# Duration and convexity

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Duration and convexity Prepared by Pamela Peterson Drake, Ph.D., CFA Contents 1. Overview... 1 A. Calculating the yield on a bond... 4 B. The yield curve... 6 C. Option-like features... 8 D. Bond ratings E. The coupon-yield relationship Duration A. Macauley s duration B. Modified duration C. Effective duration D. Examples E. Why worry? Convexity A. Calculating convexity B. Effective convexity Additional readings Terminology... 20

2 1. Overview Long-term debt securities, such as notes and bonds, are legally binding commitments by the borrower/issuer to repay the principal amount when promised. Notes and bonds may also require the borrower to pay interest periodically, typically semi-annually or annually, and generally stated as a percentage of the face value of the bond or note. A bond s term to maturity is the number of years over which the issuer has promised the obligation s cash flows. The term to maturity is important in bond analysis because it determines the bond s cash flows. Further, the yield is related to the bond s maturity because of the yield-curve effect and, hence, a bond s price volatility is affected by the term to maturity. The principal value is the amount that the issuer (i.e., borrower) agrees to repay at the maturity date. The principal amount of the loan is referred to as the par value, the principal, the maturity value, the redemption value, or the face value. THE YIELD CURVE The yield-curve is the relation between maturity and yield. The normal yield curve is one in which the securities with longer maturities are associated with higher yields. Yield However, inverted yield curves do occur, such that shorter-term securities have higher yields. Yield Maturity Bonds may be coupon bonds or zero-coupon bonds. In the case of a coupon bond, the issuer pays interest periodically, as a percentage of the bond s face value. We refer to the interest payments as coupon payments or coupons and the Maturity The inverted yield curve is often a pre-cursor of a recessionary economic period. percentage rate as the coupon rate. If these coupons are a constant amount, paid at regular intervals, we refer to the security paying them as having a straight coupon. A debt security that does not have a promise to pay interest we refer to as a zero-coupon note or bond. Though most corporate bonds are straight coupon bonds, the issuer may design an interest payment scheme for a bond that deviates from the semi-annual coupon payments. Variations in interest payments include: Deferred interest: interest payments begin at some specified time in the future. Step-up interest: the coupon rate is low at the beginning of the life of the bond, but increases at a specified later point in time to a specified rate. Payment-in-kind interest (PIK): the investor has a choice of receiving cash or a similar bond in lieu of interest. Reset interest: the coupon rate is revised periodically as market interest rates change to force the price of the bond to a predetermined level. FIN250: Duration and Convexity 1

3 The value of a debt security today is the present value of the promised future cash flows, which are the interest and the maturity value. Therefore, the present value of a debt is the sum of the present value of the interest payments and the present value of the maturity value. To calculate the value of a debt security, we discount these future cash flows at some rate that reflects both the time value of money and the uncertainty of receiving these future cash flows. We refer to this discount rate as YIELD TERMINOLOGY Yield-to-maturity (YTM): the average annual return assuming the bond is held to maturity. Yield-to-call: annual return if the bond is called at a specified point in time (and price). Effective annual return: the return over a year considering the interest and the change in price over the year. Horizon yield: the return calculated for a specified horizon, future yield, and reinvestment rate. Current yield: annual interest divided by the current price. the yield. The more uncertain the future cash flows, the greater the yield. It follows that the greater the yield, the lower the value of the debt security. EXAMPLE: HORIZON YIELD Consider bonds that have a 10 percent coupon rate, matures in 10 years, and is currently priced at 95. What is the realized yield in two years if the reinvestment rate is 7.5 percent and the yield in two years is 7 percent? The current price of the bond is \$950 or 95. This is the present value, PV. The future value of the interest is \$ or [PMT=\$50,n=4,i=3.75 percent] The future value of the bond is \$1, or [PMT=\$50,n=16,FV=\$1,000,i=3.5] The future value with reinvested cash flows is \$ , = \$1, or The number of periods is 4. Solving for the yield: PV = 950 FV = N = 4 Solve for i i = Six-month yield = percent Horizon yield is percent x 2 = percent The uncertainty of the bond s future cash flows is affected, in part, by whether the bond is secured or unsecured. A secured bond is back by the legal claim to specific property, whereas the unsecured bond is backed only by the general credit of the borrower. Unsecured bonds are FIN250: Duration and Convexity 2

4 also referred to as debentures. A subordinated debenture is an unsecured bond that is junior to senior unsecured bonds, and hence there is more uncertainty pertaining to these securities. In Wall Street terminology, the term yield-to-maturity is used to describe an annualized yield on a security if the security is held to maturity. This is the standard for quoting a market yield on a security. For example, if a bond has a return of 5 percent over a six-month period, the annualized yield-to-maturity for a year is 2 times 5 percent or 10 percent. In the valuation of a bond that pays interest semi-annually which includes most U.S. corporate bonds the discount rate is the six-month yield (that is, the yield-to-maturity divided by 2). The present value of the maturity value is the present value of a future amount. In the case of a straight coupon security, the present value of the interest payments is the present value of an annuity. In the case of a zero-coupon security, the present value of the interest payments is zero, so the present value of the debt is the present value of the maturity value. We can rewrite the formula for the present value of a debt security using some new notation and some familiar notation. Because there are two different cash EXAMPLE: VALUATION OF A STRAIGHT BOND flows -- interest and maturity value - - let PMT represent the coupon Problem payment promised each period and Suppose a bond has a \$1,000 face value, a 10 percent coupon FV represent the maturity value. (paid semi-annually), five years remaining to maturity, and is priced to yield 8 percent. What is its value? Also, let N indicate the number of periods until maturity, t indicate a Solution specific period, and i indicate the Given information: yield. The present value of a debt Maturity value = FV = \$1,000 security, PV, is: Periodic cash flow = PMT = \$100/2 = \$50 Number of periods= N = 5 x 2 = 10 N Discount rate = i = 8 percent / 2 = 4 percent PMTt FV PV= + t (1+i) (1+i) t=1 If the bond pays interest semiannually, then N is the number of six-month periods until maturity and i is the six-month yield, or yield-tomaturity 2. N 10 \$50 \$1,000 PV= + ( ) ( ) t=1 t 10 = \$ \$ = \$1, Consider the following example. Suppose that the bond of the Wilma Company has four years remaining to maturity, a coupon rate of 5 percent, and is priced to yield 6 percent. What is the value of a Wilma bond? The value is 96.49: FIN250: Duration and Convexity 3

5 TI-83/84 Using TVM Solver N = 8 i = 3 PMT = 2.5 FV = 100 Solve for PV 100 FV 3 i/yr 8 n 2.5 PMT PV HP10B Microsoft Excel =PV(.03,8,2.5,100)*-1 Try it: Bond values 1. Suppose a bond is priced to yield 6 percent, with a maturity in five years and a coupon rate of 5 percent. What is this bond s quoted value? 2. Suppose a bond matures in six years, has a coupon rate of 6 percent, and is priced to yield 7 percent. What is this bond s quote? 3. Suppose a zero coupon bond matures in ten years. If this bond is priced to yield 10 percent, what is its quoted value? A. Calculating the yield on a bond We calculate the yield on a bond using the information about the bond s: 1. Maturity, which indicates the number of periods remaining, N; 2. Coupon, which indicates the cash flow, PMT; 3. Current price, which indicates the value of the bond today, PV; and 4. Face value, which indicates the cash flow at the end of the bon s life, FV. In other words, we have five elements in a bond valuation, and in the case of solving for the yield to maturity we are given four of the five elements. We cannot solve directly for the yield - -the solution is determined using iteration. Fortunately, our financial calculators and spreadsheets can do this for us. Suppose a bond with a 5 percent coupon (paid semi-annually), five years remaining to maturity, and a face value of \$1,000 has a price of \$800. What is the yield to maturity on this bond? Given: 1 Periodic cash flow = PMT = \$25 Number of periods = N = 10 Maturity value, M = FV = \$1,000 Present value = PV = \$800 1 Hint: The bond is selling at a discount, so the YTM must be greater than the coupon rate of 5 percent FIN250: Duration and Convexity 4

6 TI-83/84 Using TVM Solver N = 10 PV = 800 PMT = 25 FV = 1000 Solve for i Then multiply by 2 HP10B 1000 FV 800 +/- PV 10 n 25 PMT I X 2 Microsoft Excel =RATE(10,25,-800,1000,0) * 2 The yield per six months is 5.1 percent. Therefore, the yield to maturity is 5.1 percent x 2 =10.2 percent. BOND QUOTES A bond may be stated in terms of a percentage of the bond s face value or as a dollar value. Consider a bond with a face value of \$1,000 and a coupon rate of 6 percent. We can value this bond using the percentages or the dollar values: As a percentage As a dollar value Face value 100 \$1,000 Coupon payments 3 every six months \$30 every six months The advantage of using the percentage method (a.k.a. bond quote method) is that you don t have to know the bond s face value to calculate the yield or value you state every parameter as a percentage of the face value. Another way of describing a bond is to use the bond quote method. In this case, the interest payment and the value of the bond are stated as a percentage of the bond s face value. This is the method that you will see most often used in practice. For example, if a bond is quoted at 115, this means that it is trading at 115 percent of its face value. If it has a face value of \$500, it is therefore priced at \$1150. if it has a face value of \$500, it is valued at \$575. A bond quote of 85 indicates that the bond is trading for 85 percent of its face value. The bond quote method provides a more generic method of communicating a bond s value you don t have to know the bond s face value to determine its price. Continuing this same problem, restating the elements in terms of the bond quote, Periodic cash flow = PMT = 2.5 Number of periods = N = 10 Maturity value, M = FV = 100 Present value = PV = 80 FIN250: Duration and Convexity 5

7 TI-83/84 Using TVM Solver N = 10 PV = 80 PMT = 2.5 FV = 100 Solve for i Then multiply by 2 HP10B 100 FV 80 +/- PV 10 n 2.5 PMT I X 2 Microsoft Excel =RATE(10,2.5,-80,100,0) * 2 When we solve for the yield to maturity, we simply use 100 for the face value or FV. We solve the problem in the same manner as before. Try it: Bond yields 1. Suppose a bond is priced at 98, with a maturity in five years and a coupon rate of 5 percent. What is this bond s quoted value? 2. Suppose a bond matures in six years, has a coupon rate of 6 percent, and is quoted at 101. What is this bond s yield to maturity? 3. Suppose a zero coupon bond matures in ten years. If this bond is priced at 65, what is its yield to maturity? B. The yield curve The yield curve is the set of spot rates for different maturities of similar bonds. The normal yield curve is upward-sloping, which means that longer maturity securities have higher rates. Term structure theories are explanations for the shape of the yield curve: Expectations hypothesis Liquidity preference hypothesis Segmented market hypothesis The expectations hypothesis states that current interest rates are predictors of future interest rates (that is, forward rates). In other words, a spot rate on a two-year security (R 2 ) should be related to the spot rate on a one-year security (R 1 ) and the one-year forward rate one year from now ( 1 r 1 ): 2 (1 + R 2 ) 2 = (1 + R 1 ) (1 + 1 r 1 ) If the one-year rate is 5 percent and the two year rate is 6 percent, the expectations hypothesis implies that the one-year rate one year from today is the rate that solves the following: ( ) 2 = ( )(1 + 2 r 1 ) 2 You ll notice in this section that we are using an upper-case R to indicate the spot rate and a lower case R to indicate the forward (i.e., future) rate. FIN250: Duration and Convexity 6

8 Using Algebra, we see that the one year rate for next year that is inferred from the current rates is 7.01 percent: = 1.05 (1 + 2 r 1 ) 2r 1 = 7.01 percent YIELD CURVES: COMPARISON OF OCTOBER 2006 WITH OCTOBER 2004 AND OCTOBER % 5% 4% Yield 3% 2% 1% 10/27/ /27/ /27/2006 0% 1 mo Maturity in years The yield curve in October 2004 was a normal curve. The yield curve in October 2005 was a flattening curve. The yield curve in October 2006 was an inverted curve. Source of data: Yahoo! Finance and the U.S. Treasury The liquidity preference hypothesis states that investors prefer liquidity and therefore require a premium in terms of higher rates if they purchase long-term securities. The segmented market hypothesis states that there are different preferences for different segment of the market and that the yield for a given maturity is dependent on the supply and demand of securities with that maturity. No matter the explanation for the shape of the yield curve, the most accurate valuation of a bond considers the yield curve. We can consider the yield curve when we use spot rates for different maturities in the bond valuation: N CFt 0 t t=1 (1+i t) P= where i = discount rate for the period t t Consider annual-pay bond with a coupon of 5 percent, a face value of \$1,000, and four years to maturity. Suppose the yield curve indicates the following spot rates: 3 3 A spot rate is a current rate. FIN250: Duration and Convexity 7

9 Maturity Spot rate 1 year 4.0 percent 2 year 4.5 percent 3 year 5.0 percent 4 year 5.5 percent What is this bond s value? To determine this value, we discount the individual cash flows at the appropriate spot rate and then sum these present values. Maturity Spot rate Bond cash flow Present value of cash flow 4 1 year 4.0 percent years 4.5 percent years 5.0 percent years 5.5 percent Using the yield curve, the value of the bond is If, on the other hand, we had simply used the four-year spot rate, we the value of the bond is The extent of the difference depends on the slope of the yield curve C. Option-like features The issuer may add an option-like feature to a bond that will either provide the issuer or the investor more flexibility and/or protection. For example, a callable bond is a bond that the issuer can buy back at a specified price. This option is a call option (i.e., an option to buy) of the issuer and the investor bears the risk of the bond being called away, especially when interest rates have fallen. The callable bond agreement specifies the price at which the issuer will buy back the bond and there may be a schedule of prices and dates, with declining call prices as the bond approaches maturity. A putable bond, on the other hand, is a bond that gives the investor the right to sell the bond back to the issuer at a pre-determined price, usually triggered by an event, such as a change in control of the issuer. A putable bond, therefore, gives the investor a put option (i.e., an option to sell) on the bond. The yield to call is the yield on a callable bond, considering that the bond is called at the earliest date. Consider the following example. Suppose a company issued bonds that have five years remaining to maturity, and a coupon rate of 10 percent. These bonds have a current price of 115. These bonds are callable starting after two years at 110. What is the yield-to-maturity on these bonds? What is the yield-to-call on these bonds? The first step is to identify the given information: 4 This is calculated simply as the present value of the lump-sum future value. For example, for the cash flow of \$50 three years from now, the present value is \$50 ( ) 3 = \$ FIN250: Duration and Convexity 8

10 For the yield to maturity, Given parameter Yield to maturity Yield to call FV PV PMT 5 5 N 10 4 TI-83/84 Using TVM Solver N = 10 PV = 115 PMT = 5 FV = 100 Solve for i Then multiply by 2 HP10B 100 FV 115 +/- PV 10 n 5 PMT I X 2 Microsoft Excel =RATE(10,5,-115,100,0) * 2 The yield to maturity is percent. For the yield to call, TI-83/84 Using TVM Solver N = 4 PV = 115 PMT = 5 FV = 110 Solve for i Then multiply by 2 HP10B 110 FV 115 +/- PV 4 n 5 PMT I X 2 Microsoft Excel =RATE(4,5,-115,110,0) * 2 The yield to call is x 2 = percent. We can see the relation between these yields on the bond s current value (that is, the PV) in bond quote terms: 30% 25% Yield 20% 15% Yield to maturity Yield to call 10% 5% 0% Bond quote Both the yield to call and the yield to maturity are lower for higher current bond values. FIN250: Duration and Convexity 9

11 Another option-like feature is a conversion feature. A convertible bond has such a feature, which gives the investor the right to exchange the debt for a specified other security of the issuer, such as common stock. The exchange rate is specified in the convertible bond agreement. The valuation of a bond with option-like features is quite complex because it involves valuing the option as well. D. Bond ratings A bond rating is an evaluation of the default risk of a given debt issue by a third party, a ratings service. There are three major ratings services: Moody s, Standard & Poor s, and Fitch. Ratings range from AAA to D, with some further ratings within a class indicated as + and or with numbers, 1, 2 and 3. The top four ratings classes (without counting breakdowns for +,- or 1,2,3) indicate investment-grade securities. Speculative grade bonds (a.k.a. junk bonds) have ratings in the next two classes. C-rated bonds are income or revenue bonds, trading flat (in arrears), whereas D-rated bonds are in default. Ratings are the result of a fundamental analysis of a bond issue, assessing the default risk of the issue. Ratings are affected by many factors, including: profitability (+) size (+) cash flow coverage (+) financial leverage ( ) earnings instability ( ) Ratings most often are the same across the rating agencies, but split ratings do occur. Ratings are reviewed periodically and may be revised upward or downward as the financial circumstances of the issuer change. For a given issuer, ratings are performed on the most senior unsecured issue and then junior issues are rated (generally at a lower rating) according to their indentures. Because bond ratings are of specific issues of an issuer, it is possible for a given issuer to have bonds that are rated differently. The primary differences relate to maturity and security on the particular issue. E. The coupon-yield relationship When we look at the value of a bond, we see that its present value is dependent on the relation between the coupon rate and the yield. If the coupon is less than the yield to maturity, the bond sells at a discount from its face or maturity value. If the coupon is greater than the yield to maturity, the bond sells at a premium to its face value. If the coupon is equal to the yield to maturity, the bond sells at par value (its face value). Consider a bond that pays 5 percent coupon interest semi-annually, has five years remaining to maturity, and a face value of \$1,000. The value of the bond depends on the yield to maturity: the greater that yield to maturity, the lower the value of the bond. For example, if the yield to FIN250: Duration and Convexity 10

12 Yield to maturity Coupon rate maturity is 10 percent, the value of the bond is \$ If, on the other hand, the yield to maturity is 4 percent, the value of the bond is \$1, \$1,400 \$1,200 Value of the bond \$1,000 \$800 \$600 \$400 \$200 \$0 20% 19% 18% 17% 16% 15% 14% 13% 12% 11% 10% 9% 8% 7% 6% 5% 4% 3% 2% 1% 0% Yield-to-maturity You can see that there is convexity in the relation between the value and the yield. In other words, the relation is not linear, but rather curvilinear. Coupon rate > Yield to maturity Premium Coupon rate < Yield to maturity Discount Coupon rate = Yield to maturity Face value 2. Duration The pattern of cash flows and the time remaining to maturity all relate to the sensitivity of a bond s price to changes in yields. Also, as we saw in the earlier section, the sensitivity of a bond s price depends on the size of the yield because of the curvilinear relation between yield and value. In general, The greater the coupon rate, the lower the sensitivity to changing interest rates, ceteris paribus. The greater the time remaining to maturity, the greater the sensitivity to changing interest rates, ceteris paribus. The greater the yield to maturity, the lower the sensitivity to changing interest rates. The convex relation between value and yield therefore means that we need to consider what the starting yield is as we consider the effect of changes in yields on the bond s value. Low Medium volatility High volatility Low An implication of this convex relationship is that the change in a bond s value depends on Low Medium what the starting yield is, how much it volatility volatility changes, and whether it is an up or down change in yield. That s where duration comes High High Low Periods remaining to High FIN250: Duration and Convexity maturity 11

13 in it s a measure of the average length of time for the bond s cash flows and is used to estimate the change in price of the bond for a change in yield. Basically, duration is a time-weighted measure of the length of a bond s life. The longer the duration, the greater the bond s volatility with respect to changes in the yield to maturity. There are different measures of duration for different purposes: Macauley duration, modified duration, and effective duration. A. Macauley s duration Macauley duration is the percentage change in the value of the bond from a small percentage change in its yield-to-maturity. We calculate this measure of duration using a time-weighting of cash flows. Present value of time weighted cash flow Macauley's duration = Present value of the bond The weight is the period. For example, if interest is paid annually, the weight for the first interest payment is 1.0, the weight for the second interest payment is 2.0, and so on. B. Modified duration Modified duration is a measure of the average length of time of the bond s investment, considering that some cash flows are received every six months and the largest cash flow (the face value) is received at maturity. Modified duration requires an adjustment to Macauley s duration: Maclauley's duration Modified duration = (1 + yield-to-maturity) If interest is paid semi-annually, the time weighting in the Macauley duration measures uses the whole and half years (0.5, 1.0, 1.5, 2.0, etc.) and the yield to maturity in the modified duration s denominator is the semi-annual rate (i.e., yield to maturity 2). C. Effective duration Effective duration is a measure of the impact on a bond s price of a change in yield-to-maturity. Though similar to Macauley duration in interpretation, its calculation is flexible to allow it to be used in cases when the bond has an embedded option (e.g., a callable bond). 5 PV- -PV+ Effective duration = 2 PV Δi where Δi = change in yield PV =Value of the bond if the yield went up by Δi PV = Value of the bond if the yield went down by Δi PV =Value of the bond at the yield-to-maturity 5 Macauley and modified duration are not applicable to securities with imbedded options because the price changes for these securities do not follow the curvilinear relation that we see in the bond without such an option. FIN250: Duration and Convexity 12

14 The approximate percentage change in price for both the modified and effective duration measures is: % change = 1 x duration x change in yield We say that this is an approximate change because we still haven t accounted for the convexity, or the curvature in the relationship. There is a measure of convexity that can be used to finetune this approximate price change to get a closer estimate of the change. D. Examples Consider a bond with a 10 percent coupon, five years to maturity, and a current price of \$1,000. What is the duration of this bond? The Macauley duration is and the modified duration is years. Present Time-weighted Period Cash flow value cash flow Sum Macauley duration = Modified duration = The value of the bond if the yield is 9 percent is , whereas the value of the bond if the yield is 11 percent is If the current yield is 10 percent, resulting in a current value is 100, the effective duration is years: Effective duration= 2(100)(0.01) years This means that if we expect yields to increase 2 percent, the expected change in this bond s price is: % change = 1 x duration x change in yield FIN250: Duration and Convexity 13

15 Using D to represent duration and i to represent the change in the yield, % change = D( i) % change = 1 (3.8625) ( 0.02) = percent In other words, duration is an estimate of the percentage price volatility of a bond. Let s see how accurate this is. If the yield goes from 10 percent to 8 percent, the bond s value goes from 100 to , a change of 8.111%. Why didn t we hit the price on the mark? Two reasons: (1) the estimate using duration is good for very small changes in yields and less accurate for large changes, and (2) we haven t considered the convexity. E. Why worry? Why worry about duration? Because we are interested in measuring and managing risk. For example, if we put together a portfolio of bonds we are interested in the risk of that portfolio, which is affected in part by the interest-sensitivity of the individual bonds that comprise the portfolio. Duration helps us understand a bond s risk, specifically its interest rate risk. And understanding interest rate risk of a bond or a portfolio of bonds, helps us understand what is necessary to hedge or otherwise affect the interest rate sensitivity. A few additional notes on duration: Duration is a first-order approximation of the sensitivity of a bond s price to a change in interest rates. It is accurate for small changes in yield, but not accurate for large changes in yield. Duration is a measure of interest rate sensitivity if there is a shift in a flat yield curve. Duration does not capture the sensitivity if the yield curve is sloped and if the change in the yield curve is not a parallel shift. Macauley and Modified duration do not apply to bonds that have embedded options, such as callable bonds and convertible bonds. Effective duration is used in this case. The Macauley duration of zero-coupon bonds is equal to the maturity of the bond. This is because there is only one cash flow and it occurs at maturity. The modified duration will be slightly lower than the zero coupon bond s maturity (because the modified duration is equal to the Macauley duration divided by one plus the yield). For all coupon bonds, duration is less than the maturity. This is because duration recognizes, by its time-weighting, that the interest shortens the effective maturity of the cash flows. The greater the coupon, ceteris paribus, the lower the duration. The greater the yield to maturity, the lower the duration. This is because duration involves discounting the future cash flows at the yield. Increasing the yield lowers the present value of the cash flows, and hence lowers the duration. The percentage price changes, once both duration and convexity are considered, are not symmetric. In other words, for a given yield to maturity and change in yield to maturity, the percentage change in price for an increase in the yield is not the same percentage change in price for a decrease in the yield. FIN250: Duration and Convexity 14

16 EXAMPLE: DURATION Consider an annual-pay bond with four years remaining to maturity, a coupon rate of 8 percent, and a yield of 6 percent. Macauley and modified duration Period Cash flow Present value of cash flows (discounted at 6 percent) Time-weighted cash flow (period x cash flow) Present value of time-weighted cash flow Macauley's duration = = Modified duration = = Approximate percentage price change for an increase in yield of 1 percent: Effective duration % change= (3.3889)(0.01) = percent Yield-tomaturity Present value of the bond 5 percent percent percent Effective duration = ( )/[2 ( )(0.01) = Approximate percentage price change for an increase in yield of 1 percent: % change = (3.3904)(0.01) = percent FIN250: Duration and Convexity 15

17 Try it: Duration 1. Consider a bond that has a coupon rate of 5 percent, five years remaining to maturity, and is priced to yield 4%. Assume semi-annual interest. a. What is the effective duration for this bond? b. What is the approximate change in price if the yield increases from 4% to 5%? 2. Consider a bond that has a coupon rate of 5 percent, ten years remaining to maturity, and is priced to yield 4%. Assume semi-annual interest. a. What is the effective duration for this bond? b. What is the approximate change in price if the yield increases from 4% to 5%? 3. Convexity Convexity is the degree of curvature of a bond s value-ytm relationship. Whereas duration approximates the change in a bond s value for a change in interest with a straight-line, convexity measures how much this change deviates from a straight line. In other words, we use convexity as a supplement to duration in order to refine our estimate of the bond s sensitivity to changes in the YTM. Different bonds may have different convexity. Consider three bonds, labeled 1, 2 and 3. Bond Coupon Maturity 1 5 percent 30 years 2 10 percent 30 years 3 10 percent 10 years These three bonds have different convexity by virtue of their different coupons and maturities: Bond 250 quote Bond 1 Bond 2 Bond 3 Duration is a first approximation to the sensitivity of a bond s price to changes in yields. You can gain more precision by considering convexity. A. Calculating convexity Yield to maturity Mathematically, convexity uses the second derivative of the change in price with respect to yield. The numerator is similar to duration, but there are two adjustments to consider the second derivative: time, t, is included as time-squared (the t 2 + t term), and an adjustment is made for one plus the squared yield, (1 + i) t. FIN250: Duration and Convexity 16

18 The numerator for convexity is: N CFt 2 (t t) 2 t PV t 1 (1 i) 2 2 i (1 i) Convexity is therefore this numerator, divided by the value of the bond, and then adjusted for the payments per year, m: If interest is annual pay, this becomes: If interest is semi-annual, this becomes: Convexity Convexity 2 1 PV PV 2 i 2 m 2 1 PV PV 2 i 1 PV PV 2 Convexity i 4 The estimated percentage change in price for a change in yield using only duration is: Using convexity, we can fine-tune this as: % change = D ( i) 2 C i % change = -D i 2 Suppose you have a bond with a duration of 12, convexity of 180, and a current yield of 6 percent. What is the expected price change in this bond if the yield changes from 6 percent to 7 percent? The first approximation, using only duration, gives us a price change of 12 x 0.01 = 0.12 or 12%. As a second approximation, using convexity in addition to duration, gives us: (0.01) Percentage price change = = = or 11.1% 2 Duration and convexity are not symmetric; that is, the prediction for a given increase in yield is not the same as the prediction for a given decrease in yield. You can see this if you take the last example and consider a decrease in the yield of one percent: Increase 1% Decrease 1% Duration Convexity Percentage change in price FIN250: Duration and Convexity 17

19 In other words, an increase of 1 percent produces a decrease of 11.1 percent, whereas a decrease in yields of 1 percent produces an increase in price of 12.9 percent. B. An example Consider the following example of a bond with a maturity of 5 years, a coupon rate of 4 percent, and is currently priced to yield 5 percent. The value of the bond at different yields to maturity is as follows: Value % 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% Yield to maturity The calculation of duration and convexity requires the following: (a) (b) (c) (d) (e) (f) (g) (h) (i) Year t Cash flow (1+i) t = (c) (d) = (a) x (e) = (e) x (h) (g) Timeweighted Present value of present value Change of cash flow cash flow (1+i) 2 t 2 + t change Sum Current value Value if yield increases by 1% FIN250: Duration and Convexity 18

20 The duration and convexity are therefore: Measure Value if yield decreases by 1% Calculation Calculated value Macauley's duration Modified duration ( ) Effective duration ( ) ( ) Convexity ( ) Percentage change in price for change in yield of 1% increase ( ) + ( ) decrease ( ) + ( ) If we compare this bond with a similar, yet zero coupon bond, we see the influence of the coupon on these measures of sensitivity: Measure 4% coupon bond Zero coupon bond Macauley's duration Modified duration Effective duration Convexity Percentage change in price for an increase in yield of 1% Percentage change in price for a decrase in yield of 1% The coupon reduces the duration of the bond, and hence its sensitivity to changes in the yield to maturity. C. Effective convexity An approximation of convexity is effective convexity, calculated as: PV + PV - 2 PV Effective convexity = where Δi = change in yield PV 0 (Δi) PV =Value of the bond if the yield went up by Δi PV = Value of the bond if the yield went down by Δi PV =Value of the bond at the yield-to-maturity FIN250: Duration and Convexity 19

21 4. Additional readings Duration, by Financial Pipeline Duration Basics, California Debt and Investment Advisory Commission Investment Mini-Quiz: Bonds, by Learning for Life Quiz: Bonds, by Smart Money 5. Terminology bond quote method, 5 bond rating, 10 callable bond, 8 convertible bond, 10 Convexity, 16 coupon bond, 1 coupon payments, 1 coupons, 1 current yield, 2 debentures, 3 deferred interest, 1 duration, 12 effective annual return, 2 effective convexity, 19 effective duration, 12 expectations hypothesis, 6 face value, 1 horizon yield, 2 investment-grade, 10 junk bonds, 10 liquidity preference hypothesis, 7 Macauley duration, 12 modified duration, 12 par value, 1 payment-in-kind interest, 1 principal, 1 putable bond, 8 redemption value, 1 reset interest, 1 secured bond, 3 speculative grade bonds, 10 split ratings, 10 step-up interest, 1 straight coupon, 1 subordinated debenture, 3 term to maturity, 1 unsecured bond, 3 yield, 2 yield curve, 6 yield-to-call, 2 yield-to-maturity, 2 zero-coupon, 1 FIN250: Duration and Convexity 20

22 Solutions to Try it problems Try it: Bond values 1. Suppose a bond is priced to yield 6 percent, with a maturity in five years and a coupon rate of 5 percent. What is this bond s quoted value? i = 3%; N = 10; PMT = 2.5; FV = 100 Solve for PV: PV = Suppose a bond matures in six years, has a coupon rate of 6 percent, and is priced to yield 7 percent. What is this bond s quote? i = 3.5%; N = 12; PMT = 3; FV = 100 Solve for PV: PV = Suppose a zero coupon bond matures in ten years. If this bond is priced to yield 10 percent, what is its quoted value? i = 5%; N = 20; PMT = 0; FV = 100 Solve for PV: PV = Try it: Bond yields 1. Suppose a bond is priced at 98, with a maturity in five years and a coupon rate of 5 percent. What is this bond s quoted value? PV = 98; N = 10; PMT = 2.5; FV = 100 Solve for i: i = ; YTM = % 2. Suppose a bond matures in six years, has a coupon rate of 6 percent, and is quoted at 101. What is this bond s yield to maturity? N = 12; PMT = 3; PV = 101; FV = 100 Solve for i: i = ; YTM = % 3. Suppose a zero coupon bond matures in ten years. If this bond is priced at 65, what is its yield to maturity? N = 20; PV = 65; FV = 100; PMT = 0 Solve for i: i = %; YTM = % FIN250: Duration and Convexity 21

23 Try it: Duration 1. Consider a bond that has a coupon rate of 5 percent, five years remaining to maturity, and is priced to yield 4%. Assume semi-annual interest. a. What is the effective duration for this bond? Yield Value 3% % % Effective duration = ( )/( ) = b. What is the approximate change in price if the yield increases from 4% to 5%? x 0.01 x 1 = % 2. Consider a bond that has a coupon rate of 5 percent, ten years remaining to maturity, and is priced to yield 4%. Assume semi-annual interest. a. What is the effective duration for this bond? Yield Value 3% % % Effective duration = ( )/(2 ( ) (0.01)) = b. What is the approximate change in price if the yield increases from 4% to 5%? x 0.01 x 1 = % Note: You should get the identical effective duration and price change if you use the dollar value of the bonds, assuming a \$1,000 face value. FIN250: Duration and Convexity 22

### Bond valuation. Present value of a bond = present value of interest payments + present value of maturity value

Bond valuation A reading prepared by Pamela Peterson Drake O U T L I N E 1. Valuation of long-term debt securities 2. Issues 3. Summary 1. Valuation of long-term debt securities Debt securities are obligations

### Chapter 11. Bond Pricing - 1. Bond Valuation: Part I. Several Assumptions: To simplify the analysis, we make the following assumptions.

Bond Pricing - 1 Chapter 11 Several Assumptions: To simplify the analysis, we make the following assumptions. 1. The coupon payments are made every six months. 2. The next coupon payment for the bond is

### Bonds and the Term Structure of Interest Rates: Pricing, Yields, and (No) Arbitrage

Prof. Alex Shapiro Lecture Notes 12 Bonds and the Term Structure of Interest Rates: Pricing, Yields, and (No) Arbitrage I. Readings and Suggested Practice Problems II. Bonds Prices and Yields (Revisited)

### Investment Analysis (FIN 670) Fall Homework 3

Investment Analysis (FIN 670) Fall 2009 Homework 3 Instructions: please read carefully You should show your work how to get the answer for each calculation question to get full credit You should make 2

### Topics in Chapter. Key features of bonds Bond valuation Measuring yield Assessing risk

Bond Valuation 1 Topics in Chapter Key features of bonds Bond valuation Measuring yield Assessing risk 2 Determinants of Intrinsic Value: The Cost of Debt Net operating profit after taxes Free cash flow

### CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES

Chapter - The Term Structure of Interest Rates CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future

### CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES

CHAPTER : THE TERM STRUCTURE OF INTEREST RATES CHAPTER : THE TERM STRUCTURE OF INTEREST RATES PROBLEM SETS.. In general, the forward rate can be viewed as the sum of the market s expectation of the future

### FIN 472 Fixed-Income Securities Debt Instruments

FIN 472 Fixed-Income Securities Debt Instruments Professor Robert B.H. Hauswald Kogod School of Business, AU The Most Famous Bond? Bond finance raises the most money fixed income instruments types of bonds

### Maturity and interest-rate risk

Interest rate risk, page 1 Maturity and interest-rate risk Suppose you buy one of these three bonds, originally selling at a yield to maturity of 8 percent. Yield to One-year 30-year 30-year maturity 8%

### Yield Measures, Spot Rates & Forward Rates

Fixed Income Yield Measures, Spot Rates & Forward Rates Reading - 57 www.proschoolonline.com/ 1 Sources of Return Coupon interest payment: Periodic coupon interest is paid on the par value of the bond

### CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES

CHAPTER 15: THE TERM STRUCTURE OF INTEREST RATES 1. Expectations hypothesis. The yields on long-term bonds are geometric averages of present and expected future short rates. An upward sloping curve is

### Chapter 9 Bonds and Their Valuation ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS

Chapter 9 Bonds and Their Valuation ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS 9-1 a. A bond is a promissory note issued by a business or a governmental unit. Treasury bonds, sometimes referred to as

### Figure 10.1 Listing of Treasury Issues

CHAPER 10 Bond Prices and Yields 10.1 BOND CHARACERISICS Bond Characteristics reasury Notes and Bonds Face or par value Coupon rate Zero coupon bond Compounding and payments Accrued Interest Indenture

### Finance for Cultural Organisations Lecture 5. Interest Rates and Bond Valuation

Finance for Cultural Organisations Lecture 5. Interest Rates and Bond Valuation Lecture 5: Interest Rates and Bond Valuation Know the important bond features and bond types Understand bond values and why

### Chapter 8. Step 2: Find prices of the bonds today: n i PV FV PMT Result Coupon = 4% 29.5 5? 100 4 84.74 Zero coupon 29.5 5? 100 0 23.

Chapter 8 Bond Valuation with a Flat Term Structure 1. Suppose you want to know the price of a 10-year 7% coupon Treasury bond that pays interest annually. a. You have been told that the yield to maturity

### Chapter 5: Valuing Bonds

FIN 302 Class Notes Chapter 5: Valuing Bonds What is a bond? A long-term debt instrument A contract where a borrower agrees to make interest and principal payments on specific dates Corporate Bond Quotations

### Introduction to Bonds

Bonds are a debt instrument, where the bond holder pays the issuer an initial sum of money known as the purchase price. In turn, the issuer pays the holder coupon payments (annuity), and a final sum (face

### Chapter 8 Interest Rates and Bond Valuation

University of Science and Technology Beijing Dongling School of Economics and management Chapter 8 Interest Rates and Bond Valuation Oct. 2012 Dr. Xiao Ming USTB 1 Key Concepts and Skills Know the important

### Interest Rates and Bond Valuation

Interest Rates and Bond Valuation Chapter 6 Key Concepts and Skills Know the important bond features and bond types Understand bond values and why they fluctuate Understand bond ratings and what they mean

### Bond Valuation. FINANCE 350 Global Financial Management. Professor Alon Brav Fuqua School of Business Duke University. Bond Valuation: An Overview

Bond Valuation FINANCE 350 Global Financial Management Professor Alon Brav Fuqua School of Business Duke University 1 Bond Valuation: An Overview Bond Markets What are they? How big? How important? Valuation

### Practice Set and Solutions #2

723G26/2012-10-10 Practice Set and Solutions #2 What to do with this practice set? Practice sets are handed out to help students master the material of the course and prepare for the final exam. These

### CHAPTER 16: MANAGING BOND PORTFOLIOS

CHAPTER 16: MANAGING BOND PORTFOLIOS PROBLEM SETS 1. While it is true that short-term rates are more volatile than long-term rates, the longer duration of the longer-term bonds makes their prices and their

### Chapter 4 Valuing Bonds

Chapter 4 Valuing Bonds MULTIPLE CHOICE 1. A 15 year, 8%, \$1000 face value bond is currently trading at \$958. The yield to maturity of this bond must be a. less than 8%. b. equal to 8%. c. greater than

### 2. Determine the appropriate discount rate based on the risk of the security

Fixed Income Instruments III Intro to the Valuation of Debt Securities LOS 64.a Explain the steps in the bond valuation process 1. Estimate the cash flows coupons and return of principal 2. Determine the

### ANALYSIS OF FIXED INCOME SECURITIES

ANALYSIS OF FIXED INCOME SECURITIES Valuation of Fixed Income Securities Page 1 VALUATION Valuation is the process of determining the fair value of a financial asset. The fair value of an asset is its

### Bond Valuation. Capital Budgeting and Corporate Objectives

Bond Valuation Capital Budgeting and Corporate Objectives Professor Ron Kaniel Simon School of Business University of Rochester 1 Bond Valuation An Overview Introduction to bonds and bond markets» What

### Fixed Income: Practice Problems with Solutions

Fixed Income: Practice Problems with Solutions Directions: Unless otherwise stated, assume semi-annual payment on bonds.. A 6.0 percent bond matures in exactly 8 years and has a par value of 000 dollars.

### Bond Valuation. Chapter 7. Example (coupon rate = r d ) Bonds, Bond Valuation, and Interest Rates. Valuing the cash flows

Bond Valuation Chapter 7 Bonds, Bond Valuation, and Interest Rates Valuing the cash flows (1) coupon payment (interest payment) = (coupon rate * principal) usually paid every 6 months (2) maturity value

### SS15 Fixed-Income: Basic Concepts SS15 Fixed-Income: Analysis of Risk

SS15 Fixed-Income: Basic Concepts SS15 Fixed-Income: Analysis of Risk SS 15 R52 FI Securities: Defining Elements R53 FI Markets: Issuance, Trading, and Funding R54 Introduction to FI Valuation SS 16 R55

### Bonds and Yield to Maturity

Bonds and Yield to Maturity Bonds A bond is a debt instrument requiring the issuer to repay to the lender/investor the amount borrowed (par or face value) plus interest over a specified period of time.

### Chapter 3 Fixed Income Securities

Chapter 3 Fixed Income Securities Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Fixed-income securities. Stocks. Real assets (capital budgeting). Part C Determination

### Chapter 10. Fixed Income Markets. Fixed-Income Securities

Chapter 10 Fixed-Income Securities Bond: Tradable security that promises to make a pre-specified series of payments over time. Straight bond makes fixed coupon and principal payment. Bonds are traded mainly

### VALUATION OF FIXED INCOME SECURITIES. Presented By Sade Odunaiya Partner, Risk Management Alliance Consulting

VALUATION OF FIXED INCOME SECURITIES Presented By Sade Odunaiya Partner, Risk Management Alliance Consulting OUTLINE Introduction Valuation Principles Day Count Conventions Duration Covexity Exercises

### CHAPTER 7: FIXED-INCOME SECURITIES: PRICING AND TRADING

CHAPTER 7: FIXED-INCOME SECURITIES: PRICING AND TRADING Topic One: Bond Pricing Principles 1. Present Value. A. The present-value calculation is used to estimate how much an investor should pay for a bond;

### Chapter 4 Interest Rates. Options, Futures, and Other Derivatives 9th Edition, Copyright John C. Hull

Chapter 4 Interest Rates 1 Types of Rates! Treasury rate! LIBOR! Fed funds rate! Repo rate 2 Treasury Rate! Rate on instrument issued by a government in its own currency 3 LIBOR! LIBOR is the rate of interest

### Chapter Nine Selected Solutions

Chapter Nine Selected Solutions 1. What is the difference between book value accounting and market value accounting? How do interest rate changes affect the value of bank assets and liabilities under the

### Exam 1 Morning Session

91. A high yield bond fund states that through active management, the fund s return has outperformed an index of Treasury securities by 4% on average over the past five years. As a performance benchmark

### Alliance Consulting BOND YIELDS & DURATION ANALYSIS. Bond Yields & Duration Analysis Page 1

BOND YIELDS & DURATION ANALYSIS Bond Yields & Duration Analysis Page 1 COMPUTING BOND YIELDS Sources of returns on bond investments The returns from investment in bonds come from the following: 1. Periodic

### CHAPTER 14: BOND PRICES AND YIELDS

CHAPTER 14: BOND PRICES AND YIELDS PROBLEM SETS 1. The bond callable at 105 should sell at a lower price because the call provision is more valuable to the firm. Therefore, its yield to maturity should

### Global Fixed Income Portfolio

Asset Management Global Fixed Income Portfolio CfBS Center for Business Studies AG Dr. Enzo Mondello, CFA, FRM, CAIA Content 1 2 3 4 5 6 7 8 9 10 11 12 Risks Associated with Investing in Bonds Fixed-Income

### Bond valuation and bond yields

RELEVANT TO ACCA QUALIFICATION PAPER P4 AND PERFORMANCE OBJECTIVES 15 AND 16 Bond valuation and bond yields Bonds and their variants such as loan notes, debentures and loan stock, are IOUs issued by governments

### Chapter 3. Fixed Income Securities

IE 5441 1 Chapter 3. Fixed Income Securities IE 5441 2 Financial instruments: bills, notes, bonds, annuities, futures contracts, mortgages, options,...; assortments that are not real goods but they carry

### FINANCIAL AND INVESTMENT INSTRUMENTS. Lecture 6: Bonds and Debt Instruments: Valuation and Risk Management

AIMS FINANCIAL AND INVESTMENT INSTRUMENTS Lecture 6: Bonds and Debt Instruments: Valuation and Risk Management After this session you should Know how to value a bond Know the difference between the term

Chapter Two Determinants of Interest Rates Interest Rate Fundamentals Nominal interest rates - the interest rate actually observed in financial markets directly affect the value (price) of most securities

### Investment and Portfolio Management. Lecture 8 Bond Prices and Yields. Bond Characteristics

Investment and Portfolio Management Ms. Pham Le Thu Nga Lecture 8 Bond Prices and Yields Chapter 14 14-2 Bond Characteristics Face or par value (normally bullet maturity) Coupon rate (normally fixed) Zero

### Practice Set #2 and Solutions.

FIN-672 Securities Analysis & Portfolio Management Professor Michel A. Robe Practice Set #2 and Solutions. What to do with this practice set? To help MBA students prepare for the assignment and the exams,

### LOS 56.a: Explain steps in the bond valuation process.

The following is a review of the Analysis of Fixed Income Investments principles designed to address the learning outcome statements set forth by CFA Institute. This topic is also covered in: Introduction

### Chapter 6 Valuing Bonds. (1) coupon payment - interest payment (coupon rate * principal) - usually paid every 6 months.

Chapter 6 Valuing Bonds Bond Valuation - value the cash flows (1) coupon payment - interest payment (coupon rate * principal) - usually paid every 6 months. (2) maturity value = principal or par value

### Notes for Lecture 3 (February 14)

INTEREST RATES: The analysis of interest rates over time is complicated because rates are different for different maturities. Interest rate for borrowing money for the next 5 years is ambiguous, because

### Global Financial Management

Global Financial Management Bond Valuation Copyright 999 by Alon Brav, Campbell R. Harvey, Stephen Gray and Ernst Maug. All rights reserved. No part of this lecture may be reproduced without the permission

### Principles of Managerial Finance. Lawrence J. Gitman Chad J. Zutter

Global edition Principles of Managerial Finance Fourteenth edition Lawrence J. Gitman Chad J. Zutter This page is intentionally left blank. 278 Part 3 Valuation of Securities Figure 6.2 Impact of Inflation

### VALUATION OF DEBT CONTRACTS AND THEIR PRICE VOLATILITY CHARACTERISTICS QUESTIONS See answers below

VALUATION OF DEBT CONTRACTS AND THEIR PRICE VOLATILITY CHARACTERISTICS QUESTIONS See answers below 1. Determine the value of the following risk-free debt instrument, which promises to make the respective

### Fixed Income Securities

3st lecture IES, UK October 7, 2015 Outline Bond Characteristics 1 Bond Characteristics 2 Bond Characteristics Government bond listing Rate Maturity mo/yr Bid Asked Chg Ask yld 3.000 July 12 108:22 108:23-20

Review for Exam 1 Instructions: Please read carefully The exam will have 20 multiple choice questions and 5 work problems. Questions in the multiple choice section will be either concept or calculation

### Chapter 4 Interest Rates. Options, Futures, and Other Derivatives 8th Edition, Copyright John C. Hull

Chapter 4 Interest Rates 1 Types of Rates Treasury rates LIBOR rates Repo rates 2 Treasury Rates Rates on instruments issued by a government in its own currency 3 LIBOR and LIBID LIBOR is the rate of interest

### CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS

1 CHAPTER 11 INTRODUCTION TO SECURITY VALUATION TRUE/FALSE QUESTIONS (f) 1 The three step valuation process consists of 1) analysis of alternative economies and markets, 2) analysis of alternative industries

Chapter Bond Prices and Yields McGraw-Hill/Irwin Copyright 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Bond Prices and Yields Our goal in this chapter is to understand the relationship

### 7. Bonds and Interest rates

7. Bonds and Interest rates 1 2 Yields and rates I m thinking of buying a bond that has a face value of \$1000, pays semiannual coupons of \$40 and has 7 years to maturity. The market price is \$943. Fixed

### Chapter 4 Bonds and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 4 Bonds and Their Valuation ANSWERS TO END-OF-CHAPTER QUESTIONS 4-1 a. A bond is a promissory note issued by a business or a governmental unit. Treasury bonds, sometimes referred to as government

### Chapter 4: Common Stocks. Chapter 5: Forwards and Futures

15.401 Part B Valuation Chapter 3: Fixed Income Securities Chapter 4: Common Stocks Chapter 5: Forwards and Futures Chapter 6: Options Lecture Notes Introduction 15.401 Part B Valuation We have learned

### Examination II. Fixed income valuation and analysis. Economics

Examination II Fixed income valuation and analysis Economics Questions Foundation examination March 2008 FIRST PART: Multiple Choice Questions (48 points) Hereafter you must answer all 12 multiple choice

### CHAPTER 14: BOND PRICES AND YIELDS

CHAPTER 14: BOND PRICES AND YIELDS 1. a. Effective annual rate on 3-month T-bill: ( 100,000 97,645 )4 1 = 1.02412 4 1 =.10 or 10% b. Effective annual interest rate on coupon bond paying 5% semiannually:

Answers to Review Questions 1. The real rate of interest is the rate that creates an equilibrium between the supply of savings and demand for investment funds. The nominal rate of interest is the actual

### CHAPTER 9 DEBT SECURITIES. by Lee M. Dunham, PhD, CFA, and Vijay Singal, PhD, CFA

CHAPTER 9 DEBT SECURITIES by Lee M. Dunham, PhD, CFA, and Vijay Singal, PhD, CFA LEARNING OUTCOMES After completing this chapter, you should be able to do the following: a Identify issuers of debt securities;

### FIN 472 Fixed-Income Securities Forward Rates

FIN 472 Fixed-Income Securities Forward Rates Professor Robert B.H. Hauswald Kogod School of Business, AU Interest-Rate Forwards Review of yield curve analysis Forwards yet another use of yield curve forward

### Term Structure of Interest Rates

Appendix 8B Term Structure of Interest Rates To explain the process of estimating the impact of an unexpected shock in short-term interest rates on the entire term structure of interest rates, FIs use

### Best Credit Data Bond Analytics Calculation Methodology

Best Credit Data Bond Analytics Calculation Methodology Created by: Pierre Robert CEO and Co-Founder Best Credit Data, Inc. 50 Milk Street, 17 th Floor Boston, MA 02109 Contact Information: pierre@bestcreditanalysis.com

### YIELD CURVE GENERATION

1 YIELD CURVE GENERATION Dr Philip Symes Agenda 2 I. INTRODUCTION II. YIELD CURVES III. TYPES OF YIELD CURVES IV. USES OF YIELD CURVES V. YIELD TO MATURITY VI. BOND PRICING & VALUATION Introduction 3 A

### Understanding duration and convexity of fixed income securities. Vinod Kothari

Understanding duration and convexity of fixed income securities Vinod Kothari Notation y : yield p: price of the bond T: total maturity of the bond t: any given time during T C t : D m : Cashflow from

### AFM 271 Practice Problem Set #1 Spring 2005

AFM 271 Practice Problem Set #1 Spring 2005 1. Text problems: Chapter 1 1, 3, 4 Chapter 2 5 Chapter 3 2, 6, 7 Chapter 4 2, 6, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 38, 40, 46, 48 Chapter 5 2, 4,

### Investment Analysis. Bond Value Bond Yields Bond Pricing Relationships Duration Convexity Bond Options. Bonds part 2. Financial analysis

Bond Value Bond Yields Bond Pricing Relationships Duration Convexity Bond Options Investment Analysis Bonds part 2 Financial analysis - 2 Duration Duration = the average maturity of the bond s promised

### CHAPTER15. Long-Term Liabilities. Acct202 15-1

CHAPTER15 Long-Term Liabilities Acct202 15-1 15-2 PreviewofCHAPTER15 Bond Basics Bonds are a form of interest-bearing notes payable. Three advantages over common stock: 1. Stockholder control is not affected.

### CHAPTER 10 BOND PRICES AND YIELDS

CHAPTER 10 BOND PRICES AND YIELDS 1. a. Catastrophe bond. Typically issued by an insurance company. They are similar to an insurance policy in that the investor receives coupons and par value, but takes

### Investments Analysis

Investments Analysis Last 2 Lectures: Fixed Income Securities Bond Prices and Yields Term Structure of Interest Rates This Lecture (#7): Fixed Income Securities Term Structure of Interest Rates Interest

### I. Readings and Suggested Practice Problems. II. Risks Associated with Default-Free Bonds

Prof. Alex Shapiro Lecture Notes 13 Bond Portfolio Management I. Readings and Suggested Practice Problems II. Risks Associated with Default-Free Bonds III. Duration: Details and Examples IV. Immunization

### Interest Rates and Bond Valuation

and Bond Valuation 1 Bonds Debt Instrument Bondholders are lending the corporation money for some stated period of time. Liquid Asset Corporate Bonds can be traded in the secondary market. Price at which

### Bond Pricing Fundamentals

Bond Pricing Fundamentals Valuation What determines the price of a bond? Contract features: coupon, face value (FV), maturity Risk-free interest rates in the economy (US treasury yield curve) Credit risk

Econ 121 Money and Banking Instructor: Chao Wei Answer Key to Midterm Provide a brief and concise answer to each question. Clearly label each answer. There are 50 points on the exam. 1. (10 points, 3 points

### The Term Structure of Interest Rates CHAPTER 13

The Term Structure of Interest Rates CHAPTER 13 Chapter Summary Objective: To explore the pattern of interest rates for different-term assets. The term structure under certainty Forward rates Theories

Chapter 6 Interest rates and Bond Valuation 2012 Pearson Prentice Hall. All rights reserved. 4-1 Interest Rates and Required Returns: Interest Rate Fundamentals The interest rate is usually applied to

### A) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2%

1 Exam FM Questions Practice Exam 1 1. Consider the following yield curve: Year Spot Rate 1 5.5% 2 5.0% 3 5.0% 4 4.5% 5 4.0% Find the four year forward rate. A) 1.8% B) 1.9% C) 2.0% D) 2.1% E) 2.2% 2.

### FNCE 301, Financial Management H Guy Williams, 2006

REVIEW We ve used the DCF method to find present value. We also know shortcut methods to solve these problems such as perpetuity present value = C/r. These tools allow us to value any cash flow including

### CHAPTER 10 Reporting and Analyzing Liabilities. Accounting for Notes Payable Obligations in the form of written notes are recorded as notes payable.

CHAPTER 10 Reporting and Analyzing Liabilities Accounting for Notes Payable Obligations in the form of written notes are recorded as notes payable. Notes payable usually require the borrower to pay interest

### Chapter 6 APPENDIX B. The Yield Curve and the Law of One Price. Valuing a Coupon Bond with Zero-Coupon Prices

196 Part Interest Rates and Valuing Cash Flows Chapter 6 APPENDIX B The Yield Curve and the Law of One Price Thus far, we have focused on the relationship between the price of an individual bond and its

### Index. 1. Financial Markets: Overview. 2. The Bond Market. 3. Risks Associated with Fixed Income Investments. 4. Bond Characteristics and Valuation

Index 1. Financial Markets: Overview 2. The Bond Market 3. Risks Associated with Fixed Income Investments 4. Bond Characteristics and Valuation 5. Macro Environment Chapter 24 Bond Characteristics and

### Goals. Bonds: Fixed Income Securities. Two Parts. Bond Returns

Goals Bonds: Fixed Income Securities History Features and structure Bond ratings Economics 71a: Spring 2007 Mayo chapter 12 Lecture notes 4.3 Bond Returns Two Parts Interest and capital gains Stock comparison:

FIN 534 Week 4 Quiz 3 (Str) Click Here to Buy the Tutorial http://www.tutorialoutlet.com/fin-534/fin-534-week-4-quiz-3- str/ For more course tutorials visit www.tutorialoutlet.com Which of the following

### Chapter 5 Bonds, Bond Valuation, and Interest Rates ANSWERS TO END-OF-CHAPTER QUESTIONS

Chapter 5 Bonds, Bond Valuation, and Interest Rates ANSWERS TO END-OF-CHAPTER QUESTIONS 5-1 a. A bond is a promissory note issued by a business or a governmental unit. Treasury bonds, sometimes referred

### Bond Price Arithmetic

1 Bond Price Arithmetic The purpose of this chapter is: To review the basics of the time value of money. This involves reviewing discounting guaranteed future cash flows at annual, semiannual and continuously

### Math of Finance. Texas Association of Counties January 2014

Math of Finance Texas Association of Counties January 2014 Money Market Securities Sample Treasury Bill Quote*: N Bid Ask Ask Yld 126 4.86 4.85 5.00 *(Yields do not reflect current market conditions) Bank

### CHAPTER 10. Bond Prices and Yields

CHAPTER 10 Bond Prices and Yields Interest rates go up and bond prices go down. But which bonds go up the most and which go up the least? Interest rates go down and bond prices go up. But which bonds go

### Overview of Lecture 4

Overview of Lecture 4 Examples of Quoted vs. True Interest Rates Banks Auto Loan Forward rates, spot rates and bond prices How do things change when interest rates vary over different periods? Present

### Mid-Term Exam Practice Set and Solutions.

FIN-469 Investments Analysis Professor Michel A. Robe Mid-Term Exam Practice Set and Solutions. What to do with this practice set? To help students prepare for the mid-term exam, two practice sets with

### Direct Transfer. Investment Banking. Investment Banking. Basic Concepts. Economics of Money and Banking. Basic Concepts

Basic Concepts Economics of Money and Banking 2014 South Carolina Bankers School Ron Best University of West Georgia rbest@westga.edu Risk and return: investors will only take on additional risk if they

### CHAPTER 20. Hybrid Financing: Preferred Stock, Warrants, and Convertibles

CHAPTER 20 Hybrid Financing: Preferred Stock, Warrants, and Convertibles 1 Topics in Chapter Types of hybrid securities Preferred stock Warrants Convertibles Features and risk Cost of capital to issuers

### Understanding Fixed Income

Understanding Fixed Income 2014 AMP Capital Investors Limited ABN 59 001 777 591 AFSL 232497 Understanding Fixed Income About fixed income at AMP Capital Our global presence helps us deliver outstanding

### Chapter 6. Interest Rates And Bond Valuation. Learning Goals. Learning Goals (cont.)

Chapter 6 Interest Rates And Bond Valuation Learning Goals 1. Describe interest rate fundamentals, the term structure of interest rates, and risk premiums. 2. Review the legal aspects of bond financing