Chapter 6 APPENDIX B. The Yield Curve and the Law of One Price. Valuing a Coupon Bond with ZeroCoupon Prices


 Denis Boone
 3 years ago
 Views:
Transcription
1 196 Part Interest Rates and Valuing Cash Flows Chapter 6 APPENDIX B The Yield Curve and the Law of One Price Thus far, we have focused on the relationship between the price of an individual bond and its yield to maturity. In this section, we explore the relationship between the prices and yields of different bonds. Using the Law of One Price, we show that given the spot interest rates, which are the yields of defaultfree zerocoupon bonds, we can determine the price and yield of any other defaultfree bond. As a result, the yield curve provides sufficient information to evaluate all such bonds. Valuing a Coupon Bond with ZeroCoupon Prices We begin with the observation that it is possible to replicate the cash flows of a coupon bond using zerocoupon bonds. Therefore, we can use the Valuation Principle s Law of One Price to compute the price of a coupon bond from the prices of zerocoupon bonds. For example, we can replicate a threeyear, 0 bond that pays 10% annual coupons using three zerocoupon bonds as follows: Coupon bond: $ year zero: year zero: 3year zero: $1100 Zerocoupon Bond portfolio: $1100 We match each coupon payment to a zerocoupon bond with a face value equal to the coupon payment and a term equal to the time remaining to the coupon date. Similarly, we match the final bond payment (final coupon plus return of face value) in three years to a threeyear, zerocoupon bond with a corresponding face value of $1100. Because the coupon bond cash flows are identical to the cash flows of the portfolio of zerocoupon bonds, the Law of One Price states that the price of the portfolio of zerocoupon bonds must be the same as the price of the coupon bond. To illustrate, assume that current zerocoupon bond yields and prices are as shown in Table 6.7 (they are the same as in Example 6.1). We can calculate the cost of the zerocoupon bond portfolio that replicates the threeyear coupon bond as follows: ZeroCoupon Bond Face Value Required Cost 1 Year Years Years * = Total Cost: $ By the Law of One Price, the threeyear coupon bond must trade for a price of $1153. If the price of the coupon bond were higher, you could earn an arbitrage profit by selling
2 Chapter 6 Bonds 197 TABLE 6.7 Maturity 1 Year Years 3 Years 4 Years Yields and Prices (per Face Value) for ZeroCoupon Bonds YTM 3.50% 4.00% 4.50% 4.75% Price $96.6 $9.46 $87.63 $83.06 the coupon bond and buying the zerocoupon bond portfolio. If the price of the coupon bond were lower, you could earn an arbitrage profit by buying the coupon bond and selling the zerocoupon bonds. Valuing a Coupon Bond Using ZeroCoupon Yields To this point, we have used the zerocoupon bond prices to derive the price of the coupon bond. Alternatively, we can use the zerocoupon bond yields. Recall that the yield to maturity of a zerocoupon bond is the competitive market interest rate for a riskfree investment with a term equal to the term of the zerocoupon bond. Since the cash flows of the bond are its coupon payments and face value repayment, the price of a coupon bond must equal the present value of its coupon payments and face value discounted at the competitive market interest rates (see Eq. 5.7 in Chapter 5): Price of a Coupon Bond = (6.4) where CPN is the bond coupon payment, YTM n is the yield to maturity of a zerocoupon bond that matures at the same time as the nth coupon payment, and FV is the face value of the bond. For the threeyear, 0 bond with 10% annual coupons considered earlier, we can use Eq. 6.4 to calculate its price using the zerocoupon yields in Table 6.7: This price is identical to the price we computed earlier by replicating the bond. Thus, we can determine the noarbitrage price of a coupon bond by discounting its cash flows using the zerocoupon yields. In other words, the information in the zerocoupon yield curve is sufficient to price all other riskfree bonds. Coupon Bond Yields P = PV(Bond Cash Flows) CPN 1 YTM 1 P = = $1153 Given the yields for zerocoupon bonds, we can use Eq. 6.4 to price a coupon bond. In Section 6.1, we saw how to compute the yield to maturity of a coupon bond from its price. Combining these results, we can determine the relationship between the yields of zerocoupon bonds and couponpaying bonds. Consider again the threeyear, 0 bond with 10% annual coupons. Given the zerocoupon yields in Table 6.7, we calculate a price for this bond of $1153. From Eq. 6.3, the yield to maturity of this bond is the rate y that satisfies: P = 1153 = CPN (1 YTM ) Á CPN FV (1 YTM n ) n 100 (1 y) (1 y) (1 y) 3
3 198 Part Interest Rates and Valuing Cash Flows We can solve for the yield by using a financial calculator: N I/Y PV PMT FV Given: Solve for: 4.44 Excel Formula: RATE(NPER,PMT,PV,FV) RATE(3,100, 1153,1000) Therefore, the yield to maturity of the bond is 4.44%. We can check this result directly as follows: P = = $1153 Because the coupon bond provides cash flows at different points in time, the yield to maturity of a coupon bond is a weighted average of the yields of the zerocoupon bonds of equal and shorter maturities. The weights depend (in a complex way) on the magnitude of the cash flows each period. In this example, the zerocoupon bonds yields were 3.5%, 4.0%, and 4.5%. For this coupon bond, most of the value in the present value calculation comes from the present value of the third cash flow because it includes the principal, so the yield is closest to the threeyear, zerocoupon yield of 4.5%. EXAMPLE 6.11 Yields on Bonds with the Same Maturity Problem Given the following zerocoupon yields, compare the yield to maturity for a threeyear, zerocoupon bond; a threeyear, coupon bond with 4% annual coupons; and a threeyear coupon bond with 10% annual coupons. All of these bonds are default free. Solution Plan Maturity 1 Year Years 3 Years 4 Years Zerocoupon YTM 3.50% 4.00% 4.50% 4.75% From the information provided, the yield to maturity of the threeyear, zerocoupon bond is 4.50%. Also, because the yields match those in Table 6.7, we already calculated the yield to maturity for the 10% coupon bond as 4.44%. To compute the yield for the 4% coupon bond, we first need to calculate its price, which we can do using Eq Since the coupons are 4%, paid annually, they are $40 per year for 3 years. The 0 face value will be repaid at that time. Once we have the price, we can use Eq. 6.3 to compute the yield to maturity. Execute Using Eq. 6.4, we have: P = = $ The price of the bond with a 4% coupon is $ From Eq. 6.4: $ = 40 (1 y) (1 y) (1 y) 3
4 Chapter 6 Bonds 199 We can calculate the yield to maturity using a financial calculator or spreadsheet: N I/Y PV PMT FV Given: Solve for: 4.47 Excel Formula: RATE(NPER,PMT,PV,FV) RATE(3,40, ,1000) To summarize, for the threeyear bonds considered: Coupon Rate 0% 4% 10% YTM 4.50% 4.47% 4.44% Evaluate Note that even though the bonds all have the same maturity, they have different yields. In fact, holding constant the maturity, the yield decreases as the coupon rate increases. We discuss why below. Example 6.11 shows that coupon bonds with the same maturity can have different yields depending on their coupon rates. The yield to maturity of a coupon bond is a weighted average of the yields on the zerocoupon bonds. As the coupon increases, earlier cash flows become relatively more important than later cash flows in the calculation of the present value. The shape of the yield curve keys us in on trends with the yield to maturity: 1. If the yield curve is upward sloping (as it is for the yields in Example 6.11), the resulting yield to maturity decreases with the coupon rate of the bond.. When the zerocoupon yield curve is downward sloping, the yield to maturity will increase with the coupon rate. 3. With a flat yield curve, all zerocoupon and couponpaying bonds will have the same yield, independent of their maturities and coupon rates. Treasury Yield Curves As we have shown in this section, we can use the zerocoupon yield curve to determine the price and yield to maturity of other riskfree bonds. The plot of the yields of coupon bonds of different maturities is called the couponpaying yield curve. When U.S. bond traders refer to the yield curve, they are often referring to the couponpaying Treasury yield curve. As we showed in Example 6.11, two couponpaying bonds with the same maturity may have different yields. By convention, practitioners always plot the yield of the most recently issued bonds, termed the ontherun bonds. Using similar methods to those employed in this section, we can apply the Law of One Price to determine the zerocoupon bond yields using the couponpaying yield curve. Thus, either type of yield curve provides enough information to value all other riskfree bonds.
5 PART Integrative Case This case draws on material from Chapters 3 6. Adam Rust looked at his mechanic and sighed. The mechanic had just pronounced a death sentence on his roadweary car. The car had served him well at a cost of $500 it had lasted through four years of college with minimal repairs. Now, he desperately needs wheels. He has just graduated, and has a good job at a decent starting salary. He hopes to purchase his first new car. The car dealer seems very optimistic about his ability to afford the car payments, another first for him. The car Adam is considering is $35,000. The dealer has given him three payment options: 1. Zero percent financing. Make a $4000 down payment from his savings and finance the remainder with a 0% APR loan for 48 months. Adam has more than enough cash for the down payment, thanks to generous graduation gifts.. Rebate with no money down. Receive a $4000 rebate, which he would use for the down payment (and leave his savings intact), and finance the rest with a standard 48month loan, with an 8% APR. He likes this option, as he could think of many other uses for the $ Pay cash. Get the $4000 rebate and pay the rest with cash. While Adam doesn t have $35,000, he wants to evaluate this option. His parents always paid cash when they bought a family car; Adam wonders if this really was a good idea. Adam s fellow graduate, Jenna Hawthorne, was lucky. Her parents gave her a car for graduation. Okay, it was a little Hyundai, and definitely not her dream car, but it was serviceable, and Jenna didn t have to worry about buying a new car. In fact, Jenna has been trying to decide how much of her new salary she could save. Adam knows that with a hefty car payment, saving for retirement would be very low on his priority list. Jenna believes she could easily set aside $3000 of her $45,000 salary. She is considering putting her savings in a stock fund. She just turned and has a long way to go until retirement at age 65, and she considers this risk level reasonable. The fund she is looking at has earned an average of 9% over the past 15 years and could be expected to continue earnings this amount, on average. While she has no current retirement savings, five years ago Jenna s grandparents gave her a new 30year U.S. Treasury bond with a $10,000 face value. Jenna wants to know her retirement income if she both (1) sells her Treasury bond at its current market value and invests the proceeds in the stock fund, and () saves an additional $3000 at the end of each year in the stock fund from now until she turns 65. Once she retires, Jenna wants those savings to last for 5 years until she is 90. Both Adam and Jenna need to determine their best options. 00
6 Case Questions PART Integrative Case What are the cash flows associated with each of Adam s three car financing options?. Suppose that, similar to his parents, Adam had plenty of cash in the bank so that he could easily afford to pay cash for the car without running into debt now or in the foreseeable future. If his cash earns interest at a 5.4% APR (based on monthly compounding) at the bank, what would be his best purchase option for the car? 3. In fact, Adam doesn t have sufficient cash to cover all his debts including his (substantial) student loans. The loans have a 10% APR, and any money spent on the car could not be used to pay down the loans. What is the best option for Adam now? (Hint: Note that having an extra $1 today saves Adam roughly $1.10 next year because he can pay down the student loans. So, 10% is Adam s time value of money in this case.) 4. Suppose instead Adam has a lot of credit card debt, with an 18% APR, and he doubts he will pay off this debt completely before he pays off the car. What is Adam s best option now? 5. Suppose Jenna s Treasury bond has a coupon interest rate of 6.5%, paid semiannually, while current Treasury bonds with the same maturity date have a yield to maturity of % (expressed as an APR with semiannual compounding). If she has just received the bond s tenth coupon, for how much can Jenna sell her treasury bond? 6. Suppose Jenna sells the bond, reinvests the proceeds, and then saves as she planned. If, indeed, Jenna earns a 9% annual return on her savings, how much could she withdraw each year in retirement? (Assume she begins withdrawing the money from the account in equal amounts at the end of each year once her retirement begins.) 7. Jenna expects her salary to grow regularly. While there are no guarantees, she believes an increase of 4% a year is reasonable. She plans to save $3000 the first year, and then increase the amount she saves by 4% each year as her salary grows. Unfortunately, prices will also grow due to inflation. Suppose Jenna assumes there will be 3% inflation every year. In retirement, she will need to increase her withdrawals each year to keep up with inflation. In this case, how much can she withdraw at the end of the first month of her retirement? What amount does this correspond to in today s dollars? (Hint: Build a spreadsheet in which you track the amount in her retirement account each month.) 8. Should Jenna sell her Treasury bond and invest the proceeds in the stock fund? Give at least one reason for and against this plan.
7
Chapter 8. Step 2: Find prices of the bonds today: n i PV FV PMT Result Coupon = 4% 29.5 5? 100 4 84.74 Zero coupon 29.5 5? 100 0 23.
Chapter 8 Bond Valuation with a Flat Term Structure 1. Suppose you want to know the price of a 10year 7% coupon Treasury bond that pays interest annually. a. You have been told that the yield to maturity
More informationLOS 56.a: Explain steps in the bond valuation process.
The following is a review of the Analysis of Fixed Income Investments principles designed to address the learning outcome statements set forth by CFA Institute. This topic is also covered in: Introduction
More informationCHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES 1. Expectations hypothesis. The yields on longterm bonds are geometric averages of present and expected future short rates. An upward sloping curve is
More informationFixed Income: Practice Problems with Solutions
Fixed Income: Practice Problems with Solutions Directions: Unless otherwise stated, assume semiannual payment on bonds.. A 6.0 percent bond matures in exactly 8 years and has a par value of 000 dollars.
More informationAnalysis of Deterministic Cash Flows and the Term Structure of Interest Rates
Analysis of Deterministic Cash Flows and the Term Structure of Interest Rates Cash Flow Financial transactions and investment opportunities are described by cash flows they generate. Cash flow: payment
More informationFNCE 301, Financial Management H Guy Williams, 2006
REVIEW We ve used the DCF method to find present value. We also know shortcut methods to solve these problems such as perpetuity present value = C/r. These tools allow us to value any cash flow including
More informationCHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
CHAPTER : THE TERM STRUCTURE OF INTEREST RATES CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
More informationGESTÃO FINANCEIRA II PROBLEM SET 2  SOLUTIONS
GESTÃO FINANCEIRA II PROBLEM SET  SOLUTIONS (FROM BERK AND DEMARZO S CORPORATE FINANCE ) LICENCIATURA UNDERGRADUATE COURSE 1 ST SEMESTER 010011 Yield to Maturity Chapter 8 Valuing Bonds 83. The following
More informationProblem Set: Annuities and Perpetuities (Solutions Below)
Problem Set: Annuities and Perpetuities (Solutions Below) 1. If you plan to save $300 annually for 10 years and the discount rate is 15%, what is the future value? 2. If you want to buy a boat in 6 years
More informationCHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES
Chapter  The Term Structure of Interest Rates CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future
More informationChapter 6 Interest Rates and Bond Valuation
Chapter 6 Interest Rates and Bond Valuation Solutions to Problems P61. P62. LG 1: Interest Rate Fundamentals: The Real Rate of Return Basic Real rate of return = 5.5% 2.0% = 3.5% LG 1: Real Rate of Interest
More informationCoupon Bonds and Zeroes
Coupon Bonds and Zeroes Concepts and Buzzwords Coupon bonds Zerocoupon bonds Bond replication Noarbitrage price relationships Zero rates Zeroes STRIPS Dedication Implied zeroes Semiannual compounding
More informationGlobal Financial Management
Global Financial Management Bond Valuation Copyright 999 by Alon Brav, Campbell R. Harvey, Stephen Gray and Ernst Maug. All rights reserved. No part of this lecture may be reproduced without the permission
More informationBond valuation. Present value of a bond = present value of interest payments + present value of maturity value
Bond valuation A reading prepared by Pamela Peterson Drake O U T L I N E 1. Valuation of longterm debt securities 2. Issues 3. Summary 1. Valuation of longterm debt securities Debt securities are obligations
More informationTopics in Chapter. Key features of bonds Bond valuation Measuring yield Assessing risk
Bond Valuation 1 Topics in Chapter Key features of bonds Bond valuation Measuring yield Assessing risk 2 Determinants of Intrinsic Value: The Cost of Debt Net operating profit after taxes Free cash flow
More informationYou just paid $350,000 for a policy that will pay you and your heirs $12,000 a year forever. What rate of return are you earning on this policy?
1 You estimate that you will have $24,500 in student loans by the time you graduate. The interest rate is 6.5%. If you want to have this debt paid in full within five years, how much must you pay each
More informationSolutions to Time value of money practice problems
Solutions to Time value of money practice problems Prepared by Pamela Peterson Drake 1. What is the balance in an account at the end of 10 years if $2,500 is deposited today and the account earns 4% interest,
More informationKey Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Chapter Outline. Multiple Cash Flows Example 2 Continued
6 Calculators Discounted Cash Flow Valuation Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationFinding the Payment $20,000 = C[1 1 / 1.0066667 48 ] /.0066667 C = $488.26
Quick Quiz: Part 2 You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value? You want to receive $5,000 per month in retirement.
More informationCHAPTER 5. Interest Rates. Chapter Synopsis
CHAPTER 5 Interest Rates Chapter Synopsis 5.1 Interest Rate Quotes and Adjustments Interest rates can compound more than once per year, such as monthly or semiannually. An annual percentage rate (APR)
More informationAnswers to Review Questions
Answers to Review Questions 1. The real rate of interest is the rate that creates an equilibrium between the supply of savings and demand for investment funds. The nominal rate of interest is the actual
More informationChapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams
Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present
More informationDiscounted Cash Flow Valuation
6 Formulas Discounted Cash Flow Valuation McGrawHill/Irwin Copyright 2008 by The McGrawHill Companies, Inc. All rights reserved. Chapter Outline Future and Present Values of Multiple Cash Flows Valuing
More informationA) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2%
1 Exam FM Questions Practice Exam 1 1. Consider the following yield curve: Year Spot Rate 1 5.5% 2 5.0% 3 5.0% 4 4.5% 5 4.0% Find the four year forward rate. A) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2% 2.
More informationChapter 3 Fixed Income Securities
Chapter 3 Fixed Income Securities Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Fixedincome securities. Stocks. Real assets (capital budgeting). Part C Determination
More informationChapter 5: Valuing Bonds
FIN 302 Class Notes Chapter 5: Valuing Bonds What is a bond? A longterm debt instrument A contract where a borrower agrees to make interest and principal payments on specific dates Corporate Bond Quotations
More informationBond Valuation. FINANCE 350 Global Financial Management. Professor Alon Brav Fuqua School of Business Duke University. Bond Valuation: An Overview
Bond Valuation FINANCE 350 Global Financial Management Professor Alon Brav Fuqua School of Business Duke University 1 Bond Valuation: An Overview Bond Markets What are they? How big? How important? Valuation
More informationPractice Questions for Midterm II
Finance 333 Investments Practice Questions for Midterm II Winter 2004 Professor Yan 1. The market portfolio has a beta of a. 0. *b. 1. c. 1. d. 0.5. By definition, the beta of the market portfolio is
More informationChapter 11. Bond Pricing  1. Bond Valuation: Part I. Several Assumptions: To simplify the analysis, we make the following assumptions.
Bond Pricing  1 Chapter 11 Several Assumptions: To simplify the analysis, we make the following assumptions. 1. The coupon payments are made every six months. 2. The next coupon payment for the bond is
More informationInternational Money and Banking: 12. The Term Structure of Interest Rates
International Money and Banking: 12. The Term Structure of Interest Rates Karl Whelan School of Economics, UCD Spring 2015 Karl Whelan (UCD) Term Structure of Interest Rates Spring 2015 1 / 35 Beyond Interbank
More informationMathematics. Rosella Castellano. Rome, University of Tor Vergata
and Loans Mathematics Rome, University of Tor Vergata and Loans Future Value for Simple Interest Present Value for Simple Interest You deposit E. 1,000, called the principal or present value, into a savings
More informationVALUATION OF DEBT CONTRACTS AND THEIR PRICE VOLATILITY CHARACTERISTICS QUESTIONS See answers below
VALUATION OF DEBT CONTRACTS AND THEIR PRICE VOLATILITY CHARACTERISTICS QUESTIONS See answers below 1. Determine the value of the following riskfree debt instrument, which promises to make the respective
More informationPrepared by: Dalia A. Marafi Version 2.0
Kuwait University College of Business Administration Department of Finance and Financial Institutions Using )Casio FC200V( for Fundamentals of Financial Management (220) Prepared by: Dalia A. Marafi Version
More informationExam 1 Morning Session
91. A high yield bond fund states that through active management, the fund s return has outperformed an index of Treasury securities by 4% on average over the past five years. As a performance benchmark
More informationPowerPoint. to accompany. Chapter 5. Interest Rates
PowerPoint to accompany Chapter 5 Interest Rates 5.1 Interest Rate Quotes and Adjustments To understand interest rates, it s important to think of interest rates as a price the price of using money. When
More informationBond Valuation. Capital Budgeting and Corporate Objectives
Bond Valuation Capital Budgeting and Corporate Objectives Professor Ron Kaniel Simon School of Business University of Rochester 1 Bond Valuation An Overview Introduction to bonds and bond markets» What
More informationChapter 4 Valuing Bonds
Chapter 4 Valuing Bonds MULTIPLE CHOICE 1. A 15 year, 8%, $1000 face value bond is currently trading at $958. The yield to maturity of this bond must be a. less than 8%. b. equal to 8%. c. greater than
More informationUnit VI. Complete the table based on the following information:
Aqr Review Unit VI Name 1. You have just finished medical school and you have been offered two jobs at a local hospital. The first one is a physical therapist for the hospital with a salary of $45,500.
More informationPractice Set #2 and Solutions.
FIN672 Securities Analysis & Portfolio Management Professor Michel A. Robe Practice Set #2 and Solutions. What to do with this practice set? To help MBA students prepare for the assignment and the exams,
More information2. Determine the appropriate discount rate based on the risk of the security
Fixed Income Instruments III Intro to the Valuation of Debt Securities LOS 64.a Explain the steps in the bond valuation process 1. Estimate the cash flows coupons and return of principal 2. Determine the
More informationYield to Maturity Outline and Suggested Reading
Yield to Maturity Outline Outline and Suggested Reading Yield to maturity on bonds Coupon effects Par rates Buzzwords Internal rate of return, Yield curve Term structure of interest rates Suggested reading
More informationChapter 6 Contents. Principles Used in Chapter 6 Principle 1: Money Has a Time Value.
Chapter 6 The Time Value of Money: Annuities and Other Topics Chapter 6 Contents Learning Objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate present and future values
More information2. How is a fund manager motivated to behave with this type of renumeration package?
MØA 155 PROBLEM SET: Options Exercise 1. Arbitrage [2] In the discussions of some of the models in this course, we relied on the following type of argument: If two investment strategies have the same payoff
More informationFinance Homework Julian Vu May 28, 2008
Finance Homework Julian Vu May 28, 2008 Assignment: p. 2829 Problems 11 and 12 p. 145147 Questions 42, 43, and 44, and Problems 41, 42, 43, and 413 P11 A Treasury Bond that matures in 10 years
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY Answers to Concepts Review and Critical Thinking Questions 1. The four parts are the present value (PV), the future value (FV), the discount
More informationPractice Set #1 and Solutions.
Bo Sjö 140503 Practice Set #1 and Solutions. What to do with this practice set? Practice sets are handed out to help students master the material of the course and prepare for the final exam. These sets
More informationI. Readings and Suggested Practice Problems. II. Risks Associated with DefaultFree Bonds
Prof. Alex Shapiro Lecture Notes 13 Bond Portfolio Management I. Readings and Suggested Practice Problems II. Risks Associated with DefaultFree Bonds III. Duration: Details and Examples IV. Immunization
More informationChapter 9 Bonds and Their Valuation ANSWERS TO SELECTED ENDOFCHAPTER QUESTIONS
Chapter 9 Bonds and Their Valuation ANSWERS TO SELECTED ENDOFCHAPTER QUESTIONS 91 a. A bond is a promissory note issued by a business or a governmental unit. Treasury bonds, sometimes referred to as
More informationCHAPTER 8 INTEREST RATES AND BOND VALUATION
CHAPTER 8 INTEREST RATES AND BOND VALUATION Answers to Concept Questions 1. No. As interest rates fluctuate, the value of a Treasury security will fluctuate. Longterm Treasury securities have substantial
More informationChapter Nine Selected Solutions
Chapter Nine Selected Solutions 1. What is the difference between book value accounting and market value accounting? How do interest rate changes affect the value of bank assets and liabilities under the
More informationNotes for Lecture 3 (February 14)
INTEREST RATES: The analysis of interest rates over time is complicated because rates are different for different maturities. Interest rate for borrowing money for the next 5 years is ambiguous, because
More informationZeroCoupon Bonds (Pure Discount Bonds)
ZeroCoupon Bonds (Pure Discount Bonds) The price of a zerocoupon bond that pays F dollars in n periods is F/(1 + r) n, where r is the interest rate per period. Can meet future obligations without reinvestment
More informationCHAPTER 4. The Time Value of Money. Chapter Synopsis
CHAPTER 4 The Time Value of Money Chapter Synopsis Many financial problems require the valuation of cash flows occurring at different times. However, money received in the future is worth less than money
More informationChapter 4: Time Value of Money
FIN 301 Homework Solution Ch4 Chapter 4: Time Value of Money 1. a. 10,000/(1.10) 10 = 3,855.43 b. 10,000/(1.10) 20 = 1,486.44 c. 10,000/(1.05) 10 = 6,139.13 d. 10,000/(1.05) 20 = 3,768.89 2. a. $100 (1.10)
More informationTIME VALUE OF MONEY PROBLEM #5: ZERO COUPON BOND
TIME VALUE OF MONEY PROBLEM #5: ZERO COUPON BOND Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction This assignment will focus on using the TI  83 to calculate the price of a Zero
More informationChapter 6. Discounted Cash Flow Valuation. Key Concepts and Skills. Multiple Cash Flows Future Value Example 6.1. Answer 6.1
Chapter 6 Key Concepts and Skills Be able to compute: the future value of multiple cash flows the present value of multiple cash flows the future and present value of annuities Discounted Cash Flow Valuation
More informationCHAPTER 14: BOND PRICES AND YIELDS
CHAPTER 14: BOND PRICES AND YIELDS PROBLEM SETS 1. The bond callable at 105 should sell at a lower price because the call provision is more valuable to the firm. Therefore, its yield to maturity should
More informationFIN 472 FixedIncome Securities Debt Instruments
FIN 472 FixedIncome Securities Debt Instruments Professor Robert B.H. Hauswald Kogod School of Business, AU The Most Famous Bond? Bond finance raises the most money fixed income instruments types of bonds
More informationDiscounted Cash Flow Valuation
Discounted Cash Flow Valuation Chapter 5 Key Concepts and Skills Be able to compute the future value of multiple cash flows Be able to compute the present value of multiple cash flows Be able to compute
More informationCALCULATOR TUTORIAL. Because most students that use Understanding Healthcare Financial Management will be conducting time
CALCULATOR TUTORIAL INTRODUCTION Because most students that use Understanding Healthcare Financial Management will be conducting time value analyses on spreadsheets, most of the text discussion focuses
More informationFin 3312 Sample Exam 1 Questions
Fin 3312 Sample Exam 1 Questions Here are some representative type questions. This review is intended to give you an idea of the types of questions that may appear on the exam, and how the questions might
More information2 The Mathematics. of Finance. Copyright Cengage Learning. All rights reserved.
2 The Mathematics of Finance Copyright Cengage Learning. All rights reserved. 2.3 Annuities, Loans, and Bonds Copyright Cengage Learning. All rights reserved. Annuities, Loans, and Bonds A typical definedcontribution
More informationCHAPTER 10. Bond Prices and Yields
CHAPTER 10 Bond Prices and Yields Interest rates go up and bond prices go down. But which bonds go up the most and which go up the least? Interest rates go down and bond prices go up. But which bonds go
More informationBasic Financial Tools: A Review. 3 n 1 n. PV FV 1 FV 2 FV 3 FV n 1 FV n 1 (1 i)
Chapter 28 Basic Financial Tools: A Review The building blocks of finance include the time value of money, risk and its relationship with rates of return, and stock and bond valuation models. These topics
More informationBond Valuation. What is a bond?
Lecture: III 1 What is a bond? Bond Valuation When a corporation wishes to borrow money from the public on a longterm basis, it usually does so by issuing or selling debt securities called bonds. A bond
More informationHP 12C Calculations. 2. If you are given the following set of cash flows and discount rates, can you calculate the PV? (pg.
HP 12C Calculations This handout has examples for calculations on the HP12C: 1. Present Value (PV) 2. Present Value with cash flows and discount rate constant over time 3. Present Value with uneven cash
More informationForward Contracts and Forward Rates
Forward Contracts and Forward Rates Outline and Readings Outline Forward Contracts Forward Prices Forward Rates Information in Forward Rates Reading Veronesi, Chapters 5 and 7 Tuckman, Chapters 2 and 16
More information5.5 The Opportunity Cost of Capital
Problems 161 The correct discount rate for a cash flow is the expected return available in the market on other investments of comparable risk and term. If the interest on an investment is taxed at rate
More informationExercise 6 Find the annual interest rate if the amount after 6 years is 3 times bigger than the initial investment (3 cases).
Exercise 1 At what rate of simple interest will $500 accumulate to $615 in 2.5 years? In how many years will $500 accumulate to $630 at 7.8% simple interest? (9,2%,3 1 3 years) Exercise 2 It is known that
More informationILLUSTRATING SPOT AND FORWARD INTEREST RATES Learning Curve August 2003
ILLUSTRATING SPOT AND FORWARD INTEREST RATES Learning Curve August 003 Practitioners in the bond markets need to determine the true interest rate for any period or term to maturity, for a number of applications.
More informationChapter. Bond Prices and Yields. McGrawHill/Irwin. Copyright 2008 by The McGrawHill Companies, Inc. All rights reserved.
Chapter Bond Prices and Yields McGrawHill/Irwin Copyright 2008 by The McGrawHill Companies, Inc. All rights reserved. Bond Prices and Yields Our goal in this chapter is to understand the relationship
More informationFinance CHAPTER OUTLINE. 5.1 Interest 5.2 Compound Interest 5.3 Annuities; Sinking Funds 5.4 Present Value of an Annuity; Amortization
CHAPTER 5 Finance OUTLINE Even though you re in college now, at some time, probably not too far in the future, you will be thinking of buying a house. And, unless you ve won the lottery, you will need
More informationMIT Sloan Finance Problems and Solutions Collection Finance Theory I Part 1
MIT Sloan Finance Problems and Solutions Collection Finance Theory I Part 1 Andrew W. Lo and Jiang Wang Fall 2008 (For Course Use Only. All Rights Reserved.) Acknowledgements The problems in this collection
More informationBonds and the Term Structure of Interest Rates: Pricing, Yields, and (No) Arbitrage
Prof. Alex Shapiro Lecture Notes 12 Bonds and the Term Structure of Interest Rates: Pricing, Yields, and (No) Arbitrage I. Readings and Suggested Practice Problems II. Bonds Prices and Yields (Revisited)
More informationCHAPTER 22: FUTURES MARKETS
CHAPTER 22: FUTURES MARKETS PROBLEM SETS 1. There is little hedging or speculative demand for cement futures, since cement prices are fairly stable and predictable. The trading activity necessary to support
More informationTIME VALUE OF MONEY #6: TREASURY BOND. Professor Peter Harris Mathematics by Dr. Sharon Petrushka. Introduction
TIME VALUE OF MONEY #6: TREASURY BOND Professor Peter Harris Mathematics by Dr. Sharon Petrushka Introduction This problem assumes that you have mastered problems 15, which are prerequisites. In this
More informationIndex. 1. Financial Markets: Overview. 2. The Bond Market. 3. Risks Associated with Fixed Income Investments. 4. Bond Characteristics and Valuation
Index 1. Financial Markets: Overview 2. The Bond Market 3. Risks Associated with Fixed Income Investments 4. Bond Characteristics and Valuation 5. Macro Environment Chapter 24 Bond Characteristics and
More informationSolutions to Practice Questions (Bonds)
Fuqua Business School Duke University FIN 350 Global Financial Management Solutions to Practice Questions (Bonds). These practice questions are a suplement to the problem sets, and are intended for those
More informationExercise. Exam Aid: All calculators are allowed but empty memory. Paper dictionaries are allowed. No other aids allowed in the exam room.
Exercise Exam Aid: All calculators are allowed but empty memory. Paper dictionaries are allowed. No other aids allowed in the exam room. Note: No formula sheets are allowed in the exam. Exercise: 01 Exercise
More informationNotes for Lecture 2 (February 7)
CONTINUOUS COMPOUNDING Invest $1 for one year at interest rate r. Annual compounding: you get $(1+r). Semiannual compounding: you get $(1 + (r/2)) 2. Continuous compounding: you get $e r. Invest $1 for
More informationAsset Valuation Debt Investments: Analysis and Valuation
Asset Valuation Debt Investments: Analysis and Valuation Joel M. Shulman, Ph.D, CFA Study Session # 15 Level I CFA CANDIDATE READINGS: Fixed Income Analysis for the Chartered Financial Analyst Program:
More informationAppendix C 1. Time Value of Money. Appendix C 2. Financial Accounting, Fifth Edition
C 1 Time Value of Money C 2 Financial Accounting, Fifth Edition Study Objectives 1. Distinguish between simple and compound interest. 2. Solve for future value of a single amount. 3. Solve for future
More informationUsing Financial Calculators
Chapter 4 Discounted Cash Flow Valuation 4B1 Appendix 4B Using Financial Calculators This appendix is intended to help you use your HewlettPackard or Texas Instruments BA II Plus financial calculator
More informationDuration and convexity
Duration and convexity Prepared by Pamela Peterson Drake, Ph.D., CFA Contents 1. Overview... 1 A. Calculating the yield on a bond... 4 B. The yield curve... 6 C. Optionlike features... 8 D. Bond ratings...
More informationBonds and Yield to Maturity
Bonds and Yield to Maturity Bonds A bond is a debt instrument requiring the issuer to repay to the lender/investor the amount borrowed (par or face value) plus interest over a specified period of time.
More information1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%?
Chapter 2  Sample Problems 1. If you wish to accumulate $140,000 in 13 years, how much must you deposit today in an account that pays an annual interest rate of 14%? 2. What will $247,000 grow to be in
More informationChapter Review and SelfTest Problems. Answers to Chapter Review and SelfTest Problems
236 PART THREE Valuation of Future Cash Flows Chapter Review and SelfTest Problems 7.1 Bond Values A Microgates Industries bond has a 10 percent coupon rate and a $1,000 face value. Interest is paid semiannually,
More informationBond Market Overview and Bond Pricing
Bond Market Overview and Bond Pricing. Overview of Bond Market 2. Basics of Bond Pricing 3. Complications 4. Pricing Floater and Inverse Floater 5. Pricing Quotes and Accrued Interest What is A Bond? Bond:
More informationThe Valuation and Characteristics of Bonds
CHAPTER 6 The Valuation and Characteristics of Bonds Chapter Outline The Basis of Value Investing Return Bond Valuation Bond Terminology and Practice Bond Valuation Basic Ideas Determining the Price of
More informationDick Schwanke Finite Math 111 Harford Community College Fall 2013
Annuities and Amortization Finite Mathematics 111 Dick Schwanke Session #3 1 In the Previous Two Sessions Calculating Simple Interest Finding the Amount Owed Computing Discounted Loans Quick Review of
More informationInterest Rates and Bond Valuation
Interest Rates and Bond Valuation Chapter 6 Key Concepts and Skills Know the important bond features and bond types Understand bond values and why they fluctuate Understand bond ratings and what they mean
More informationFinancialInstitutions Management. Solutions 1. 6. A financial institution has the following market value balance sheet structure:
FIN 683 Professor Robert Hauswald FinancialInstitutions Management Kogod School of Business, AU Solutions 1 Chapter 7: Bank Risks  Interest Rate Risks 6. A financial institution has the following market
More informationThe Pearson Series in Finance
The Pearson Series in Finance Bekaert/Hodrick International Financial Management Berk/DeMarzo Corporate Finance* Berk/DeMarzo Corporate Finance: The Core* Berk/DeMarzo/Harford Fundamentals of Corporate
More informationChapter 6 Interest rates and Bond Valuation. 2012 Pearson Prentice Hall. All rights reserved. 41
Chapter 6 Interest rates and Bond Valuation 2012 Pearson Prentice Hall. All rights reserved. 41 Interest Rates and Required Returns: Interest Rate Fundamentals The interest rate is usually applied to
More informationIng. Tomáš Rábek, PhD Department of finance
Ing. Tomáš Rábek, PhD Department of finance For financial managers to have a clear understanding of the time value of money and its impact on stock prices. These concepts are discussed in this lesson,
More informationTest 4 Created: 3:05:28 PM CDT 1. The buyer of a call option has the choice to exercise, but the writer of the call option has: A.
Test 4 Created: 3:05:28 PM CDT 1. The buyer of a call option has the choice to exercise, but the writer of the call option has: A. The choice to offset with a put option B. The obligation to deliver the
More informationCHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS
1 CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS (f) 1 The three step valuation process consists of 1) analysis of alternative economies and markets, 2) analysis of alternative industries
More informationCHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY
CHAPTER 5 INTRODUCTION TO VALUATION: THE TIME VALUE OF MONEY 1. The simple interest per year is: $5,000.08 = $400 So after 10 years you will have: $400 10 = $4,000 in interest. The total balance will be
More information高顿网校 财经讲堂 2013 年 CFA 一级考试难点解析. 全球财经证书培训领导品牌 Fixed Income (1) Embedded Options. Fixed Income (1) Example: Embedded Options
高顿网校 财经讲堂 2013 年 CFA 一级考试难点解析 高顿教育旗下品牌 : 高顿网校 Fixed Income (1) Embedded Options Option Type Benefits the Yield Price Call Issuer/Borrower Higher Lower Prepayment Issuer/Borrower Higher Lower Put Buyer
More informationCHAPTER 6 DISCOUNTED CASH FLOW VALUATION
CHAPTER 6 DISCOUNTED CASH FLOW VALUATION Answers to Concepts Review and Critical Thinking Questions 1. The four pieces are the present value (PV), the periodic cash flow (C), the discount rate (r), and
More information