The Determinants of Used Rental Car Prices

Size: px
Start display at page:

Download "The Determinants of Used Rental Car Prices"

Transcription

1 Sung Jin Cho / Journal of Economic Research 10 (2005) The Determinants of Used Rental Car Prices Sung Jin Cho 1 Hanyang University Received 23 August 2005; accepted 18 October 2005 Abstract This paper presents several important factors affecting the resale prices of used rental cars. In fact, this paper empirically shows and proves several conjectures regarding the determinants for used rental car resale values through the use of detailed micro data from one of the biggest rental car companies. Specifically, the age of a used car has two composite effects on its resale value, even though overall the two effects work negatively with a concavity, as rental cars ages. On the other hand, two mileage variables interact with each other and produce overall decreasing effects on the resale prices with the opposite interactions. In terms of the effects of brand image, Hyundai and Renault-Samsung have positive effects on resale values generally. Ssangyong has a positive effect on the resale values in the SUV category, and Kia and GM-Daewoo are generally inferior to the other brands in terms of resale values in all categories. In terms of seasonal effects, we can conclude that this paper confirms the general perception regarding seasonal effects on resale values. In details, from November to February, resale values are affected negatively, and March is the recovering month of increasing demand in the used car market. August seems to be the highest season for the used car market due to several demand increases. As a result, this paper plays an important role in providing a substantial amount of information on the factors affecting the resale prices of rental cars. Keywords : Rent a car; Used car; Rental Market; Average Residual Values; Seasonality. JEL classification : D4, L1, L8 1 Correspondence : ( ) (phone) , (fax) I am indebted to the provider of the rental data who wishes to remain anonymous. All errors are my own.

2 278 The Determinants of Used Rental Car Prices 1 Introduction Car rental companies invest tremendous sums of money to maintain their rental fleets, as they must constantly purchase and replace their rental cars. Until now, there has been no detailed research conducted on this area, because of the difficulty of data collection at the micro level. In fact, a research area to find out the determinants of used rental car pricing and to estimate used rental car s price has not been examined completely. As a result, only guesses and hypothesis have been widely spread. For this paper, I have collected a rich data set from the biggest rental car company. I will examine the important explanatory facts of the data and significant factors affecting the resale value of the company s fleets. Then, I will show how these factors can be used to estimate the actual resale values of used rental cars. This research will provide a foundation and basics for further research to be titled The Optimal Retirement Decision for Car Rental Companies. 2 To achieve the objective of this paper, I first investigate state variables that represent the condition of used rental cars. These state variables can be either internal or external state variables of used rental cars. In order to obtain information regarding the variables, I examine several regression models. In these regressions, I want to show which states variables are more important factors in determining the actual depreciation of used rental car values - between the cars s own state or external states. To achieve this, I use the depreciation ratio between new purchasing price and selling price as a dependent variable in the first regression. I then predict the prices of used rental cars and compare the predicted values with the actual resale values. This paper is constructed as follows. Chapter 2 explains the data set and its explanatory factors. Chapter 3 explains several models. Chapter 4 shows the estimation results. The paper ends with the Conclusion and future research. 2 Sungjin Cho and John Rust, 2005

3 Sung Jin Cho / Journal of Economic Research 10 (2005) The Data 2.1 Summary of the Data I obtained a data set from one of the largest car rental companies in the region in which I am interested. The company currently possesses over 12,000 cars. The rental cars in the company are used for either long-term or short-term rental. Long-term rental fleets account for 70% of the company s entire rental fleet. However, short term rental fleets usually dominate in tourist areas or at large airports. In contrast, the rental locations in large cities tend to specialize in long term rentals generally. I have all data for the company s rental fleets that were sold from the beginning of 2003 through July The data include 2376 sold cars during 2003, and 1225 sold cars in These cars were originally from 1999 to The data consist of four parts: (1). Registration data, which includes the name of each car, the brand name, car registration number, purchasing price, sale price, registration date, selling date, fuel type, engine displacement (CC); (2). Rental contract data for each car, including rental contract dates, revenue from each contract s, in-and-out kilometer readings, and in-and-out dates and times; (3). Maintenance data, which includes all maintenance data such as dates, details of maintenance, etc., for each rental car; and (4). Accident data, which contains all accidents records for all of the company s rental fleets during the relevant periods. I am continuously updating data from the company. I also obtained used car prices from several websites Classification Table 1 shows the classification of the company s rental fleets. I follow the company s own system of classification. The rental cars are classified as compact, mid-size, large-size, luxury, SUV (Sports Utility Vehicle), and RV (Recreational Vehicle). Generally speaking, the car types are classified by engine displacement from compact to luxury. But, for the classification of SUVs and RVs, the characteristics of the cars are more important in classification than is engine displacement.

4 280 The Determinants of Used Rental Car Prices Some of the automakers, such as A-company and B-company, manufacture all types of cars, whereas other manufacturers, such as C-company, D-company, and E-company only produce limited types of cars. 2.2 The Explanatory Facts of the Data Usually, the company sells its rental cars when they reach three years of age or 100,000 km of mileage. Wherever any car reaches one of two thresholds, the manager may decide at will to sell the car. However, I found out many exceptions regarding this rule. Table 1 Type Displacement Brand Name Number of Renal Cars Compact Below 1500cc A-company, B-company, 548 C-company Mid-Size 1500cc 2000cc A-company, B-company, 1260 C-company, D-company Large-Size 2000cc 2500cc A-company, B-company, 429 D-company Luxury Above 2500cc A-company, B-company, 619 E-company SUV 2000cc A-company, E-company 485 RV 2000cc A-company, B-company, 239 E-company Imported 1500cc BMW, Land Rover, etc Used Car Price. Table 2 summarizes average purchasing prices, average selling prices, average ages before resale at used car markets, and average residual values of the rental cars in my data set in terms of the seven types of cars. First, the table shows that large-size cars retain the highest residual values at time of selling, followed by luxury cars. Table 3 shows the average residual values in terms of brand and car type. In the compact-car category, A-company cars retains the highest residual values on average, followed next by B-company, then C-company.

5 Sung Jin Cho / Journal of Economic Research 10 (2005) Second, in the mid-size category, D-company retains the highest residual value, while Bcompany retains the lowest residual value. Third, in the large-size category, A-company and Dcompany cars retain similar residual values, and B-company once again retains again the lowest residual value. Fourth, E-company cars retain slightly higher residual values than A-company cars. Fifth, E-company SUVs retain higher residual values than A-company SUVs. Sixth, unlike the case of SUVs, A-company RVs retain the highest residual values, followed by B- company RVs. In fact, E-company RVs retain the lowest residual values at the time of resale. All of these facts should be confirmed in the sections on estimation to follow. Table 2 (All values are averages) (won/years) Type Purchasing Price Selling Price Residual Value 3 Age Compact 4,790, ,083, % 2.9 Mid-Size 12,812, ,846, % 2.8 Large-Size 20,370, ,105, % 2.9 Luxury 32,051, ,188, % 3.0 SUV 18,925, ,996, % 2.8 RV 15,834, ,935, % 2.8 Imported 72,361, ,365, % Average Ages and Kilometer Readings of Rental Fleets Prior to Resale Table 3 presents average kilometer readings, average number of accidents at the time of resale, and average repair costs per accidents, in terms of cars type. First, we can see that SUVs and RVs have the highest operating ratios, when we compare their average kilometer readings and average ages before resale. This phenomenon results in the lowest residual values, especially in case of SUVs from Table 2. Imported cars seems to have the lowest operating ratio. This is because the rental price of these imports are relatively high, and thus, these cars are less frequently rented than the other types of cars. In terms of average number of accidents, imported cars have the most frequent accidents. This suggested renters of imported cars may be overconfident with their 3 Residual values in terms of percentage at the time of resale.

6 282 The Determinants of Used Rental Car Prices Table 3 Type Band Average Residual Value A-company Compact B-company C-company A-company Mid-Size B-company D-company C-company A-company Large-Size B-company D-company A-company Luxury B-company E-company SUV A-company E-company A-company RV B-company E-company rental cars and drive carelessly. Excluding the imports, the average number of accidents are similar for all types of cars except for RVs, which have the lowest accident rate. Table 4 (All values are averages) Type Kilometers Ages Number of Cost Per Accidents Accident Compact 78,600 Km 2.9 years 0.8 times 794,337.3 Won Mid-Size 82,500 Km 2.8 years 0.8 times 707,610 Won Large-Size 77,600 Km 2.9 years 0.7 times 715,156.4 Won Luxury 88,800 Km 3.0 years 0.8 times 953,597.3 Won SUV 93,800 Km 2.8 years 0.7 times 1,159,387.2 Won RV 104,100 Km 2.8 years 0.6 times Won Imported 89,400 Km 3.6 years 1.1 times 1,133,889.2 Won As for average costs incurred per accident, compact cars have the highest repair costs per accident, even though the purchase prices of

7 Sung Jin Cho / Journal of Economic Research 10 (2005) compact cars are the lowest among the others. We can conjecture that compact cars tend to get into more severe accidents than other types of cars, i.e., compacts cars are, on average, damaged most seriously per accident. The SUV appears to be the next most severely damaged per accident. This is because SUVs are frequently overturned in accidents, because of their high center of gravity. This is currently a very important safety issue Seasonality Comparison According to several used-car market reports, the seasonality of the used car markets can be defined as follows (assuming one year can be divided into four categories): (1). The semi-decreasing 6 period (5 percent price drop on average) includes November and December; (2). The decreasing period (10 percent price drop on average) includes January and February. During these periods, car manufacturers tend to hold large sales events, hence consumers are inclined to buy brand new cars rather than used cars. Thus, it is natural that used rental cars become undersold in terms of prices; (3). The recovering period includes March, April, May and June. During this period, because the conditions for purchasing brand new cars become worse from the consumers point of view, used car prices recover somewhat, i.e., the demand for cars starts to move toward used cars; and (4). The increasing period includes July, August, September and October. During this period, because of increasing mobility and other seasonal needs arising from summer holidays, etc., used car prices increase in response to the increasing demand for used cars. These seasonality factors, in addition to monthly effects, will be examined in the next section. 3 The Estimation 3.1 Models Model A In order to find out the determinants of used rental car price, I estimate using a log linear model. This model explains how several factors

8 284 The Determinants of Used Rental Car Prices affect in depreciation of each rental car value. This is very important because this model will provide the elements that affect the resale value of rental cars. The dependent variable of the model is the log of the ratio between new purchase price and selling price of all rental cars. The independent variables of the model are as follows: kilometer reading, age of each car at time of resale, accident record (number of accidents and total repair costs for all accidents). I also want to see how many accidents make the manager indifferent toward resale value, whether or not each car has had any accidents. This model can also easily provide an elasticity for each determinant. The reason why I let the coefficient of the log of purchase price one is that I primarily wanted to find out important factors affecting the depreciation of the selling price relative to the purchasing price Models B and C In addition to Model A, I assume that there are other elements which affect resale values, elements representing the external states of rental cars. According to several interviews with top managers from the company, one of the most important factors would be the period when each used rental car is sold. These can be inserted into the model as monthly or quarterly dummies. Model B includes the quarterly seasonal dummies mentioned above. Model C includes monthly dummies. Therefore, in this model, I want to investigate whether this monthly division provides better results than just the separated twelve months. 3.2 Estimation First, I estimate all rental cars as a whole without separating them based on car-type. Then, I estimate each model after separating the renal cars based on car-type. These estimations are based on the ratio estimation. The level estimation follows each ratio estimation. Table 1 in Appendix A explains all important independent variables.

9 Sung Jin Cho / Journal of Economic Research 10 (2005) Pooled Estimation Estimated parameters We find very interesting point from these estimation results of all models. For one thing, the Age and Age 2 variables carry different signs. According to our expectation, Age must affect rental car resale values negatively. But, for estimations of these three models exhibit Age variable, rental car resale values are affected positively. However, this positive effect is offset by the negative effect of the Age 2 variable, and the whole effect of the two age variables (Age and Age 2 ) affects rental car resale values negatively, which meets our conventional expectations. However, an interesting point should be noted here. As a renal car gets older, its resale value does decrease but, the rate of decrease of resale value is small when the car is relatively new, but increase the car ages. In other words, as the older a rental car, the more rapidly its resale value falls. In fact, the age function for resale values is a concave function. This is because the second derivative is negative and the parameter value is more than twice as much as the parameter of the Age variable itself. This phenomenon is a result of the characteristics of rental cars. In fact, any cars that are used for rental purposes are usually exploited excessively and carelessly. In fact, rental users exhibit certain kinds of moral hazard, since rental cars are not owned, but just rented and considered as a sort of public good. Therefore, if there were two used cars in the market with the similar ages, but from different previous owners - one a private owner and the other a rental company - it is only natural that the former would definitely be preferred to the latter in the market. We can also find out another interesting point from the two Kilometer variables, Kilometer and Kilometer 2. In fact, their interaction is the opposite that of the two Age variables. Again, we expect the overall effects of the two Kilometer variables to be negative to the resale values of rental cars. At first, the Kilometer variable itself affects rental cars resale prices negatively. But, the Kilometer 2 variable has a positive parameter. This can be explained as follows: The overall effects of the two Kilometers variables are negatively related to the resale value of rental cars. But, as the kilometer reading of a renal car increases, the negative effect decreases because of the positiveness of the second derivative. Thus, as the kilometer reading of a rental car grows, the

10 286 The Determinants of Used Rental Car Prices car s resale value decreases at a decreasing rate. Thus, the kilometer function for the resale values of cars is convex. The Total Accident Costs variable has a negative sign which coincides with our conventional expectation. On the other hand, the number of accidents variable does not have any significant signs for all models. This means that the resale values of rental cars are determined not by the frequency of total accidents, but by the total severity of accidents that particular rental cars have experienced during their lives. In terms of types and brand name of rental cars, large-size A- company and D-company have significantly positive effects on resale values. This means that A-company and D-company appear to have built strong brand images in large-size category of the used car market. In fact, Acompany has about a 10% more favorable brand image than D-company in this category. The other important category is RV. In this category, E-company has a strong negative effect on the resale value of rental RVs. Next, we should examine the effects of seasonality for two models, B and C. Four divisions of the seasonal effect do not provide accurate information through Model B. According to Model C, February has a negative effect on the resale value of rental cars. Thus, it appears that the car rental company tends not to sell its rental cars during the month of February. However, market conditions begin to recover in March. This positive effects seems to be the highest in the month of August, when demand for used cars seems to be highest due to several factors, including summer holidays, increasing mobility, etc. However, since these pooled regressions can t provide better and more accurate informations regarding car brands and type, we should investigate these facts further in separate regressions for each type of rental cars. Price Estimation Based on Model C, which of the three models has the most comprehensive, I estimated the resale prices of the rental cars that had been sold between the beginning of 2003 and July 2004 and regressed them against actual resale values. Figure 1 shows the pooled regression result. In fact, it seems that the predicted resale prices are accurate estimates of actual resale prices. Compared to the estimation result of the log ratio, the fit is much better than that of the previous estimation. This is because the former values of dependent variables are represented by ratios in order to measure the devaluation of the

11 Sung Jin Cho / Journal of Economic Research 10 (2005) Figure 1: Regression of estimated resale prices against actual resale prices cars. On the other hand, the latter dependent variables are represented by actual levels. It would seem that level estimation provides better estimation results. 3.3 Separate Regressions In this section, I separate all types of cars - compact, mid-size, largesize, luxury, SUV, and RV and estimate them separately. Due to the lack of data in the imported car category, a separate estimation of imported rental cars has been omitted intentionally Compact Car Estimation In this category, the A-company, B-company, and C-company manufacture compact cars. Estimated parameters Through separate estimations of compacts cars, we can obtain several key bits of information. First, brand name does not affect the resale values of rental cars except in case of C- company, whose effect is pronouncedly negative. Both A-company and

12 288 The Determinants of Used Rental Car Prices B-company brand do not affect the devaluation of rental cars. As we expected, the Age 2 variable has a negative sign. This tells us that as a car gets older and older, its resale value falls. However, the Age variable itself does not show any significant sign. The Kilometer variable has a significantly a negative sign, which coincides with my expectation. This is because as a rental car runs more and more, its kilometer reading affects its resale value negatively. On the other hand, the Kilometer 2 has a positive sign significantly different from zero. In fact, the Kilometer 2 variable functions in the opposite direction of the Kilometer variable. This means that higher kilometer readings speed down the depreciation of its resale value, when the car has a very high kilometer reading. That is, the resale values of a car decreases at a decreasing rate, as its kilometer reading increases. The effect of Kilometer 2 is unable to reverse the effect of Kilometer, since the estimated parameter from the former is much smaller than that of the latter, i.e., when considering both the first derivative and the second derivative, the values are still negative. Total Accident Costs affects used car resale values negatively, because this variable seems to represent how cars get experienced with severe accidents. I think that this variable is more important than the number of accidents variable. In fact, number of accidents variable can be misleading because it ignores accident severity. Some cars that experience several accidents can have lower total accident costs, since some accidents do not require any repair costs, i.e., some accidents may involve only human injuries. Thus, the total accidents costs variable seems to present a car s status more accurately than does the number of accidents variable. In the case of compact cars, both the Total Accident Costs and the Number of Accidents variables in Model C affect resale values negatively. In Models A and B, however, only the Total Accidents Costs variable has a significant negative sign. Estimating the Price of Used Rental Cars The Table 2 shows a regression of the predicted resale values of compact cars against their actual selling prices. The predicted resale values are calculated based on Model C. The result are better than the results of the depreciation ratio regression. In fact, our determinants are explanatory enough to predict the actual resale values of compact cars.

13 Sung Jin Cho / Journal of Economic Research 10 (2005) Figure 2: Regression of estimated resale prices against actual resale prices Mid-Size Car Estimation This separate estimation is for mid-size cars only. The manufacturers that produce mid-size cars are A-company, B-company, D-company, and C-company. Estimated parameters In the case of mid-size cars, the A- company brand image has a positive effect on the resale value of its cars, but its impact is not as great as D-company s. C-company s brand image has a negative impact on the resale value of its cars, and the B-company has a neutral effect. Therefore, we can conclude that D-company has established a very strong brand image in this category. In terms of age variables, similar to our expectation, Age 2 does affect resale values of used cars negatively. On the other hand, Age variable itself has a positive sign but is not significant. Since the estimated parameters of Age 2 exceed those of the Age variable, the total effect of both the Age and Age 2 variables is negative. This can be explained as follows: When a car is relatively new, its age does not have a significant impact on its resale value, but as the ages, the negative effect on its resale value increases. Put simply, as a rental car gets older and older,

14 290 The Determinants of Used Rental Car Prices Figure 3: Regression of estimated resale prices against actual resale prices its resale values continue to decrease. This is the opposite of used cars that have been privately owned. We should note that we are dealing with rental cars. Thus, normally speaking, older rental cars mean that the cars have been severely exploited with high rental frequency. Again, the total number of accidents variable, which can tell people the current condition of a car, has a negative effects on resale values. The severity of accidents variable has a significantly negative impact on the resale values of rental cars. In terms of seasonal effects, in Model C, only March has a positive sign. This shows that the company particularly likes to sell its mid-size rental cars in March. Other than the month of March, resale prices seem to be neutral in all other months. Estimating the Price of Used Rental Cars Table 3 shows a regression of predicted resale values of mid-size cars against the actual selling prices of mid-size cars. The predicted resale values are calculated based on Model C. Compared to the other categories of cars, the fit are relatively poor.

15 Sung Jin Cho / Journal of Economic Research 10 (2005) Large-Size Car Estimation The manufacturers that produce large-size cars are A-company, D- company, and B-company. Estimated parameters In these estimations, both the A-company and D-company brands have a strong positive effects on the resale values of their used rental cars. However, we can guess that the B-company brand has a strong negative effect on resale values for all models - A, B, and C. In terms of the seasonal effects from Models B and C, almost all seasonal dummies have the expected signs and are significant. As expected, January and February in Model C which correspond to the decreasing period in Model B, have negative signs, and the signs are all significant. This coincides with other reports from used car websites. However, the other months in Model C, with the exception of November, have a positive effect on the resale values of large-size cars. This phenomenon can be seen in Model B as well. The dummies from both the recovering period and the increasing period have positive parameters. This tell us that, in these periods, the resale values are affected in relatively positive ways. Specifically, we notice that the increasing period has larger estimated parameters than the recovering period. This coincides with our hypothesis. This brings us to a very interesting point. Unlike the other types of cars, both Age variables and both Kilometer variables are not significant at all. Even the Total Accident Costs variable is not significantly different from zero. However, the Number of Accidents variables for Models A, B, and C have the expected negative signs and are significant. Thus, we can conclude that unlike the other types of cars, the resale values of large-size cars are more influenced by their number of accidents than by their total accident costs. This means that customers wanting to by used large-size cars pay more attention to the frequency of a cars accidents than the severity of the accidents themselves. Price Estimation of Used Large-Size Rental Cars Table 4 shows a regression of predicted resale values of large-size cars against their actual selling prices. The predicted resale values are calculated using Model C. The results seem fairly good compared with the other categories of cars. The determinants from this study can explain the actual resale values of large-size rental cars fairly well.

16 292 The Determinants of Used Rental Car Prices Figure 4: Regression of estimated resale prices against actual resale prices Luxury Car Estimation The manufacturers that produce luxury cars are A-company, E- company, and B-company. Estimated parameters In this estimation, the Age variables for all models have positive signs as expected, like the other types of cars. However, the Age 2 variables for all three models have negative signs, similar to the case of mid-size cars estimation. This can be explained as follows. The resale values of luxury cars decrease as cars ages, and the rate of decrease increases, as the car gets older, as a result of the negative effects of the second derivatives. Like the other car types, the total effect of age variables is negative. In case of Kilometer parameters, the signs are significant and coincide with our expectation, which is that they are negative. The resale values decrease in proportion to the increase in Kilometers. The estimated parameters for total accident costs for all models tell us that the resale values of Luxury cars depend on severity of accidents, but not on accident frequency. In terms of brand power, both A-company and E-company s brand

17 Sung Jin Cho / Journal of Economic Research 10 (2005) Figure 5: Regression of estimated resale prices against actual resale prices images have positive effects on the resale values of used luxury cars, whereas B-company s brand has a negative effect. The reason for this is A-company and E-company control over 90% of the luxury rental cars, and B-company has recently retreated from the luxury car market. In terms of seasonal effects, February has a negative effect on the resale value of luxury rental cars, so that the company is unwilling to sell its rental fleet during that particular month. However, April, June, July, August, and September affect resale prices of luxury rental cars positively. August, in particular, has the biggest value of parameters. This is because the demand for used cars increases to its highest during this month because of increase in demand. February, November, and December affect the resale prices of used rental cars negatively, since the demand for used cars drops during these months because of special new cars sales event put on by car manufacturers. However, according to Model B, none of the seasonality variables are not significantly different from zero, except for the last period, which includes November and December. The last period seems to have a negative sign. This is why we call this period as the decreasing period. Price Estimation of Used Luxury Rental Cars The Table 5 shows a regression of the predicted resale values of luxury cars against

18 294 The Determinants of Used Rental Car Prices their actual selling prices. The predicted resale values are calculated using Model C. The fit is accurate compared with the other categories of cars. The determinants from this study can explain over 80% of the actual resale values of luxury rental cars SUV Estimation In this category, there are only two companies in my data set that produce SUVs; A-company and E-company. Estimated Parameters According to the estimations of Models, A, B, and C, we can note that the A-company brand has a negative effect on its SUV s resale values. E-company also has a negative effect. E-company s image has a greater negative effect on the devaluation of its SUVs than does A-company s. Of the Age and Age 2 variables, only the Age 2 variable is significant, and in the case of Model C, it has a negative effect on the resale value of used luxury rental cars. The Age variable has a positive sign, but it is not significant. Thus, the resale values of SUVs can be affected by their age when the cars are very old, but. they devaluate relatively slowly when they re still relatively new. For the Kilometer and Kilometer 2 variables, the results are different from what I obtained for the other types of cars. Even though the estimated parameters are not significant for all models, except for the parameters of Kilometer 2 in the case of Model C, the signs of Kilometer 2 are in fact negative. Therefore, the function of kilometer variables for resale values of SUV is concave rather than convex. In the case of the Total Accident Costs variable, all of the signs are significantly negative. Thus, the resale values of SUVs strongly depend on accident severity. In terms of seasonal effects, only January, October, and December have significant signs in Model C. According to the sign of the October dummy, we can guess that the price drop starts from October in the case of SUVs, earlier than the other types of cars. In Model B, the last decreasing period, which includes November and December, shows a negative sign. Therefore, in this period, the company is unwilling to sell its used SUV fleets. Price Estimation of Used Rental SUVs Table 6 shows a regression of predicted SUV resale values against their actual selling prices.

19 Sung Jin Cho / Journal of Economic Research 10 (2005) Figure 6: Regression of estimated resale prices against actual resale prices The predicted resale values are calculated based onmodel C. The fit seems to be fairly good compared with the other categories of cars. The determinants from this study can explain about 50% of the actual resale values of rental SUVs RV Estimation The manufacturers that produce RVs are A-company, E-company, and B-company. Estimated parameters In RV estimations from Models A, B, and C, the E-company brand image has a negative effect on its resale price, whereas the A-company and B-company brands have a positive impact on their resale prices. These situations coincide with the current market situation of RVs. We observed very few RVs from E-company. According to the results of the two age variables, the Age 2 variable affects rental RV resale prices negatively, as expected, but, the Age itself has a positive effects. Age 2 has a very significant t ratio. Therefore, the resale values of RVs depreciate at an increasing rate, as they get older, thus implying concavity of the function.

20 296 The Determinants of Used Rental Car Prices Figure 7: Regression of estimated resale prices against actual resale prices Compared with the estimations for the other cars, neither Total Accident Costs nor Number of Accidents affects rental cars resale values. Therefore, accident history seems to never affect choice of used RVs in the used car markets. Even the two kilometer variables do not play any role in the depreciation of resale values of used RVs. In terms of seasonal effects, the decreasing period has an expected sign in Model B. This is because the demand for used cars falls down because of the increasing demand for brand new cars resulting from seasonal new car sales event put on by car manufacturers. Also, in Model C, only February and April have significant signs, which are negative and positive, respectively. This is because used car sales drop in February as a result of the special new cars sales events of car manufacturers. On the other hand, the demand for used cars gradually recovers in the month of April. Price Estimation of Used Rental RVs Table 7 shows a regression of predicted RV resale values against actual selling prices. The predicted resale values are calculated based on Model C. The result shows very high R 2 compared with the other categories of cars. The determinants from this estimation can explain about 80% of the actual resale values of rental RVs.

21 Sung Jin Cho / Journal of Economic Research 10 (2005) Conclusion This paper identifies several important factors that affect the resale prices of used rental cars. In fact, this paper empirically shows and proves several conjectures regarding the determinants for used car resale values through the use of detailed micro data from one of the biggest rental car companies. To be more specific, the Age of used cars has two composite effects on resale values. The first Age variable has a positive effect, whereas the square of Age, Age 2, has a negative effect on the resale values of used rental cars. Overall, the two effects work negatively, at an increasing rate, as a rental car ages. On the other hand, two mileage variables, Kilometer and the square of Kilometers, also interact with each other and produce an overall negative effect on the resale prices of used cars. But, the mode of interaction is different from that of the two Age variables. As the Kilometers of a rental cars grows, the cars residual value decreases at a decreasing rate. In terms of brand image, A-company and D-company generally have positive effects on the resale values of used rental cars. E-company has a positive effect on the resale values in the SUV category, and a negative effect on the resale values in the RV category. Generally, B-company and C-company are inferior to the other brands in terms of resale values across all categories. With regard to seasonal effects, we can conclude that this paper confirms the general perception regarding seasonal effects on resale values. Usually, from November to February, the resale values are affected negatively and thus the company is normally unwilling to sell its used rental cars during these months. March is the month of stretching in the used car market, and it has a positive effect on resale values. August seems to be the highest season for the used car market because of several factors that increase demand. Thus, August has a more positive impact on resale values than any other month. However, due to the tremendous variations in the data, general estimation efficiency should be improved. In fact, this paper plays an important role in providing an important information regarding factors affecting the resale prices of rental cars. In this regard, this paper has achieved its objective.

22 298 The Determinants of Used Rental Car Prices Reference Billingsley, Patrick, Probability and Measure, New York, John Wiley, 1979, ; 320. Greene, William C., Eonometric Analysis, Prentice-Hall, House, Christoper L., and Leahy, John V, An ss model with Adverse Selection, NBER Working Paper 8030, December, Hedel, Igal. and Lizzeri, Alessandro, Adverse Selection in Durable Goods Markets, NBER Working Paper 6194, September, Korea Automobile Manufacturers Association, Korea Automobile Manufacturers Association Reports, Korea Automobile Manufacturers Association. Korea Used Car Industry Development Association Inc, Used Car market Monthly Report, Korea Used Car Industry Development Association Inc. The Korean Used Car Dealers Association, Used Car, October, March,

23 Sung Jin Cho / Journal of Economic Research 10 (2005) Appendix A 5.1 Explanation of All Independent Variables. Variable Age Age 2 Kilometer Kilometer 2 Total Accident costs Number of accidents Compact C-company Compact A-company Compact B-company Midsize A-company Midsize B-company Midsize R-Samsung Midsize GM-Dawoo Large-size A-company Large-size B-company Large-size R-Samsung Luxury A-company Luxury B-company Luxury E-company SUV A-company SUV E-company RV A-company RV B-company RV E-company Foreign Table 1 Explanation Age of car at time of selling Age is squared Kilometer reading recorded at time of selling Kilometer is squared Sum of all repair costs from all accidents for each car Total number of accidents for each car Compact car from C-company Compact car from A-company Compact car from B-company Mid size car from A-company Mid size car from B-company Mid size car from Renault Samsung Mid size car from C-company Large size from A-company Large size from B-company Large size from Renault Samsung Luxury car from A-company Luxury car from B-company Luxury car from E-company Sport Utility Vehicle from A-company Sport Utility Vehicle from E-company Recreational Vehicle from A-company Recreational Vehicle from B-company Recreational Vehicle from E-company Imported cars

24 300 The Determinants of Used Rental Car Prices 6 Appendix B 6.1 Pooled Estimation Model A Model B Model C Constant **(0.1158) **(0.1163) **(0.1177) Age **(0.0431) **(0.0431) **(0.0186) Age **(0.0072) **(0.0072) **(0.0071) Kilometer **(0.0002) **(0.0002) **(0.0002) Kilometer **( ) **( ) **( ) Total Accident costs **( ) **( ) **( ) Number of accidents (0.0038) (0.0038) (0.0184) Compact A-company (0.0962) (0.0962) (0.0959) Compact B-company (0.1029) (0.1029) (0.1026) Midsize A-company (0.0960) (0.0960) (0.0958) Midsize B-company (0.0972) (0.0973) (0.0970) Midsize R-Samsung (0.0971) (0.0971) (0.0968) Midsize GM-Dawoo (0.0991) (0.0991) (0.0989) Large-size A-company 0.189**(0.0963) **(0.0963) *(0.0960) Large-size B-company (0.1031) (0.1031) (0.1029) Large-size R-Samsung **(0.1008) *(0.1009) *(0.1005) Luxury A-company (0.0962) (0.0962) (0.0959) Luxury B-company (0.1086) (0.1086) (0.1083) Luxury E-company (0.0981) (0.0981) (0.0978) SUV A-company (0.0963) (0.0963) (0.0960) SUV E-company (0.0991) (0.0991) (0.0989) RV A-company (0.0974) (0.0974) (0.0971) RV B-company (0.0985) (0.0985) (0.0982) RV E-company **(0.1002) **(0.1002) **(0.0999) Foreign (0.118) (0.1109) (0.1106) *Significant at 10% Level; **Significant at 5% Level

25 Sung Jin Cho / Journal of Economic Research 10 (2005) Continued on the Pooled Estimation Model A Model B Model C Seasonality -1 (January) (0.0184) Seasonality -1 (February) ** (0.0186) Seasonality -1 (March) ** (0.0185) Seasonality -1 (April) ** (0.0180) Seasonality -1 (May) (0.0184) Seasonality -1 (June) (0.0187) Seasonality -1 (July) (0.0192) Seasonality -1 (August) ** (0.0231) Seasonality -1 (September) (0.0211) Seasonality -1 (October) (0.0192) Seasonality -1 (November) ( ) Seasonality -2 (Decreasing Period) (0.0127) Seasonality -2 (Decreasing Period) (0.0117) Seasonality -2 (Decreasing Period) (0.0124) R F *Significant at 10% Level; **Significant at 5% Level 6.3 Compact Car Estimation Model A Model B Model C Constant **(0.2176) **(0.2224) **(0.2278) Age (0.1291) (0.1301) (0.1322) Age *(0.0214) (0.0216) *(0.0218) Kilometer **(0.0004) **(0.0004) **(0.0004) Kilometer **( ) **( ) **( ) Total Accident costs *( ) *( ) *( ) Number of accidents (0.0095) (0.0096) *(0.0098) Brand dummy (A-company) (0.1067) (0.0999) (0.1026) Brand dummy (B-company) *(0.0997) (0.1068) (0.1099) Seasonality -1 (January) (0.0463) Seasonality -1 (February) (0.0477) Seasonality -1 (March) (0.0477) Seasonality -1 (April) (0.0458) Seasonality -1 (May) (0.0470) Seasonality -1 (June) (0.0482) Seasonality -1 (July) (0.0575) Seasonality -1 (August) (0.0698) Seasonality -1 (September) (0.0535) Seasonality -1 (October) (0.0460) Seasonality -1 (November) (0.0490) Seasonality -2 (Decreasing Period) *(0.0016) Seasonality -2 (Recovering Period) (0.0270) Seasonality -2 (Increasing Period) (0.0298) R F *Significant at 10% Level; **Significant at 5% Level

26 302 The Determinants of Used Rental Car Prices 6.4 Mid-Size Car Estimation Model A Model B Model C Constant **(0.1224) **(0.1231) **(0.1230) Age (0.0776) (0.0777) (0.0777) Age (0.0131) (0.0131) *(0.0031) Kilometer **(0.0007) **(0.0007) **(0.0007) Kilometer **( ) *( ) ( ) Total Accident costs **( ) **( ) **( ) Number of accidents (0.0063) (0.0063) 0.005(0.0063) Brand dummy (A-company) *(0.0267) *(0.0267) *(0.0266) Brand dummy (B-company) *(0.0290) (0.0313) (0.0314) Brand dummy(re-samsung) **(0.0308) **(0.0308) **(0.0309) Seasonality -1 (January) (0.030) Seasonality -1 (February) (0.0297) Seasonality -1 (March) *(0.0304) Seasonality -1 (April) (0.0290) Seasonality -1 (May) (0.0292) Seasonality -1 (June) (0.0311) Seasonality -1 (July) (0.0316) Seasonality -1 (August) (0.0387) Seasonality -1 (September) (0.0347) Seasonality -1 (October) (0.0318) Seasonality -1 (November) 0.003(0.0352) Seasonality -2 (Decreasing Period) (0.0216) Seasonality -2 (Recovering Period) (0.0199) Seasonality -2 (Increasing Period) (0.0211) R F *Significant at 10% Level; **Significant at 5% Level 6.5 Large-Size Car Estimation Model A Model B Model C Constant **(0.1303) **(0.1319) **(0.1361) Age (0.0855) (0.0847) (0.0845) Age (0.0142) (0.0141) (0.0140) Kilometer (0.0005) (0.0005) (0.0002) Kilometer (0.0001) (0.0001) ( ) Total Accident costs (0.0000) ( ) ( ) Number of accidents **(0.0076) *(0.006) **(0.0075) Brand dummy (A-company) **(0.0246) **(0.0244) **(0.0247) Brand dummy (Re-Samsung) **(0.0309) **(0.0307) **(0.0308) Seasonality -1 (January) *(0.0557) Seasonality -1 (February) **(0.0552) Seasonality -1 (March) **(0.0550) Seasonality -1 (April) **(0.0536) Seasonality -1 (May) **(0.0548) Seasonality -1 (June) **(0.0541) Seasonality -1 (July) *(0.0555) Seasonality -1 (August) **(0.0590) Seasonality -1 (September) (0.0578) Seasonality -1 (October) *(0.0544) Seasonality -1 (November) (0.0598) Seasonality -2 (Decreasing Period) **(0.0289) Seasonality -2 (Recovering Period) **(0.0267) Seasonality -2 (Increasing Period) **(0.0279) R F *Significant at 10% Level; **Significant at 5% Level

27 Sung Jin Cho / Journal of Economic Research 10 (2005) Luxury Car Estimation Model A Model B Model C Constant **(0.1855) **(0.1876) **(0.1886) Age **(0.1165) **(0.1165) **(0.1166) Age **(0.0185) **(0.0185) **(0.0185) Kilometer **(0.0007) **(0.0007) *(0.0007) Kilometer ( ) (0.0001) (0.0001) Total Accident costs **( ) **( ) **( ) Number of accidents (0.0098) (0.0098) (0.0098) Brand dummy (A-company) **(0.0566) **(0.0566) **(0.0563) Brand dummy (E-company) **(0.0603) **(0.0603) **(0.060) Seasonality -1 (January) (0.0461) Seasonality -1 (February) **(0.0461) Seasonality -1 (March) (0.0462) Seasonality -1 (April) *(0.0458) Seasonality -1 (May) (0.0476) Seasonality -1 (June) *(0.0454) Seasonality -1 (July) **(0.0460) Seasonality -1 (August) **(0.0505) Seasonality -1 (September) *(0.0523) Seasonality -1 (October) (0.0488) Seasonality -1 (November) **( ) Seasonality -2 (Decreasing Period) (0.0332) Seasonality -2 (Recovering Period) (0.0306) Seasonality -2 (Increasing Period) (0.0316) Age*A-company Age*B-company R F *Significant at 10% Level; **Significant at 5% Level 6.7 SUV Estimation Model A Model B Model C Constant *(0.1960) **(0.2060) **(0.2130) Age (0.1365) (0.1369) (0.1377) Age (0.0236) (0.0236) *(0.0238) Kilometer (0.0017) (0.0017) (0.0003) Kilometer ( ) ( ) *( ) Total Accident costs **( ) **( ) **( ) Number of accidents (0.0111) (0.0111) (0.0112) Brand dummy (A-company) **(0.0280) **(0.0281) **(0.0281) Seasonality -1 (January) *(0.0502) Seasonality -1 (February) (0.0547) Seasonality -1 (March) (0.0534) Seasonality -1 (April) (0.0522) Seasonality -1 (May) (0.0542) Seasonality -1 (June) (0.0545) Seasonality -1 (July) (0.0522) Seasonality -1 (August) (0.0687) Seasonality -1 (September) (0.0709) Seasonality -1 (October) *(0.0577) Seasonality -1 (November) (0.0632) Seasonality -2 (Decreasing Period) (0.0359) Seasonality -2 (Recovering Period) (0.0346) Seasonality -2 (Increasing Period) (0.0363) R F *Significant at 10% Level; **Significant at 5% Level

28 304 The Determinants of Used Rental Car Prices 6.8 RV Estimation Model A Model B Model C Constant *(0.1684) **(0.1882) **(0.1991) Age **(0.1105) **(0.1081) **(01082) Age **(0.0193) **(0.0189) **(0.0188) Kilometer (0.0015) (0.0015) (0.0015) Kilometer ( ) ( ) ( ) Total Accident costs (0.0001) (0.0001) (0.0001) Number of accidents (0.0180) (0.0178) ( Brand dummy (A-company) **(0.0380) **(0.0375) **(0.0376) Brand dummy (B-company) **(0.0408) **(0.0401) **(0.0402) Seasonality -1 (January) (0.0894) Seasonality -1 (February) *(0.0804) Seasonality -1 (March) (0.0796) Seasonality -1 (April) *(0.0782) Seasonality -1 (May) (0.0786) Seasonality -1 (June) (0.0798) Seasonality -1 (July) (0.0839) Seasonality -1 (August) (0.1980) Seasonality -1 (September) (0.0845) Seasonality -1 (October) (0.0815) Seasonality -1 (November) (0.0879) Seasonality -2 (Decreasing Period) **(0.0548) Seasonality -2 (Recovering Period) (0.0482) Seasonality -2 (Increasing Period) (0.0514) R F *Significant at 10% Level; **Significant at 5% Level

TECHNICAL APPENDIX ESTIMATING THE OPTIMUM MILEAGE FOR VEHICLE RETIREMENT

TECHNICAL APPENDIX ESTIMATING THE OPTIMUM MILEAGE FOR VEHICLE RETIREMENT TECHNICAL APPENDIX ESTIMATING THE OPTIMUM MILEAGE FOR VEHICLE RETIREMENT Regression analysis calculus provide convenient tools for estimating the optimum point for retiring vehicles from a large fleet.

More information

VEHICLE SURVIVABILITY AND TRAVEL MILEAGE SCHEDULES

VEHICLE SURVIVABILITY AND TRAVEL MILEAGE SCHEDULES DOT HS 809 952 January 2006 Technical Report VEHICLE SURVIVABILITY AND TRAVEL MILEAGE SCHEDULES Published By: NHTSA s National Center for Statistics and Analysis This document is available to the public

More information

MBA Teaching Note 08-02 Net Present Value Analysis of the Purchase of a Hybrid Automobile 1

MBA Teaching Note 08-02 Net Present Value Analysis of the Purchase of a Hybrid Automobile 1 MBA Teaching Note 08-02 Net Present Value Analysis of the Purchase of a Hybrid Automobile 1 In this day and age of high energy prices and a desire to be more environmentally friendly, the automobile industry

More information

Agriculture & Business Management Notes...

Agriculture & Business Management Notes... Agriculture & Business Management Notes... Farm Machinery & Equipment -- Buy, Lease or Custom Hire Quick Notes... Selecting the best method to acquire machinery services presents a complex economic problem.

More information

Costs of car ownership in Russia

Costs of car ownership in Russia www.pwc.ru/automotive PwC Annual Survey, 2015 Costs of car ownership in Russia INTELLI GROUP Market Intelligence & Strategy Key findings on the cost of car ownership The year 201 saw many events that have

More information

Revision of VRT system to take greater account of CO2 emission levels

Revision of VRT system to take greater account of CO2 emission levels I note with interest from the document titled: 'Annex D - Public Consultation on options for revising the VRT system to take greater account of CO 2 emission '. That it is proposed to take vehicle CO 2

More information

Section 1.5 Linear Models

Section 1.5 Linear Models Section 1.5 Linear Models Some real-life problems can be modeled using linear equations. Now that we know how to find the slope of a line, the equation of a line, and the point of intersection of two lines,

More information

Insurance Fraud through Collusion between Policyholders and Car Dealers: Theory and Empirical Evidence.

Insurance Fraud through Collusion between Policyholders and Car Dealers: Theory and Empirical Evidence. Insurance Fraud through Collusion between Policyholders and Car Dealers: Theory and Empirical Evidence. Pierre Picard Department of Economics, Ecole Polytechnique Kili C. Department of Insurance, Tamkang

More information

ECONOMETRICS PROJECT ECON-620 SALES FORECAST FOR SUBMITED TO: LAURENCE O CONNELL

ECONOMETRICS PROJECT ECON-620 SALES FORECAST FOR SUBMITED TO: LAURENCE O CONNELL ECONOMETRICS PROJECT ECON-620 SALES FORECAST FOR SUBMITED TO: LAURENCE O CONNELL SUBMITTED BY: POOJA OZA: 0839378 NISHTHA PARIKH: 0852970 SUNNY SINGH: 0368016 YULIYA INOZEMYSEVA: 0817808 TABLE OF CONTENTS

More information

AN INVESTIGATION OF RENTAL RATES FOR CENTRALIZED FLEET VEH ICLES

AN INVESTIGATION OF RENTAL RATES FOR CENTRALIZED FLEET VEH ICLES TECHNICAL ASSISTANCE REPORT AN INVESTIGATION OF RENTAL RATES FOR CENTRALIZED FLEET VEH ICLES ROBERT A. HANSON Research Scientist CHERYL A. KYTE Research Scientist V I R G I N I A TRANSPORTATION RESEARCH

More information

EurotaxGlass s Report The Short-Cycle RV Risks

EurotaxGlass s Report The Short-Cycle RV Risks EurotaxGlass s Report The Short-Cycle RV Risks How the short-cycle channel creates residual value risks of 200 million in Germany s fleet market Maintal September 2014 Introduction Until this year the

More information

Costs. Chapter 7 CHAPTER SUMMARY

Costs. Chapter 7 CHAPTER SUMMARY Chapter 7 Costs CHAPTER SUMMARY Conventional accounting statements do not always provide all the information on costs necessary for effective business decisions. Managers should use the principles presented

More information

Leasing vs. Buying A NEW CAR BROUGHT TO YOU BY

Leasing vs. Buying A NEW CAR BROUGHT TO YOU BY Leasing vs. Buying A NEW CAR BROUGHT TO YOU BY THE SAME BUT DIFFERENT Even though these cars are identical, the methods to pay for them are very different The basics of LEASING Leasing is sort of like

More information

Management. SAVE$1 Million. WITH BETTERFleet. Financing/Leasing HERE ARE SOME TIPS ON HOW TO DO IT. B Y S COTT P ATTULLO

Management. SAVE$1 Million. WITH BETTERFleet. Financing/Leasing HERE ARE SOME TIPS ON HOW TO DO IT. B Y S COTT P ATTULLO Financing/Leasing SAVE$1 Million WITH BETTERFleet Management HERE ARE SOME TIPS ON HOW TO DO IT. B Y S COTT P ATTULLO Many companies have large groups of employees, such as sales reps and field service

More information

Asset Quality Section 219

Asset Quality Section 219 Leasing Activities A lease is a contract between the owner of a property, the lessor, and a person or company authorized by the lease contract, the lessee, to use the property. The lease contract specifies

More information

Fuel Emissions from the Car Fleet

Fuel Emissions from the Car Fleet Transport Research & Information Note Fuel Emissions from the Car Fleet February 2011 Transportation Research & Information Notes Fuel Emissions from the Car Fleet February 2011 This document is available

More information

Upon closer analysis, however, there are circumstances when renting a car instead of driving your own may indeed be the economically wise choice.

Upon closer analysis, however, there are circumstances when renting a car instead of driving your own may indeed be the economically wise choice. Summary The decision to rent a vehicle vs. using the one in your garage for a weekend getaway is often shaped by such factors as the need for a different size or a more attractive appearance. But when

More information

Compressed Natural Gas Study for Westport Light Duty, Inc. Kelley Blue Book Irvine, California April 3, 2012

Compressed Natural Gas Study for Westport Light Duty, Inc. Kelley Blue Book Irvine, California April 3, 2012 Compressed Natural Gas Study for Westport Light Duty, Inc. Kelley Blue Book Irvine, California April 3, 2012 2 Overview Westport Light Duty is part of the Westport Innovations company, a leader in the

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

Contents... 2. Executive Summary... 5. Key Findings... 5. Use of Credit... 5. Debt and savings... 6. Financial difficulty... 7. Background...

Contents... 2. Executive Summary... 5. Key Findings... 5. Use of Credit... 5. Debt and savings... 6. Financial difficulty... 7. Background... CREDIT, DEBT AND FINANCIAL DIFFICULTY IN BRITAIN, A report using data from the YouGov DebtTrack survey JUNE 2013 Contents Contents... 2 Executive Summary... 5 Key Findings... 5 Use of Credit... 5 Debt

More information

Effects analysis for leases (IASB-only) 1. Summary. Changes being proposed to the accounting requirements. Page 1 of 34

Effects analysis for leases (IASB-only) 1. Summary. Changes being proposed to the accounting requirements. Page 1 of 34 Effects analysis for leases (IASB-only) 1 BC329 The IASB is committed to assessing and sharing knowledge about the likely costs of implementing proposed new requirements and the likely ongoing associated

More information

Chapter 5: Bivariate Cointegration Analysis

Chapter 5: Bivariate Cointegration Analysis Chapter 5: Bivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie V. Bivariate Cointegration Analysis...

More information

Nam-gu, Incheon, Korea 2 Division of Industrial Engineering and Management, Sungkyul University,

Nam-gu, Incheon, Korea 2 Division of Industrial Engineering and Management, Sungkyul University, Vol.87 (Art, Culture, Game, Graphics, Broadcasting and Digital Contents 2015), pp.6-11 http://dx.doi.org/10.14257/astl.2015.87.02 Differences in the Environmental Management and Ethical Management Practices

More information

Croatian Balance of Payments: Implications of Net Errors and Omissions for Economic Policy 1

Croatian Balance of Payments: Implications of Net Errors and Omissions for Economic Policy 1 No. 41 May 2009 Institute of Public Finance HR-10000 Zagreb, Smičiklasova 21, Croatia Goran Vukšić Croatian Balance of Payments: Implications of Net Errors and Omissions for Economic Policy 1 In Croatia,

More information

Construction of variables from CE

Construction of variables from CE Online Appendix for Has Consumption Inequality Mirrored Income Inequality? by Mark Aguiar and Mark Bils In this appendix we describe construction of the variables in our data set and the impact of sample

More information

Regret and Rejoicing Effects on Mixed Insurance *

Regret and Rejoicing Effects on Mixed Insurance * Regret and Rejoicing Effects on Mixed Insurance * Yoichiro Fujii, Osaka Sangyo University Mahito Okura, Doshisha Women s College of Liberal Arts Yusuke Osaki, Osaka Sangyo University + Abstract This papers

More information

Final Draft Final Report on

Final Draft Final Report on Final Draft Final Report on for the February 2012 MERCURY ASSOCIATES, INC. February 24, 2012 Mr. Tim Ryburn, Administrator Iowa Department of Administrative Services General Services, Enterprise 109 S.E.

More information

Young teen crash risk by vehicle type

Young teen crash risk by vehicle type Bulletin Vol. 31, No. 4 : April 214 teen crash risk by vehicle type Previous HLDI studies have shown that collision claim frequencies are highest for young drivers. The purpose of this analysis is to explore

More information

FEDERAL RESERVE BULLETIN

FEDERAL RESERVE BULLETIN FEDERAL RESERVE BULLETIN VOLUME 38 May 1952 NUMBER 5 Business expenditures for new plant and equipment and for inventory reached a new record level in 1951 together, they exceeded the previous year's total

More information

PREPARING FINAL ACCOUNTS. part

PREPARING FINAL ACCOUNTS. part 15_1312MH_CH09 27/1/05 8:38 am Page 87 PREPARING part 3 FINAL ACCOUNTS 9 The final accounts of sole traders 10 Accounting principles, concepts and policies 11 Depreciation and fixed assets 12 Bad debts

More information

ALL-ELECTRIC CAR LEASING CHAIN

ALL-ELECTRIC CAR LEASING CHAIN ALL-ELECTRIC CAR LEASING CHAIN Since most car holders will change cars before the car s end of life, i.e. sell it if they own, or lease another if they lease, the car s residual value is crucial for most

More information

[ 16-310] DEDUCTIBLE MOTOR VEHICLE EXPENSES

[ 16-310] DEDUCTIBLE MOTOR VEHICLE EXPENSES Premium Master Tax Guide 1 [ 16-310] DEDUCTIBLE MOTOR VEHICLE EXPENSES Motor vehicle expenses incurred in the course of deriving assessable income or in carrying on business are allowable deductions (ITAA97

More information

Analysis of Fleet Replacement Lifecycle

Analysis of Fleet Replacement Lifecycle Analysis of Fleet Replacement Lifecycle Project #12-14 Prepared by Office of the Inspector General J. Timothy Beirnes, CPA, Inspector General TABLE OF CONTENTS BACKGROUND... 1 OBJECTIVE, SCOPE, AND METHODOLOGY...

More information

Iowa Legislative Fiscal Bureau. State Vehicle Fleet - Vehicle Dispatcher Division

Iowa Legislative Fiscal Bureau. State Vehicle Fleet - Vehicle Dispatcher Division Iowa Legislative Fiscal Bureau I S S U E Dennis Prouty State Capitol (515) 281-5279 Des Moines, IA 50319 FAX 281-8451 August 24, 1993 ISSUE State Vehicle Fleet - Vehicle Dispatcher Division The Vehicle

More information

Composition of Farm Household Income and Wealth

Composition of Farm Household Income and Wealth Composition of Farm Household Income and Wealth Today it is rare for any household to receive all of its from a single source. Even when only one household member is employed, it is possible to earn from

More information

Part II Management Accounting Decision-Making Tools

Part II Management Accounting Decision-Making Tools Part II Management Accounting Decision-Making Tools Chapter 7 Chapter 8 Chapter 9 Cost-Volume-Profit Analysis Comprehensive Business Budgeting Incremental Analysis and Decision-making Costs Chapter 10

More information

Export Pricing and Credit Constraints: Theory and Evidence from Greek Firms. Online Data Appendix (not intended for publication) Elias Dinopoulos

Export Pricing and Credit Constraints: Theory and Evidence from Greek Firms. Online Data Appendix (not intended for publication) Elias Dinopoulos Export Pricing and Credit Constraints: Theory and Evidence from Greek Firms Online Data Appendix (not intended for publication) Elias Dinopoulos University of Florida Sarantis Kalyvitis Athens University

More information

LEMON LAW SPECIALISTS. com 1.888.395.3666

LEMON LAW SPECIALISTS. com 1.888.395.3666 LEMON LAW SPECIALISTS. com 1.888.395.3666 Thank you for visiting Lemon Law Specialists the web site of the California Law Offices of Delsack & Associates, the original California lemon law web site. Ours

More information

THE BMW GROUP GUIDE TO FLEET FUNDING.

THE BMW GROUP GUIDE TO FLEET FUNDING. THE BMW GROUP GUIDE TO FLEET FUNDING. The way vehicles are funded in a fleet context varies widely and there are two main methods for acquiring vehicles for your fleet: Outright purchase over a fixed period

More information

An Empirical Analysis of Insider Rates vs. Outsider Rates in Bank Lending

An Empirical Analysis of Insider Rates vs. Outsider Rates in Bank Lending An Empirical Analysis of Insider Rates vs. Outsider Rates in Bank Lending Lamont Black* Indiana University Federal Reserve Board of Governors November 2006 ABSTRACT: This paper analyzes empirically the

More information

The Audi Guide to contract hire Getting the most from your leasing provider

The Audi Guide to contract hire Getting the most from your leasing provider The Audi Guide to contract hire Getting the most from your leasing provider Audi Fleet supports Business July 2012 : why choose contract hire? Contract hire is the most popular funding method in the fleet

More information

SUSTAINABLE DEVELOPMENT TECHNOLOGY CANADA Travel & Accommodation Expense Guidelines and Policy

SUSTAINABLE DEVELOPMENT TECHNOLOGY CANADA Travel & Accommodation Expense Guidelines and Policy SUSTAINABLE DEVELOPMENT TECHNOLOGY CANADA Travel & Accommodation Expense Guidelines and Policy Purpose The purpose of this policy is to establish equitable standards and provide fair and consistent treatment

More information

Chargebacks: Another Payment Card Acceptance Cost for Merchants

Chargebacks: Another Payment Card Acceptance Cost for Merchants Chargebacks: Another Payment Card Acceptance Cost for Merchants Fumiko Hayashi, Zach Markiewicz, and Richard J. Sullivan January 216 RWP 16-1 http://dx.doi.org/1.18651/rwp216-1 Chargebacks: Another Payment

More information

Learning Objectives. Essential Concepts

Learning Objectives. Essential Concepts Learning Objectives After reading Chapter 7 and working the problems for Chapter 7 in the textbook and in this Workbook, you should be able to: Specify an empirical demand function both linear and nonlinear

More information

Transportation costs make up a

Transportation costs make up a The Cost and Demographics of Vehicle Acquisition LAURA PASZKIEWICZ Laura Paszkiewicz is an economist in the Branch of Information Analysis, Division of Consumer Expenditure Surveys, Bureau of Labor Statistics.

More information

PERCEPTION OF SENIOR CITIZEN RESPONDENTS AS TO REVERSE MORTGAGE SCHEME

PERCEPTION OF SENIOR CITIZEN RESPONDENTS AS TO REVERSE MORTGAGE SCHEME CHAPTER- V PERCEPTION OF SENIOR CITIZEN RESPONDENTS AS TO REVERSE MORTGAGE SCHEME 5.1 Introduction The present study intended to investigate the senior citizen s retirement planning and their perception

More information

Chapter 23: Asymmetric Information

Chapter 23: Asymmetric Information Chapter 23: Asymmetric Information Asymmetric Information Adverse Selection Moral Hazard Lemons Market Second-Best Mechanism Designs Principal Agent Market Failure Signaling Screening Insurance Employer/

More information

College Readiness LINKING STUDY

College Readiness LINKING STUDY College Readiness LINKING STUDY A Study of the Alignment of the RIT Scales of NWEA s MAP Assessments with the College Readiness Benchmarks of EXPLORE, PLAN, and ACT December 2011 (updated January 17, 2012)

More information

Institutional Trading, Brokerage Commissions, and Information Production around Stock Splits

Institutional Trading, Brokerage Commissions, and Information Production around Stock Splits Institutional Trading, Brokerage Commissions, and Information Production around Stock Splits Thomas J. Chemmanur Boston College Gang Hu Babson College Jiekun Huang Boston College First Version: September

More information

Volume Title: The Quality of Consumer Instalment Credit. Volume Author/Editor: Geoffrey H. Moore and Philip A. Klein

Volume Title: The Quality of Consumer Instalment Credit. Volume Author/Editor: Geoffrey H. Moore and Philip A. Klein This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research Volume Title: The Quality of Consumer Instalment Credit Volume Author/Editor: Geoffrey H. Moore and Philip

More information

9 Hedging the Risk of an Energy Futures Portfolio UNCORRECTED PROOFS. Carol Alexander 9.1 MAPPING PORTFOLIOS TO CONSTANT MATURITY FUTURES 12 T 1)

9 Hedging the Risk of an Energy Futures Portfolio UNCORRECTED PROOFS. Carol Alexander 9.1 MAPPING PORTFOLIOS TO CONSTANT MATURITY FUTURES 12 T 1) Helyette Geman c0.tex V - 0//0 :00 P.M. Page Hedging the Risk of an Energy Futures Portfolio Carol Alexander This chapter considers a hedging problem for a trader in futures on crude oil, heating oil and

More information

Factors Impacting Dairy Profitability: An Analysis of Kansas Farm Management Association Dairy Enterprise Data

Factors Impacting Dairy Profitability: An Analysis of Kansas Farm Management Association Dairy Enterprise Data www.agmanager.info Factors Impacting Dairy Profitability: An Analysis of Kansas Farm Management Association Dairy Enterprise Data August 2011 (available at www.agmanager.info) Kevin Dhuyvetter, (785) 532-3527,

More information

As state employees, we must balance safety, cost effectiveness, and efficiency with the fiscal and environmental health of our state.

As state employees, we must balance safety, cost effectiveness, and efficiency with the fiscal and environmental health of our state. To: DAS Fleet Customers RE: Fleet Customer Survey Results and Action Plan Thank you for participating in the DAS Customer Service Survey. The results of the DAS survey are available at http://www.oregon.gov/das/directors_survey.shtml.

More information

Amica Insurance Marketing Strategy. Amica has consistently been rated one of the top insurance companies in the United

Amica Insurance Marketing Strategy. Amica has consistently been rated one of the top insurance companies in the United Amica Insurance Marketing Strategy Amica has consistently been rated one of the top insurance companies in the United States. The power of the company and its financial strength is well represented in

More information

HOW TO EXTEND MODERN PORTFOLIO THEORY TO MAKE MONEY FROM TRADING EQUITY OPTIONS

HOW TO EXTEND MODERN PORTFOLIO THEORY TO MAKE MONEY FROM TRADING EQUITY OPTIONS Ta t i a n a L o z o v a i a a n d H e l e n H i z h n i a k o v a HOW TO EXTEND MODERN PORTFOLIO THEORY TO MAKE MONEY FROM TRADING EQUITY OPTIONS HOW TO READ DISPERSION NUMBERS, OR MARKET IS THE BIGGEST

More information

Best new-car values Our scores reveal which cars deliver the biggest bang for your buck Published: December 18, 2014 06:00 AM

Best new-car values Our scores reveal which cars deliver the biggest bang for your buck Published: December 18, 2014 06:00 AM Best new-car values Our scores reveal which cars deliver the biggest bang for your buck Published: December 18, 2014 06:00 AM Best and worst for the money Value charts Subcompact cars Compact cars Luxury

More information

AGENDA: MANAGERIAL ACCOUNTING AND COST CONCEPTS

AGENDA: MANAGERIAL ACCOUNTING AND COST CONCEPTS TM 2-1 A. Cost classifications for: AGENDA: MANAGERIAL ACCOUNTING AND COST CONCEPTS 1. Financial statement preparation. 2. Predicting cost behavior. 3. Assigning costs to cost objects. 4. Making decisions

More information

Report to the 79 th Legislature. Use of Credit Information by Insurers in Texas

Report to the 79 th Legislature. Use of Credit Information by Insurers in Texas Report to the 79 th Legislature Use of Credit Information by Insurers in Texas Texas Department of Insurance December 30, 2004 TABLE OF CONTENTS Executive Summary Page 3 Discussion Introduction Page 6

More information

Lesson 9 Take Control of Debt: Using Credit Wisely

Lesson 9 Take Control of Debt: Using Credit Wisely Lesson 9 Take Control of Debt: Use Credit Wisely Lesson Description In this lesson, students review the balance sheet (Lesson 1) and the budget worksheet (Lesson 2) and consider ways to use these two documents

More information

Frequently Ask Questions

Frequently Ask Questions Frequently Ask Questions This document has been prepared to answer questions that you are likely to have on the new SalarySacrifice4Cars scheme ( the car scheme ). It is set out in 3 sections The car scheme

More information

BUYING A USED CAR. Copyright Permission Data Wizard/Humboldt 2003, Scott Keele

BUYING A USED CAR. Copyright Permission Data Wizard/Humboldt 2003, Scott Keele BUYING A USED CAR VOCABULARY and DEFINITIONS Anti-lock brakes: Brakes that won t lock up, a computer in the car pumps the brakes on and off so the car will not skid. As Is: Buyer beware, the car is sold

More information

Why do foreign investors underperform domestic investors in trading activities? Evidence from Indonesia $

Why do foreign investors underperform domestic investors in trading activities? Evidence from Indonesia $ Journal of Financial Markets ] (]]]]) ]]] ]]] www.elsevier.com/locate/finmar Why do foreign investors underperform domestic investors in trading activities? Evidence from Indonesia $ Sumit Agarwal a,b,1,

More information

International Statistical Institute, 56th Session, 2007: Phil Everson

International Statistical Institute, 56th Session, 2007: Phil Everson Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA E-mail: peverso1@swarthmore.edu 1. Introduction

More information

Jersey Household Income Distribution 2014/15

Jersey Household Income Distribution 2014/15 Jersey Household Income Distribution 2014/15 Statistics Unit: www.gov.je/statistics @JsyStats Key statistics Average (mean) household weekly income: 860 per week before, and 720 after, housing costs an

More information

focused on me Vehicle Financing Guide

focused on me Vehicle Financing Guide focused on me Vehicle Financing Guide Table of Contents Lease or Finance? 1 Cost of Buying a Vehicle 2 What you need to know about Financing 2 Understanding Vehicle Loan Financing Basics 3 Options for

More information

In this chapter, we build on the basic knowledge of how businesses

In this chapter, we build on the basic knowledge of how businesses 03-Seidman.qxd 5/15/04 11:52 AM Page 41 3 An Introduction to Business Financial Statements In this chapter, we build on the basic knowledge of how businesses are financed by looking at how firms organize

More information

FAIR TRADE IN INSURANCE INDUSTRY: PREMIUM DETERMINATION OF TAIWAN AUTOMOBILE INSURANCE. Emilio Venezian Venezian Associate, Taiwan

FAIR TRADE IN INSURANCE INDUSTRY: PREMIUM DETERMINATION OF TAIWAN AUTOMOBILE INSURANCE. Emilio Venezian Venezian Associate, Taiwan FAIR TRADE IN INSURANCE INDUSTRY: PREMIUM DETERMINATION OF TAIWAN AUTOMOBILE INSURANCE Emilio Venezian Venezian Associate, Taiwan Chu-Shiu Li Department of Economics, Feng Chia University, Taiwan 100 Wen

More information

ITARDA INFORMATION. No.102. Special feature

ITARDA INFORMATION. No.102. Special feature ITARDA INFORMATION No.102 Special feature Introduction.................................. P2 Number of registered motorcycles............... P2 Characteristics of Class-1 moped accidents...... P3 Key points

More information

BA 351 CORPORATE FINANCE. John R. Graham Adapted from S. Viswanathan LECTURE 5 LEASING FUQUA SCHOOL OF BUSINESS DUKE UNIVERSITY

BA 351 CORPORATE FINANCE. John R. Graham Adapted from S. Viswanathan LECTURE 5 LEASING FUQUA SCHOOL OF BUSINESS DUKE UNIVERSITY BA 351 CORPORATE FINANCE John R. Graham Adapted from S. Viswanathan LECTURE 5 LEASING FUQUA SCHOOL OF BUSINESS DUKE UNIVERSITY 1 Leasing has long been an important alternative to buying an asset. In this

More information

Buy or Lease a Car. published by AAA Fair Credit Foundation

Buy or Lease a Car. published by AAA Fair Credit Foundation Buy or Lease a Car published by AAA Fair Credit Foundation Buy or Lease a Car 1. What is Leasing?................................................................. 2 2. The Pros and Cons of Leasing and

More information

Market sentiment and mutual fund trading strategies

Market sentiment and mutual fund trading strategies Nelson Lacey (USA), Qiang Bu (USA) Market sentiment and mutual fund trading strategies Abstract Based on a sample of the US equity, this paper investigates the performance of both follow-the-leader (momentum)

More information

Efficiency Analysis of Life Insurance Companies in Thailand

Efficiency Analysis of Life Insurance Companies in Thailand Efficiency Analysis of Life Insurance Companies in Thailand Li Li School of Business, University of the Thai Chamber of Commerce 126/1 Vibhavadee_Rangsit Rd., Dindaeng, Bangkok 10400, Thailand Tel: (662)

More information

AN ANALYSIS OF INSURANCE COMPLAINT RATIOS

AN ANALYSIS OF INSURANCE COMPLAINT RATIOS AN ANALYSIS OF INSURANCE COMPLAINT RATIOS Richard L. Morris, College of Business, Winthrop University, Rock Hill, SC 29733, (803) 323-2684, morrisr@winthrop.edu, Glenn L. Wood, College of Business, Winthrop

More information

EXPENSE REIMBURSEMENT POLICY

EXPENSE REIMBURSEMENT POLICY 1.0 PURPOSE This policy governs reimbursement for expenses incurred in the performance of Toronto Central CCAC duties. Toronto Central CCAC is bound by the Broader Public Sector Expenses Directive issued

More information

The Life-Cycle Motive and Money Demand: Further Evidence. Abstract

The Life-Cycle Motive and Money Demand: Further Evidence. Abstract The Life-Cycle Motive and Money Demand: Further Evidence Jan Tin Commerce Department Abstract This study takes a closer look at the relationship between money demand and the life-cycle motive using panel

More information

Credit Card Market Study Interim Report: Annex 4 Switching Analysis

Credit Card Market Study Interim Report: Annex 4 Switching Analysis MS14/6.2: Annex 4 Market Study Interim Report: Annex 4 November 2015 This annex describes data analysis we carried out to improve our understanding of switching and shopping around behaviour in the UK

More information

Published on 11 March 2014 at 09:30

Published on 11 March 2014 at 09:30 Press Office Threadneedle Street London EC2R 8AH T 2 761 4411 F 2 761 546 press@bankofengland.co.uk www.bankofengland.co.uk Press Office 25 The North Colonnade Canary Wharf London E14 5HS T 2 766 3232

More information

Study into the Sales of Add-on General Insurance Products

Study into the Sales of Add-on General Insurance Products Study into the Sales of Add-on General Insurance Quantitative Consumer Research Report Prepared For: Financial Conduct Authority (FCA) March, 2014 Authorised Contact Persons Frances Green Research Director

More information

Distribution (Optional B2B/Fleet Market)

Distribution (Optional B2B/Fleet Market) Distribution (Optional B2B/Fleet Market) Unlike the consumer market, where automakers are selling to individuals and small organizations through their captive dealership network, the business-to-business

More information

FLEET MANAGEMENT. SASHTO NEW ORLEANS, LOUISIANA Tuesday, August 26 th 2014 10:30 a.m. 12:00 p.m.

FLEET MANAGEMENT. SASHTO NEW ORLEANS, LOUISIANA Tuesday, August 26 th 2014 10:30 a.m. 12:00 p.m. FLEET MANAGEMENT SASHTO NEW ORLEANS, LOUISIANA Tuesday, August 26 th 2014 10:30 a.m. 12:00 p.m. REPLACEMENT PROGRAM The theory behind our replacement program is to charge the user for each piece of equipment

More information

Managerial Accounting Prof. Dr. Vardaraj Bapat Department of School of Management Indian Institute of Technology, Bombay

Managerial Accounting Prof. Dr. Vardaraj Bapat Department of School of Management Indian Institute of Technology, Bombay Managerial Accounting Prof. Dr. Vardaraj Bapat Department of School of Management Indian Institute of Technology, Bombay Lecture - 26 Cost Volume Profit Analysis Dear participations in our early session,

More information

ANGELE DAVIS COMMISSIONER OF ADMINISTRATION. State of Louisiana. Division of Administration Office of the Commissioner

ANGELE DAVIS COMMISSIONER OF ADMINISTRATION. State of Louisiana. Division of Administration Office of the Commissioner BOBBY J INDAL GOVERNOR State of Louisiana Division of Administration Office of the Commissioner ANGELE DAVIS COMMISSIONER OF ADMINISTRATION TO: Universities FROM: Elected Officials, Department Heads, and

More information

NAPCS Product List for NAICS 5321: Automotive Equipment Rental and Leasing

NAPCS Product List for NAICS 5321: Automotive Equipment Rental and Leasing NAPCS List for NAICS 5321: Automotive Equipment Rental and Leasing 5321 1 Rental of automobiles, trucks and other road transportation vehicles, and motor homes, travel trailers and campers Renting or leasing

More information

Planning for Care Costs. The Options in Scotland

Planning for Care Costs. The Options in Scotland Planning for Care Costs The Options in Scotland For more information or to speak to one of our trained advisers please telephone our team on 0800 152 2037 Solicitors For Older People Scotland 1/7/2012

More information

1 Tools for Financial Planning

1 Tools for Financial Planning PART 1 Tools for Financial Planning Chapter 2 Planning with Personal Financial Statements How to increase net cash flows in the near future How to increase net cash flows in the distant future Chapter

More information

Automobile Expenses For the Self-Employed

Automobile Expenses For the Self-Employed Automobile Expenses For the Self-Employed COPYRIGHT Ledgers Canada All rights reserved. No part of this manual may be reproduced in whole or in part, stored in a retrieval system, or transmitted, in any

More information

The Total Loss Survival Guide How To Calculate The Value Of Your Vehicle After A Total Loss

The Total Loss Survival Guide How To Calculate The Value Of Your Vehicle After A Total Loss The Total Loss Survival Guide How To Calculate The Value Of Your Vehicle After A Total Loss TheyWroteOffMyCar.com., 2014 Table of Contents 1. Introduction...3 2. What is a total loss?...3 3. What is "Replace

More information

Chapter 11 Auto Insurance in the United States (continued)

Chapter 11 Auto Insurance in the United States (continued) Chapter 11 Auto Insurance in the United States (continued) Overview Compensating innocent motorists who have been injured in auto accidents is an important issue for society. Private insurers are not anxious

More information

Personal Income Tax Return - Year End Questionnaire 2015

Personal Income Tax Return - Year End Questionnaire 2015 Personal Income Tax Return - Year End Questionnaire 2015 To assist us in preparing your income tax return, please use this questionnaire as a checklist when you compile your information. With respect to

More information

Competitiveness of the Japanese, Korean, and Chinese Automobile Industries

Competitiveness of the Japanese, Korean, and Chinese Automobile Industries KER 81(1) pp. 48 63 CONFERENCE REPORT Competitiveness of the Japanese, Korean, and Chinese Automobile Industries Hiromi Shioji Professor, Graduate School of Economics, Kyoto University, Japan E-mail: shioji@econ.kyoto-u.ac.jp

More information

2. Professor, Department of Risk Management and Insurance, National Chengchi. University, Taipei, Taiwan, R.O.C. 11605; jerry2@nccu.edu.

2. Professor, Department of Risk Management and Insurance, National Chengchi. University, Taipei, Taiwan, R.O.C. 11605; jerry2@nccu.edu. Authors: Jack C. Yue 1 and Hong-Chih Huang 2 1. Professor, Department of Statistics, National Chengchi University, Taipei, Taiwan, R.O.C. 11605; csyue@nccu.edu.tw 2. Professor, Department of Risk Management

More information

Personal Savings in the United States

Personal Savings in the United States Western Michigan University ScholarWorks at WMU Honors Theses Lee Honors College 4-27-2012 Personal Savings in the United States Samanatha A. Marsh Western Michigan University Follow this and additional

More information

6.3 PROFIT AND LOSS AND BALANCE SHEETS. Simple Financial Calculations. Analysing Performance - The Balance Sheet. Analysing Performance

6.3 PROFIT AND LOSS AND BALANCE SHEETS. Simple Financial Calculations. Analysing Performance - The Balance Sheet. Analysing Performance 63 COSTS AND COSTING 6 PROFIT AND LOSS AND BALANCE SHEETS Simple Financial Calculations Analysing Performance - The Balance Sheet Analysing Performance Analysing Financial Performance Profit And Loss Forecast

More information

3. LITERATURE REVIEW

3. LITERATURE REVIEW 3. LITERATURE REVIEW Fama (1998) argues that over-reaction of some events and under-reaction to others implies that investors are unbiased in their reaction to information, and thus behavioral models cannot

More information

GAP Insurance Techniques and Challenges

GAP Insurance Techniques and Challenges Lee Bowron, ACAS, MAAA, and John Kerper, FSA, MAAA Abstract: GAP (Guaranteed Asset Protection) insurance is an insurance product that insures the difference (if any) between the loan balance and the actual

More information

Estimating the effect of projected changes in the driving population on collision claim frequency

Estimating the effect of projected changes in the driving population on collision claim frequency Bulletin Vol. 29, No. 8 : September 2012 Estimating the effect of projected changes in the driving population on collision claim frequency Despite having higher claim frequencies than prime age drivers,

More information

Data Analysis, Statistics, and Probability

Data Analysis, Statistics, and Probability Chapter 6 Data Analysis, Statistics, and Probability Content Strand Description Questions in this content strand assessed students skills in collecting, organizing, reading, representing, and interpreting

More information

Costs Categorization Guide

Costs Categorization Guide Costs Categorization Guide Costs Categorization Guide Non-profit leaders must understand the different categories of costs for effective organizational decision making, product and/or service pricing,

More information

IIHS crashworthiness evaluation programs and the U.S. vehicle fleet

IIHS crashworthiness evaluation programs and the U.S. vehicle fleet Bulletin Vol. 30, No. 7 : April 2013 IIHS crashworthiness evaluation programs and the U.S. vehicle fleet The Insurance Institute for Highway Safety (IIHS) conducts several different vehicle crashworthiness

More information