storm Panel: Distribution Infrastructure Hardening Options and Recommendations Dana Louth, CL&P VP - Infrastructure Hardening December 14, 2011 0 Topics for today s presentation Review of

More information

Asset Management and System Reliability Group Review

Asset Management and System Reliability Group Review Final Report: Asset Management and System Reliability Group Review Prepared for: Prepared by: Contact: Southern California Edison InfraSource Technology Richard Brown, PhD, PE richard.brown@infrasourceinc.com

More information

Risk-Based Resource Allocation for Distribution System Maintenance

Risk-Based Resource Allocation for Distribution System Maintenance PSERC Risk-Based Resource Allocation for Distribution System Maintenance Final Project Report Power Systems Engineering Research Center A National Science Foundation Industry/University Cooperative Research

More information

Vision 2050 An Asset Management Strategy. Jaclyn Cantler Manager, Transmission Planning, PHI

Vision 2050 An Asset Management Strategy. Jaclyn Cantler Manager, Transmission Planning, PHI 1 Vision 2050 An Asset Management Strategy Jaclyn Cantler Manager, Transmission Planning, PHI 2 Agenda Case for Change About Vision 2050 Status Closing System Design Cybersecurity Interface with distributed/dispersed

More information

When power interruptions happen.

When power interruptions happen. When power interruptions happen. We know it s never a good time to have your power go out, so we work all year pruning trees and investing in our system to cut down on problems before they start. Outage

More information

Future of Electric Distribution Dialogue

Future of Electric Distribution Dialogue Future of Electric Distribution Dialogue Webinar Series Session I: State of U.S. Electric Distribution July 11, 2012 2:00 3:30 p.m. EDT Session I: State of U.S. Electric Distribution 2:00 p.m. Opening

More information

Optimization of Asset Management in High Voltage Substation Based on Equipment Monitoring and Power System Operation

Optimization of Asset Management in High Voltage Substation Based on Equipment Monitoring and Power System Operation Optimization of Asset Management in High Voltage Substation Based on Monitoring and Power System Operation Yotaro Suzui, Hiroi Kojima, Naoi Hayaawa, Fumihiro Endo, Hitoshi Oubo Nagoya University Furo-cho,

More information

TAN δ (DELTA) CABLE TESTING OVERVIEW AND ANSWERS TO FREQUENTLY ASKED QUESTIONS. What Is Tan δ, Or Tan Delta?

TAN δ (DELTA) CABLE TESTING OVERVIEW AND ANSWERS TO FREQUENTLY ASKED QUESTIONS. What Is Tan δ, Or Tan Delta? TAN δ (DELTA) CABLE TESTING OVERVIEW AND ANSWERS TO FREQUENTLY ASKED QUESTIONS What Is Tan δ, Or Tan Delta? Tan Delta, also called Loss Angle or Dissipation Factor testing, is a diagnostic method of testing

More information

2014 ELECTRIC SYSTEM RELIABILITY REPORT CITY OF ANAHEIM PUBLIC UTILITIES DEPARTMENT

2014 ELECTRIC SYSTEM RELIABILITY REPORT CITY OF ANAHEIM PUBLIC UTILITIES DEPARTMENT 2014 ELECTRIC SYSTEM RELIABILITY REPORT CITY OF ANAHEIM PUBLIC UTILITIES DEPARTMENT Contents Overview... 3 1.0 Electric System Reliability... 4 1.1 Annual Reliability Data with Utility Comparisons... 4

More information

Fundamentals of Modern Electrical Substations Part 1: Mission of Electrical Substations and their Main Components

Fundamentals of Modern Electrical Substations Part 1: Mission of Electrical Substations and their Main Components Fundamentals of Modern Electrical Substations Part 1: Mission of Electrical Substations and their Main Components Course No: E02-010 Credit: 2 PDH Boris Shvartsberg, Ph.D., P.E., P.M.P. Continuing Education

More information

The electrical energy produced at the gen

The electrical energy produced at the gen 300 300 Principles of Power System CHAPTER CHAPTER 12 Distribution Systems General 12.1 Distribution System 12.2 Classification of Distribution Systems 12.3 A.C. Distribution 12.4 D.C. Distribution 12.5

More information

DISTRIBUTION RELIABILITY USING RECLOSERS AND SECTIONALISERS

DISTRIBUTION RELIABILITY USING RECLOSERS AND SECTIONALISERS ABB DISTIBUTION ELIABILITY USING ECLOSES AND SECTIONALISES obert E. Goodin Chief Engineer ABB Inc. Lake Mary, FL Timothy S. Fahey, PE Sr. Application Engineer ABB Inc. aleigh, NC Andrew Hanson, PE Executive

More information

Transmission Network Performance Report

Transmission Network Performance Report Transmission performance report cover.qxp 06/25/2008 11:50 AM Page 1 Transmission Network Performance Report 25 Research Drive Westborough, MA 01582 www.nationalgrid.com CD4369 (6/08) Fiscal Year 2008

More information

Discussion on Class I & II Terminology. IEEE PES Transformers Committee Fall Meeting 2011 Boston, MA

Discussion on Class I & II Terminology. IEEE PES Transformers Committee Fall Meeting 2011 Boston, MA Discussion on Class I & II Terminology IEEE PES Transformers Committee Fall Meeting 2011 Boston, MA What is Class I & II? C57.12.00 2010 is the only document we have that defined these terms. 5.10 Insulation

More information

Study of Lightning Damage Risk Assessment Method for Power Grid

Study of Lightning Damage Risk Assessment Method for Power Grid Energy and Power Engineering, 2013, 5, 1478-1483 doi:10.4236/epe.2013.54b280 Published Online July 2013 (http://www.scirp.org/journal/epe) Study of Lightning Damage Risk Assessment Method for Power Grid

More information

Customer Perception and Reality: Unraveling the Energy Customer Equation

Customer Perception and Reality: Unraveling the Energy Customer Equation Paper 1686-2014 Customer Perception and Reality: Unraveling the Energy Customer Equation Mark Konya, P.E., Ameren Missouri; Kathy Ball, SAS Institute ABSTRACT Energy companies that operate in a highly

More information

RELIABILITY OF ELECTRIC POWER GENERATION IN POWER SYSTEMS WITH THERMAL AND WIND POWER PLANTS

RELIABILITY OF ELECTRIC POWER GENERATION IN POWER SYSTEMS WITH THERMAL AND WIND POWER PLANTS Oil Shale, 27, Vol. 24, No. 2 Special ISSN 28-189X pp. 197 28 27 Estonian Academy Publishers RELIABILITY OF ELECTRIC POWER GENERATION IN POWER SYSTEMS WITH THERMAL AND WIND POWER PLANTS M. VALDMA, M. KEEL,

More information

Comparison of GIS and AIS systems for urban supply networks

Comparison of GIS and AIS systems for urban supply networks Comparison of GIS and AIS systems for urban supply networks Studies carried out by ABB show that for urban supply networks the combination of HV gas-insulated switchgear (GIS) and HV cable has important

More information

Advanced Distribution Grid Management for Smart Cities

Advanced Distribution Grid Management for Smart Cities Smart Grid Solutions Advanced Distribution Grid Management for Smart Cities Kevin Corcoran, Director Product Line Management IEEE SmartGridComm 2015 Miami, FL Bridging Smart Cities & Smart Grids Common

More information

Step Voltage Regulators

Step Voltage Regulators Step Voltage Regulators Don Wareham Field Application Engineer Today s Agenda Introduction Voltage Regulator theory Voltage Regulator application considerations Installation and proper bypassing Wrap-up/questions

More information

Conservation Voltage Reduction (CVR)

Conservation Voltage Reduction (CVR) Conservation Voltage Reduction (CVR) Nicholas Abi-Samra Senior Vice President October 15, 2013 DNV GL Energy Table of Contents What does CVR do? Why Does CVR Work? DNV GL s CVR Project Experience Needs

More information

Electric System Performance Review Trustees Briefing. April 2013

Electric System Performance Review Trustees Briefing. April 2013 Electric System Performance Review Trustees Briefing April 2013 Electric Reliability Indices All Metrics Continue to Perform Within Historical Range Reliability Index 2012 Trend to 5-Year Avg. LIPA MSA

More information

REINVESTMENT STRATEGY MAKING FOR DISTRIBUTION NETWORKS

REINVESTMENT STRATEGY MAKING FOR DISTRIBUTION NETWORKS REINVESTMENT STRATEGY MAKING FOR DISTRIBUTION NETWORKS Maria D. Catrinu, Agnes Nybø, SINTEF Energy Research maria.d.catrinu@sintef.no, agnes.nybo@sintef.no, Dag Eirik Nordgård NTNU Dag.E.Nordgard@elkraft.ntnu.no

More information

Phase Balancing of Distribution Systems Using a Heuristic Search Approach

Phase Balancing of Distribution Systems Using a Heuristic Search Approach Phase Balancing of Distribution Systems Using a Heuristic Search Approach Lin, Chia-Hung*, Kang, Meei-Song**, Chuang, Hui-Jen**, and Ho, Chin-Ying** *National Kaohsiung University of Applied Sciences **Kao

More information

Introduction. Harmonics and IEEE 519 Page 1 of 19

Introduction. Harmonics and IEEE 519 Page 1 of 19 Introduction In an ideal power system, the voltage supplied to customer equipment, and the resulting load current are perfect sine waves. In practice, however, conditions are never ideal, so these waveforms

More information

A Regime-Switching Model for Electricity Spot Prices. Gero Schindlmayr EnBW Trading GmbH g.schindlmayr@enbw.com

A Regime-Switching Model for Electricity Spot Prices. Gero Schindlmayr EnBW Trading GmbH g.schindlmayr@enbw.com A Regime-Switching Model for Electricity Spot Prices Gero Schindlmayr EnBW Trading GmbH g.schindlmayr@enbw.com May 31, 25 A Regime-Switching Model for Electricity Spot Prices Abstract Electricity markets

More information

Electric Power Distribution

Electric Power Distribution Electric Power Distribution A S Pabla Consulting Engineer and Former Chief Engineer Punjab State Electricity Board McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New

More information

Cost-effective Distribution Reliability Improvement Using Predictive Models

Cost-effective Distribution Reliability Improvement Using Predictive Models Cost-effective Distribution Reliability Improvement Using Predictive Models Dr. Julio Romero Agüero Sr. Director, Distribution Quanta Technology Raleigh, NC julio@quanta-technology.com 919-334-3039 Table

More information

Pennsylvania Summer Reliability

Pennsylvania Summer Reliability A. Reliability Enhancement Programs In 2015, Pennsylvania Power Company s ( Penn Power or Company ) reliability plan incorporates projects and programs to enhance overall reliability. The plan is structured

More information

ELECTRICAL ENGINEERING DESIGN CRITERIA APPENDIX F

ELECTRICAL ENGINEERING DESIGN CRITERIA APPENDIX F ELECTRICAL ENGINEERING DESIGN CRITERIA APPENDIX F TABLE OF CONTENTS Appendix F - Electrical Engineering Design Criteria F.1 Introduction...F-1 F.2 Codes and Standards...F-1 F.3 Switchyard and Transformers...F-1

More information

On-line PD Monitoring Makes Good Business Sense

On-line PD Monitoring Makes Good Business Sense On-line PD Monitoring Makes Good Business Sense An essential tool for asset managers to ensure reliable operation, improve maintenance efficiency and to extend the life of their electrical assets. Executive

More information

Federal Wage System Job Grading Standards for Electric Power Controlling, 5407. Table of Contents

Federal Wage System Job Grading Standards for Electric Power Controlling, 5407. Table of Contents Federal Wage System Job Grading Standards for Electric Power Controlling, 5407 Table of Contents WORK COVERED... 2 WORK NOT COVERED...2 TITLES... 2 GRADE LEVELS... 2 SPECIAL ADDITIONAL RESPONSIBILITIES...

More information

Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering

Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering Brochure More information from http://www.researchandmarkets.com/reports/2171489/ Integration of Distributed Generation in the Power System. IEEE Press Series on Power Engineering Description: A forward

More information

Hyperlinks are Inactive

Hyperlinks are Inactive Prepared by: NIB/EOB PLANNING GUIDE FOR SINGLE CUSTOMER SUBSTATIONS SERVED FROM TRANSMISSION LINES 05503 Department: Electric T&D Section: T&D Engineering and Technical Support Approved by: G.O. Duru (GOD)

More information

Calculation of Voltage Sag Indices for Distribution Networks

Calculation of Voltage Sag Indices for Distribution Networks Calculation of Voltage Sag Indices for Distribution Networks Juan A. Martinez-Velasco, Member, IEEE, Jacinto Martin-Arnedo, Nonmember Abstract This paper is presenting the main results of a work aimed

More information

ECE 586b Course Project Report. Auto-Reclosing

ECE 586b Course Project Report. Auto-Reclosing ECE 586b Course Project Report Auto-Reclosing Srichand Injeti May 5, 2008 Department Of Electrical and computer Engineering University Of Western Ontario, London Ontario Table of contents 1. Introduction...1

More information

Power products and systems. Intelligent solutions for power distribution Zone concept

Power products and systems. Intelligent solutions for power distribution Zone concept Power products and systems Intelligent solutions for power distribution Zone concept Securing continuous power supply ABB is one of the world's leading power and automation technology companies whose products,

More information

Short Circuit Current Calculations

Short Circuit Current Calculations Introduction Several sections of the National Electrical Code relate to proper overcurrent protection. Safe and reliable application of overcurrent protective devices based on these sections mandate that

More information

Emergency Power System Services Industrial UPS, Batteries, Chargers, Inverters and Static Switches

Emergency Power System Services Industrial UPS, Batteries, Chargers, Inverters and Static Switches Emergency Power System Services Industrial UPS, Batteries, Chargers, Inverters and Static Switches Downtime Is Not An Option The industrial uninterruptible power supply (UPS) is the foundation of your

More information

Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification

Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification Tail-Dependence an Essential Factor for Correctly Measuring the Benefits of Diversification Presented by Work done with Roland Bürgi and Roger Iles New Views on Extreme Events: Coupled Networks, Dragon

More information

DISTRIBUTION OPERATIONS AND MAINTENANCE

DISTRIBUTION OPERATIONS AND MAINTENANCE EB-00-00 Filed: 00 Aug Page of DISTRIBUTION OPERATIONS AND MAINTENANCE PREVENTIVE MAINTENANCE Preventive Maintenance is intended to maintain or improve customer service reliability, extend equipment life

More information

Pragmatic Peer Review Project Contextual Software Cost Estimation A Novel Approach

Pragmatic Peer Review Project Contextual Software Cost Estimation A Novel Approach www.ijcsi.org 692 Pragmatic Peer Review Project Contextual Software Cost Estimation A Novel Approach Manoj Kumar Panda HEAD OF THE DEPT,CE,IT & MCA NUVA COLLEGE OF ENGINEERING & TECH NAGPUR, MAHARASHTRA,INDIA

More information

PPL Electric Utilities Summer Readiness Overview June 2016

PPL Electric Utilities Summer Readiness Overview June 2016 SUMMARY PPL Electric Utilities Summer Readiness Overview June 2016 For PPL Electric Utilities (PPL Electric), summer readiness means the company must respond effectively to summer storms as well as provide

More information

ELECTRICIAN TRADE REGULATION

ELECTRICIAN TRADE REGULATION Province of Alberta APPRENTICESHIP AND INDUSTRY TRAINING ACT ELECTRICIAN TRADE REGULATION Alberta Regulation 274/2000 With amendments up to and including Alberta Regulation 122/2014 Office Consolidation

More information

F.C. Chan General Manager, CLP Engineering Ltd., Hong Kong SAR, China

F.C. Chan General Manager, CLP Engineering Ltd., Hong Kong SAR, China ELECTRIC POWER DISTRIBUTION SYSTEMS F.C. Chan General Manager, CLP Engineering Ltd., Hong Kong SAR, China Keywords: Distribution system planning, Load characteristics, Subtransmission Lines, Distribution

More information

1/27/2013. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

1/27/2013. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Introduce moderated multiple regression Continuous predictor continuous predictor Continuous predictor categorical predictor Understand

More information

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

More information

Rule 5.500 Fast Track Analysis for National Life Insurance Co.

Rule 5.500 Fast Track Analysis for National Life Insurance Co. Rule 5.500 Fast Track Analysis for National Life Insurance Co. For a 500 kw Solar array to be located at 155 Northfield Street in Montpelier, Vermont Green Mountain Power Pam Allen Date: 5/31/13 SECTION

More information

Reliability centered asset management tool

Reliability centered asset management tool Reliability centered asset management tool The development of RACalc Claes Böös and Richard Göransson Degree project in Electromagnetic Engineering Second Level, 30.0 HEC Stockholm, Sweden 2009 XR-EE-ETK

More information

Data Mining to Characterize Signatures of Impending System Events or Performance from PMU Measurements

Data Mining to Characterize Signatures of Impending System Events or Performance from PMU Measurements Data Mining to Characterize Signatures of Impending System Events or Performance from PMU Measurements Final Project Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future

More information

Continuous Time Bayesian Networks for Inferring Users Presence and Activities with Extensions for Modeling and Evaluation

Continuous Time Bayesian Networks for Inferring Users Presence and Activities with Extensions for Modeling and Evaluation Continuous Time Bayesian Networks for Inferring Users Presence and Activities with Extensions for Modeling and Evaluation Uri Nodelman 1 Eric Horvitz Microsoft Research One Microsoft Way Redmond, WA 98052

More information

Auburn University s Solar Photovoltaic Array Tilt Angle and Tracking Performance Experiment

Auburn University s Solar Photovoltaic Array Tilt Angle and Tracking Performance Experiment Auburn University s Solar Photovoltaic Array Tilt Angle and Tracking Performance Experiment Julie A. Rodiek 1, Steve R. Best 2, and Casey Still 3 Space Research Institute, Auburn University, AL, 36849,

More information

Potomac Electric Power Company. Comprehensive Reliability Plan. For. District of Columbia. Including

Potomac Electric Power Company. Comprehensive Reliability Plan. For. District of Columbia. Including Potomac Electric Power Company Comprehensive Reliability Plan For District of Columbia Including Distribution System Overview, Reliability Initiatives and Response to Public Service Commission of the District

More information

Acting on the Deluge of Newly Created Automation Data:

Acting on the Deluge of Newly Created Automation Data: Acting on the Deluge of Newly Created Automation Data: Using Big Data Technology and Analytics to Solve Real Problems By CJ Parisi, Dr. Siri Varadan, P.E., and Mark Wald, Utility Integration Solutions,

More information

The calm after the storm

The calm after the storm The calm after the storm Human decision support in storm outage recovery Rafael Ochoa, Amitava Sen It s a fact of life that interruptions in an electrical distribution utility happen. Although they can

More information

COMPLIANCE REVIEW OF 2006/07 ASSET MANAGEMENT PLAN. Top Energy Limited

COMPLIANCE REVIEW OF 2006/07 ASSET MANAGEMENT PLAN. Top Energy Limited PB ASSOCIATES COMPLIANCE REVIEW OF 2006/07 ASSET MANAGEMENT PLAN Prepared for PB Associates Quality System: Document Identifier : 153162 Top Energy Final Report Revision : 2 Report Status : Final Date

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

More information

Primary and Secondary Electrical Distribution Systems

Primary and Secondary Electrical Distribution Systems Primary and Secondary Electrical Distribution Systems Critical Facilities Round Table 12th Quarterly Membership Meeting June 2, 2006 David D. Roybal. P.E. Eaton Electrical Cutler-Hammer Products Utility

More information

A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks

A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks A Fuzzy Based Solution for Improving Power Quality in Electric Railway Networks Mohammad Ali Sandidzadeh School of Railway Engineering, Iran University of Science & Technology, Tehran, Iran Tel: 98-21-7749-1030

More information

File Size Distribution Model in Enterprise File Server toward Efficient Operational Management

File Size Distribution Model in Enterprise File Server toward Efficient Operational Management Proceedings of the World Congress on Engineering and Computer Science 212 Vol II WCECS 212, October 24-26, 212, San Francisco, USA File Size Distribution Model in Enterprise File Server toward Efficient

More information

6545(Print), ISSN 0976 6553(Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN 0976 6553(Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

Cost Benefit Methodology for Optimal Design of Offshore Transmission Systems

Cost Benefit Methodology for Optimal Design of Offshore Transmission Systems Centre for Sustainable Electricity and Distributed Generation Cost Benefit Methodology for Optimal Design of Offshore Transmission Systems Predrag Djapic and Goran Strbac July 2008 FUNDED BY BERR URN 08/1144

More information

Application Note Noise Frequently Asked Questions

Application Note Noise Frequently Asked Questions : What is? is a random signal inherent in all physical components. It directly limits the detection and processing of all information. The common form of noise is white Gaussian due to the many random

More information

A THEORETICAL COMPARISON OF DATA MASKING TECHNIQUES FOR NUMERICAL MICRODATA

A THEORETICAL COMPARISON OF DATA MASKING TECHNIQUES FOR NUMERICAL MICRODATA A THEORETICAL COMPARISON OF DATA MASKING TECHNIQUES FOR NUMERICAL MICRODATA Krish Muralidhar University of Kentucky Rathindra Sarathy Oklahoma State University Agency Internal User Unmasked Result Subjects

More information

Application of Four-Pole Circuit Breakers within Data Centers

Application of Four-Pole Circuit Breakers within Data Centers Application of Four-Pole Circuit Breakers within Data Centers December 2013/AT324 by Frank Waterer, Fellow Engineer, Schneider Electric Engineering Services Make the most of your energy SM Revision #1

More information

AORC Technical meeting 2014

AORC Technical meeting 2014 AORC Technical meeting 2014 http : //www.cigre.org C4-1012 Alarm System Improvement in the Northern Region Dispatching Center of Thailand Mr. Manu PONGKAEW, Mr. Phathom TIPSUWAN Electricity Generating

More information

Best Practices for Creating Your Smart Grid Network Model. By John Dirkman, P.E.

Best Practices for Creating Your Smart Grid Network Model. By John Dirkman, P.E. Best Practices for Creating Your Smart Grid Network Model By John Dirkman, P.E. Best Practices for Creating Your Smart Grid Network Model By John Dirkman, P.E. Executive summary A real-time model of their

More information

REPORT OF THE PUBLIC STAFF TO THE NORTH CAROLINA NATURAL DISASTER PREPAREDNESS TASK FORCE

REPORT OF THE PUBLIC STAFF TO THE NORTH CAROLINA NATURAL DISASTER PREPAREDNESS TASK FORCE REPORT OF THE PUBLIC STAFF TO THE NORTH CAROLINA NATURAL DISASTER PREPAREDNESS TASK FORCE THE FEASIBILITY OF PLACING ELECTRIC DISTRIBUTION FACILITIES UNDERGROUND NOVEMBER 2003 REPORT OF THE PUBLIC STAFF

More information

Journal of Financial and Economic Practice

Journal of Financial and Economic Practice Analyzing Investment Data Using Conditional Probabilities: The Implications for Investment Forecasts, Stock Option Pricing, Risk Premia, and CAPM Beta Calculations By Richard R. Joss, Ph.D. Resource Actuary,

More information

Developing a Utility/Customer Partnership To Improve Power Quality and Performance

Developing a Utility/Customer Partnership To Improve Power Quality and Performance Developing a Utility/Customer Partnership To Improve Power Quality and Performance Mark McGranaghan Electrotek Concepts Knoxville, TN Abstract Many industrial and commercial electric customers now require

More information

Products reliability assessment using Monte-Carlo simulation

Products reliability assessment using Monte-Carlo simulation Products reliability assessment using Monte-Carlo simulation Dumitrascu Adela-Eliza and Duicu Simona Abstract Product reliability is a critical part of total product quality. Reliability is a measure of

More information

REQUIREMENTS FOR A REAL-TIME RISK MONITORING TOOL TO REDUCE TRANSMISSION GRID NUCLEAR PLANT VULNERABILITIES

REQUIREMENTS FOR A REAL-TIME RISK MONITORING TOOL TO REDUCE TRANSMISSION GRID NUCLEAR PLANT VULNERABILITIES REQUIREMENTS FOR A REAL-TIME RISK MONITORING TOOL TO REDUCE TRANSMISSION GRID NUCLEAR PLANT VULNERABILITIES M. D. Muhlheim, 1 L. C. Markel, 2 F. J. Rahn, 3 and B. P. Singh 4 1 Oak Ridge National Laboratory,

More information

17. SIMPLE LINEAR REGRESSION II

17. SIMPLE LINEAR REGRESSION II 17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.

More information

An Ethernet Cable Discharge Event (CDE) Test and Measurement System

An Ethernet Cable Discharge Event (CDE) Test and Measurement System An Ethernet Cable Discharge Event (CDE) Test and Measurement System Wei Huang, Jerry Tichenor ESDEMC Technology LLC Rolla, MO, USA whuang@esdemc.com Abstract A Cable Discharge Event (CDE) is an electrostatic

More information

Q. Why does OG&E clear vegetation away from power lines? A. Trees that grow into power lines can cause problems in multiple ways:

Q. Why does OG&E clear vegetation away from power lines? A. Trees that grow into power lines can cause problems in multiple ways: Q. Why does OG&E clear vegetation away from power lines? A. Trees that grow into power lines can cause problems in multiple ways: Outages Tree limbs contacting power lines are one of the most common causes

More information

Electrical Predictive and Preventative Maintenance

Electrical Predictive and Preventative Maintenance Electrical Predictive and Preventative Maintenance Electrical and mechanical equipment is subject to failure at the worst possible time for no apparent reason. - Mose Ramieh III There are two types

More information

Part 1 System Modeling & Studies for Existing Systems

Part 1 System Modeling & Studies for Existing Systems Part 1 System Modeling & Studies for Existing Systems Operation Technology, Inc. Copyright 2009 Result of rapid release of energy due to an arcing fault between two conductors. Bus voltages > 208V Temperatures

More information

Generic Reliability Evaluation Method for Industrial Grids with Variable Frequency Drives

Generic Reliability Evaluation Method for Industrial Grids with Variable Frequency Drives Energy and Power Engineering, 2013, 5, 83-88 doi:10.4236/epe.2013.54b016 Published Online July 2013 (http://www.scirp.org/journal/epe) Generic Reliability Evaluation Method for Industrial Grids with Variable

More information

MOBILE SYSTEM FOR DIAGNOSIS OF HIGH VOLTAGE CABLES (132KV/220KV) VLF-200 HVCD

MOBILE SYSTEM FOR DIAGNOSIS OF HIGH VOLTAGE CABLES (132KV/220KV) VLF-200 HVCD MOBILE SYSTEM FOR DIAGNOSIS OF HIGH VOLTAGE CABLES (132KV/220KV) VLF-200 HVCD VERY LOW FREQUENCY (VLF) - PARTIAL DISCHARGES AND TANGENT DELTA HV/EHV POWER CABLES DIAGNOSTIC AND ON-SITE FIELD TESTING WITH

More information

POWER TRANSFORMER LIFE-CYCLE COST REDUCTION

POWER TRANSFORMER LIFE-CYCLE COST REDUCTION POWER TRANSFORMER LIFE-CYCLE COST REDUCTION Glenn Swift Alpha Power Technologies Winnipeg, Canada Tom Molinski Manitoba Hydro Winnipeg, Canada ABSTRACT Using long-term thermal loss-of-life analysis, probability

More information

Typical Data Requirements Data Required for Power System Evaluation

Typical Data Requirements Data Required for Power System Evaluation Summary 66 Carey Road Queensbury, NY 12804 Ph: (518) 792-4776 Fax: (518) 792-5767 www.nepsi.com sales@nepsi.com Harmonic Filter & Power Capacitor Bank Application Studies This document describes NEPSI

More information

Value of Security Assessment - Extensions and Applications

Value of Security Assessment - Extensions and Applications Value of Security Assessment - Extensions and Applications A thesis submitted to the University of Manchester Institute of Science and Technology for the degree of Doctor of Philosophy 2003 Dilan Supun

More information

Recall this chart that showed how most of our course would be organized:

Recall this chart that showed how most of our course would be organized: Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

More information

Underground vs. Overhead Transmission and Distribution

Underground vs. Overhead Transmission and Distribution electric power engineering Underground vs. Overhead Transmission and Distribution Your Power System Specialists June 9, 2009 1 NATIONAL TRENDS Municipalities have passed laws requiring new distribution

More information

Electrical for Detached Garages: Updated Feb 19, 2016 for 2015 CE Code in force Jan. 1, 2016. Underground branch circuit feeding a detached garage:

Electrical for Detached Garages: Updated Feb 19, 2016 for 2015 CE Code in force Jan. 1, 2016. Underground branch circuit feeding a detached garage: Electrical for Detached Garages: Updated Feb 19, 2016 for 2015 CE Code in force Jan. 1, 2016 * Garage construction requires permits (electrical, building) * Permits must be applied for at the time. * Dial

More information

Services. Three Phase Service

Services. Three Phase Service Services Primary Service vs Secondary Service Overhead vs Underground Common Service Types Three Phase Wye Closed Open Delta Corner Grounded Center Tapped Open Single Phase Three Phase Service Wye Delta

More information

Telecommunication Line Protectors

Telecommunication Line Protectors TN CR 0025 Telecommunication Line s 1.1 The nature of telecom surges The telecom services considered in this report are transported on twisted pair. Each service has two wires, or lines, sometimes called

More information

Method for detecting software anomalies based on recurrence plot analysis

Method for detecting software anomalies based on recurrence plot analysis Journal of Theoretical and Applied Computer Science Vol. 6, No. 1, 2012, pp. 3-12 ISSN 2299-2634 http://www.jtacs.org Method for detecting software anomalies based on recurrence plot analysis Michał Mosdorf

More information

12.5: CHI-SQUARE GOODNESS OF FIT TESTS

12.5: CHI-SQUARE GOODNESS OF FIT TESTS 125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

More information

STOCHASTIC RELIABILITY MODELING OF RENEWABLE ENERGY SOURCES - APPLICATIONS TO ELECTRO-GEOTHERMAL GROUPS

STOCHASTIC RELIABILITY MODELING OF RENEWABLE ENERGY SOURCES - APPLICATIONS TO ELECTRO-GEOTHERMAL GROUPS STOCHASTIC RELIABILITY MODELING OF RENEWABLE ENERGY SOURCES - APPLICATIONS TO ELECTRO-GEOTHERMAL GROUPS FELEA. I., PANEA C., BENDEA G., MOLDOVAN V., CÎMPAN M. University of Oradea, Universităţii no.1,

More information

How To Check For Differences In The One Way Anova

How To Check For Differences In The One Way Anova MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

More information

Achieving Operational Efficiencies through On-Line Substation Monitoring. Vince Polsoni Powerstream Inc. Manager Station Sustainment EDIST 2016

Achieving Operational Efficiencies through On-Line Substation Monitoring. Vince Polsoni Powerstream Inc. Manager Station Sustainment EDIST 2016 Achieving Operational Efficiencies through On-Line Substation Monitoring Vince Polsoni Powerstream Inc. Manager Station Sustainment EDIST 2016 1 Agenda Maintenance Monitoring Equipment CMMS Data Historian

More information

PA PUC AERS & Metropolitan Edison Company Site Visit

PA PUC AERS & Metropolitan Edison Company Site Visit PA PUC AERS & Metropolitan Edison Company Site Visit October 26, 2010 Scott Lowry Director-Operation Services, Met-Ed Andrew Zulkosky Manager-Engineering, Met-Ed Curt Christenson Manager-York Customer

More information

Considering UNDERGROUND. tampaelectric.com

Considering UNDERGROUND. tampaelectric.com Considering UNDERGROUND Electric Service? tampaelectric.com INTRODUCTION The majority of Tampa Electric s customers receive their electric service through overhead construction, which is the standard type

More information

Improving Power Quality Through Distribution Design Improvements

Improving Power Quality Through Distribution Design Improvements Improving Power Quality Through Distribution Design Improvements Tom Short, EPRI PEAC, tshort@epri-peac.com Lee Taylor, Duke Power, lstaylor@duke-energy.com The three most-significant power quality concerns

More information

AMI and DA Convergence: Enabling Energy Savings through Voltage Conservation

AMI and DA Convergence: Enabling Energy Savings through Voltage Conservation AMI and DA Convergence: Enabling Energy Savings through Voltage Conservation September 2010 Prepared for: By Sierra Energy Group The Research & Analysis Division of Energy Central Table of Contents Executive

More information

The accurate calibration of all detectors is crucial for the subsequent data

The accurate calibration of all detectors is crucial for the subsequent data Chapter 4 Calibration The accurate calibration of all detectors is crucial for the subsequent data analysis. The stability of the gain and offset for energy and time calibration of all detectors involved

More information