Data Science Betere processen en producten dankzij (Big) data. Wil van der Aalst

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Data Science Betere processen en producten dankzij (Big) data. Wil van der Aalst www.vdaalst.com @wvdaalst www.processmining.org"

Transcription

1 Data Science Betere processen en producten dankzij (Big) data Wil van der Aalst

2 Data Science Center Eindhoven

3 DSC/e: Competences and Research Programs 28 groups and 420+ people involved Enabling technologies: How to get the data and deal with computational/ infrastructural challenges (big data and hard questions)? Internet of Things Large-Scale Distributed Systems Data-Intensive Algorithms Analysis: How to turn data into real value (models, answers/decisions, and visualizations/insights)? Probability and Statistics Data Mining Stochastic Networks Process Mining Visualization [RP1] Process Analytics: Improving Service While Cutting Costs [RP2] Customer Journey: Correlating Events to Learn and Influence Customer Behavior [RP3] Smart Maintenance & Diagnostics: Safeguarding Availability [RP4] Quantified Self: Improving Performance and Well-Being Context: Why are we using data science, does it have the intended effect, and will people accept it? Human and Social Analytics [RP5] Data Value and Privacy: Economic and Legal Aspects of Data Science Privacy, Security, Ethics, and Governance Data-Driven Operations Management [RP6] Smart Cities: Ensuring Safety and Convenience for Citizens Data-Driven Innovation and Business [RP7] Smart Grids: Data Intensive Infrastructures

4 Data Science Flagship (Philips & DSC/e) 4 Strategic topics 4 TU/e departments 16 PhD students 30 Data science specialists 1. Data Driven Value Propositions 2. Healthcare Smart Maintenance 3. Optimizing Healthcare Workflows 4. Continuous Personal Health

5 Data Science University in Den Bosch

6 Process Mining: On the interface between process science and data science

7 As generic as a spreadsheet!

8 Spreadsheet: Killer App for early computers VisiCalc (killer app for Apple II, Oct. 1979) Lotus (killer app for IBM PC 1983) Microsoft Excel (1985)

9 Spreadsheet: Static data

10 Spreadsheet: Static data fact derived

11 Spreadsheet: Static data total value 31 items sold distribution average

12 Spreadsheet: Static data How to analyze operational processes?

13 Process Mining: Spreadsheet for behavior case identifier row = event activity name resource timestamp Input: events ( things that have happened ) Mandatory per event: case identifier activity name timestamp/date Optional resource transaction type costs

14 Process Mining: Spreadsheet for behavior 208 cases 5987 events 74 activities

15 Process Mining: Spreadsheet for behavior batching for activities opstellen eindnota and archiveren

16 Loesje van der Aalst desire line Process Discovery

17 Process Mining: Spreadsheet for behavior process discovery NO modeling needed!

18 Process Mining: Spreadsheet for behavior process discovery NO modeling needed!

19 process model event data Conformance Checking

20 desire line very safe system Conformance Checking

21 Process Mining: Spreadsheet for behavior conformance checking? discovered or hand-made

22 Process Mining: Spreadsheet for behavior conformance checking fitness of 93.5%

23 Process Mining: Spreadsheet for behavior conformance checking final inspection is skipped 40 times

24 Process Mining: Spreadsheet for behavior move on model (something should have happened, but did not) conformance checking move on log (something happened that should not happen)

25 Process Mining: Spreadsheet for behavior NO modeling needed! performance analysis average flowtime is 1.92 months bottleneck

26 Process Mining: Spreadsheet for behavior waiting time of days performance analysis NO modeling needed!

27 Process Mining: Spreadsheet for behavior animating reality real cases NO modeling needed!

28 Process Mining: Spreadsheet for behavior 16 cases are queueing animating reality

29 Deviations Where? Why? time costs

30 How to get started? Event Data Process Mining Tools Data Science Mindset

31 Starting point for process mining: Event data patient activity timestamp doctor age cost 5781 make X-ray Dr. Jones blood test Dr. Scott blood test Dr. Scott blood test Dr. Scott CT scan Dr. Fox surgery Dr. Scott handle payment Carol Hope radiation therapy Dr. Jones case 5541 id radiation activity therapy name timestamp Dr. resource Jones 61 other data

32 How to get started? Event Data Process Mining Tools Data Science Mindset

33 Process Mining Software

34 900+ plug-ins available covering the whole process mining spectrum

35

36 How to get started? Event Data Process Mining Tools Data Science Mindset

37 people joined! Process Mining Data Science in Action Starts again on October 7 th 2015! Register via

38 Conclusion process model analysis (simulation, verification, optimization, gaming, etc.) performanceoriented questions, problems and solutions complianceoriented questions, problems and solutions data-oriented analysis (data mining, machine learning, business intelligence) spreadsheet for behavior Get started today!

Process Mining The influence of big data (and the internet of things) on the supply chain

Process Mining The influence of big data (and the internet of things) on the supply chain September 16, 2015 Process Mining The influence of big data (and the internet of things) on the supply chain Wil van der Aalst www.vdaalst.com @wvdaalst www.processmining.org http://www.engineersjournal.ie/factory-of-thefuture-will-see-merging-of-virtual-and-real-worlds/

More information

Process Mining Data Science in Action

Process Mining Data Science in Action Process Mining Data Science in Action Wil van der Aalst Scientific director of the DSC/e Dutch Data Science Summit, Eindhoven, 4-5-2014. Process Mining Data Science in Action https://www.coursera.org/course/procmin

More information

Eindhoven December 4, 2014

Eindhoven December 4, 2014 Eindhoven December 4, 2014 Waves: Visualizing spatio-temporal Soccer Data Insight Reports of sport events can be enhanced by real-time feature analysis. Solutions Complex spatio-temporal sports-analytics

More information

Chapter 12 Analyzing Spaghetti Processes

Chapter 12 Analyzing Spaghetti Processes Chapter 12 Analyzing Spaghetti Processes prof.dr.ir. Wil van der Aalst www.processmining.org Overview Chapter 1 Introduction Part I: Preliminaries Chapter 2 Process Modeling and Analysis Chapter 3 Data

More information

Using Process Mining to Bridge the Gap between BI and BPM

Using Process Mining to Bridge the Gap between BI and BPM Using Process Mining to Bridge the Gap between BI and BPM Wil van der alst Eindhoven University of Technology, The Netherlands Process mining techniques enable process-centric analytics through automated

More information

Data Science. Research Theme: Process Mining

Data Science. Research Theme: Process Mining Data Science Research Theme: Process Mining Process mining is a relatively young research discipline that sits between computational intelligence and data mining on the one hand and process modeling and

More information

Model Discovery from Motor Claim Process Using Process Mining Technique

Model Discovery from Motor Claim Process Using Process Mining Technique International Journal of Scientific and Research Publications, Volume 3, Issue 1, January 2013 1 Model Discovery from Motor Claim Process Using Process Mining Technique P.V.Kumaraguru *, Dr.S.P.Rajagopalan

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction prof.dr.ir. Wil van der Aalst www.processmining.org Overview Chapter 1 Introduction Part I: Preliminaries Chapter 2 Process Modeling and Analysis Chapter 3 Data Mining Part II: From

More information

Feature. Applications of Business Process Analytics and Mining for Internal Control. World

Feature. Applications of Business Process Analytics and Mining for Internal Control. World Feature Filip Caron is a doctoral researcher in the Department of Decision Sciences and Information Management, Information Systems Group, at the Katholieke Universiteit Leuven (Flanders, Belgium). Jan

More information

Process Modelling from Insurance Event Log

Process Modelling from Insurance Event Log Process Modelling from Insurance Event Log P.V. Kumaraguru Research scholar, Dr.M.G.R Educational and Research Institute University Chennai- 600 095 India Dr. S.P. Rajagopalan Professor Emeritus, Dr. M.G.R

More information

Chapter 4 Getting the Data

Chapter 4 Getting the Data Chapter 4 Getting the Data prof.dr.ir. Wil van der Aalst www.processmining.org Overview Chapter 1 Introduction Part I: Preliminaries Chapter 2 Process Modeling and Analysis Chapter 3 Data Mining Part II:

More information

Remote Service. SASG - Big Data From machine design to IT management & Remote Service. Marcel Boosten Philips Healthcare October 7, 2014

Remote Service. SASG - Big Data From machine design to IT management & Remote Service. Marcel Boosten Philips Healthcare October 7, 2014 Remote Service SASG - Big Data From machine design to IT management & Remote Service Marcel Boosten Philips Healthcare October 7, 2014 1 Marcel Boosten Philips Lead Design for Serviceability Solution Architect

More information

Big Data Analytics- Innovations at the Edge

Big Data Analytics- Innovations at the Edge Big Data Analytics- Innovations at the Edge Brian Reed Chief Technologist Healthcare Four Dimensions of Big Data 2 The changing Big Data landscape Annual Growth ~100% Machine Data 90% of Information Human

More information

12/7/2015. Data Science Master s programs

12/7/2015. Data Science Master s programs Data Science Master s programs 1 1 Who are we? Willem-Jan van den Heuvel Tilburg University Ksenia Podoynitsyna Eindhoven University of Technology 2 2 Program What is Data Science? The Data Science Initiative

More information

3TU.BSR: Big Software on the Run

3TU.BSR: Big Software on the Run Summary Millions of lines of code - written in different languages by different people at different times, and operating on a variety of platforms - drive the systems performing key processes in our society.

More information

Increase Revenue THE JOURNEY TO BIG DATA. Gary Evans. CTO EMC Ireland. Twitter.com/Gary3vans. Copyright 2013 EMC Corporation. All rights reserved.

Increase Revenue THE JOURNEY TO BIG DATA. Gary Evans. CTO EMC Ireland. Twitter.com/Gary3vans. Copyright 2013 EMC Corporation. All rights reserved. THE JOURNEY TO BIG DATA Increase Revenue Gary Evans CTO EMC Ireland Twitter.com/Gary3vans 1 THE VALUE OF BIG DATA VARIETY VELOCITY BIG DATA VOLUME COMPLEXITY organizations can earn an incremental ROI of

More information

Process Mining. ^J Springer. Discovery, Conformance and Enhancement of Business Processes. Wil M.R van der Aalst Q UNIVERS1TAT.

Process Mining. ^J Springer. Discovery, Conformance and Enhancement of Business Processes. Wil M.R van der Aalst Q UNIVERS1TAT. Wil M.R van der Aalst Process Mining Discovery, Conformance and Enhancement of Business Processes Q UNIVERS1TAT m LIECHTENSTEIN Bibliothek ^J Springer Contents 1 Introduction I 1.1 Data Explosion I 1.2

More information

Radiation Oncology Patient & Family Guide

Radiation Oncology Patient & Family Guide Radiation Oncology Patient & Family Guide 1 Radiation Oncology Patient & Family Guide The Radiation Oncology department is part of the Cleveland Clinic Cancer Center at Hillcrest Hospital. The department

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 Research Motivation In today s modern digital environment with or without our notice we are leaving our digital footprints in various data repositories through our daily activities,

More information

Process Mining and Monitoring Processes and Services: Workshop Report

Process Mining and Monitoring Processes and Services: Workshop Report Process Mining and Monitoring Processes and Services: Workshop Report Wil van der Aalst (editor) Eindhoven University of Technology, P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands. w.m.p.v.d.aalst@tm.tue.nl

More information

Intelligent Process Management & Process Visualization. TAProViz 2014 workshop. Presenter: Dafna Levy

Intelligent Process Management & Process Visualization. TAProViz 2014 workshop. Presenter: Dafna Levy Intelligent Process Management & Process Visualization TAProViz 2014 workshop Presenter: Dafna Levy The Topics Process Visualization in Priority ERP Planning Execution BI analysis (Built-in) Discovering

More information

Mercy Health System. St. Louis, MO. Process Mining of Clinical Workflows for Quality and Process Improvement

Mercy Health System. St. Louis, MO. Process Mining of Clinical Workflows for Quality and Process Improvement Mercy Health System St. Louis, MO Process Mining of Clinical Workflows for Quality and Process Improvement Paul Helmering, Executive Director, Enterprise Architecture Pete Harrison, Data Analyst, Mercy

More information

Supporting the Workflow Management System Development Process with YAWL

Supporting the Workflow Management System Development Process with YAWL Supporting the Workflow Management System Development Process with YAWL R.S. Mans 1, W.M.P. van der Aalst 1 Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. ox 513,

More information

Process mining challenges in hospital information systems

Process mining challenges in hospital information systems Proceedings of the Federated Conference on Computer Science and Information Systems pp. 1135 1140 ISBN 978-83-60810-51-4 Process mining challenges in hospital information systems Payam Homayounfar Wrocław

More information

Title: Basic Concepts and Technologies for Business Process Management

Title: Basic Concepts and Technologies for Business Process Management Title: Basic Concepts and Technologies for Business Process Management Presenter: prof.dr. Manfred Reichert The economic success of an enterprise more and more depends on its ability to flexibly and quickly

More information

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008

Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008 Professional Organization Checklist for the Computer Science Curriculum Updates Association of Computing Machinery Computing Curricula 2008 The curriculum guidelines can be found in Appendix C of the report

More information

Handling Big(ger) Logs: Connecting ProM 6 to Apache Hadoop

Handling Big(ger) Logs: Connecting ProM 6 to Apache Hadoop Handling Big(ger) Logs: Connecting ProM 6 to Apache Hadoop Sergio Hernández 1, S.J. van Zelst 2, Joaquín Ezpeleta 1, and Wil M.P. van der Aalst 2 1 Department of Computer Science and Systems Engineering

More information

Towards Cross-Organizational Process Mining in Collections of Process Models and their Executions

Towards Cross-Organizational Process Mining in Collections of Process Models and their Executions Towards Cross-Organizational Process Mining in Collections of Process Models and their Executions J.C.A.M. Buijs, B.F. van Dongen, W.M.P. van der Aalst Department of Mathematics and Computer Science, Eindhoven

More information

BUsiness process mining, or process mining in a short

BUsiness process mining, or process mining in a short , July 2-4, 2014, London, U.K. A Process Mining Approach in Software Development and Testing Process: A Case Study Rabia Saylam, Ozgur Koray Sahingoz Abstract Process mining is a relatively new and emerging

More information

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence

Augmented Search for Web Applications. New frontier in big log data analysis and application intelligence Augmented Search for Web Applications New frontier in big log data analysis and application intelligence Business white paper May 2015 Web applications are the most common business applications today.

More information

Analysis of Service Level Agreements using Process Mining techniques

Analysis of Service Level Agreements using Process Mining techniques Analysis of Service Level Agreements using Process Mining techniques CHRISTIAN MAGER University of Applied Sciences Wuerzburg-Schweinfurt Process Mining offers powerful methods to extract knowledge from

More information

Embedded Systems in Healthcare. Pierre America Healthcare Systems Architecture Philips Research, Eindhoven, the Netherlands November 12, 2008

Embedded Systems in Healthcare. Pierre America Healthcare Systems Architecture Philips Research, Eindhoven, the Netherlands November 12, 2008 Embedded Systems in Healthcare Pierre America Healthcare Systems Architecture Philips Research, Eindhoven, the Netherlands November 12, 2008 About the Speaker Working for Philips Research since 1982 Projects

More information

CORPORATE OVERVIEW. Big Data. Shared. Simply. Securely.

CORPORATE OVERVIEW. Big Data. Shared. Simply. Securely. CORPORATE OVERVIEW Big Data. Shared. Simply. Securely. INTRODUCING PHEMI SYSTEMS PHEMI unlocks the power of your data with out-of-the-box privacy, sharing, and governance PHEMI Systems brings advanced

More information

Data-Driven Decisions: Role of Operations Research in Business Analytics

Data-Driven Decisions: Role of Operations Research in Business Analytics Data-Driven Decisions: Role of Operations Research in Business Analytics Dr. Radhika Kulkarni Vice President, Advanced Analytics R&D SAS Institute April 11, 2011 Welcome to the World of Analytics! Lessons

More information

Mastering Big Data. Steve Hoskin, VP and Chief Architect INFORMATICA MDM. October 2015

Mastering Big Data. Steve Hoskin, VP and Chief Architect INFORMATICA MDM. October 2015 Mastering Big Data Steve Hoskin, VP and Chief Architect INFORMATICA MDM October 2015 Agenda About Big Data MDM and Big Data The Importance of Relationships Big Data Use Cases About Big Data Big Data is

More information

MediSapiens Ltd. Bio-IT solutions for improving cancer patient care. Because data is not knowledge. 19th of March 2015

MediSapiens Ltd. Bio-IT solutions for improving cancer patient care. Because data is not knowledge. 19th of March 2015 19th of March 2015 MediSapiens Ltd Because data is not knowledge Bio-IT solutions for improving cancer patient care Sami Kilpinen, Ph.D Co-founder, CEO MediSapiens Ltd Copyright 2015 MediSapiens Ltd. All

More information

Using Big Data to Advance Healthcare Gregory J. Moore MD, PhD February 4, 2014

Using Big Data to Advance Healthcare Gregory J. Moore MD, PhD February 4, 2014 Using Big Data to Advance Healthcare Gregory J. Moore MD, PhD February 4, 2014 Sequencing Technology - Hype Cycle (Gartner) Gartner - Hype Cycle for Healthcare Provider Applications, Analytics and Systems,

More information

Augmented Search for IT Data Analytics. New frontier in big log data analysis and application intelligence

Augmented Search for IT Data Analytics. New frontier in big log data analysis and application intelligence Augmented Search for IT Data Analytics New frontier in big log data analysis and application intelligence Business white paper May 2015 IT data is a general name to log data, IT metrics, application data,

More information

PM 2 : a Process Mining Project Methodology

PM 2 : a Process Mining Project Methodology PM 2 : a Process Mining Project Methodology Maikel L. van Eck, Xixi Lu, Sander J.J. Leemans, and Wil M.P. van der Aalst Eindhoven University of Technology, The Netherlands {m.l.v.eck,x.lu,s.j.j.leemans,w.m.p.v.d.aalst}@tue.nl

More information

Process Mining Tools: A Comparative Analysis

Process Mining Tools: A Comparative Analysis EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Process Mining Tools: A Comparative Analysis Irina-Maria Ailenei in partial fulfillment of the requirements for the degree

More information

Integrating a Big Data Platform into Government:

Integrating a Big Data Platform into Government: Integrating a Big Data Platform into Government: Drive Better Decisions for Policy and Program Outcomes John Haddad, Senior Director Product Marketing, Informatica Digital Government Institute s Government

More information

Setting Priorities for the B.C. Health System

Setting Priorities for the B.C. Health System Setting Priorities for the B.C. Health System - 14 th Annual Healthcare Summit - Elaine McKnight Associate Deputy Minister Ministry of Health June 26, 2014 DRAFT 1 The Path to a Refreshed Strategy Innovation

More information

TAKE CONTROL OF YOUR HEALTHCARE, ON THE GO. BE ELIGIBLE FOR A DRAWING TO RECEIVE AN IPAD MINI! FIRST SECOND

TAKE CONTROL OF YOUR HEALTHCARE, ON THE GO. BE ELIGIBLE FOR A DRAWING TO RECEIVE AN IPAD MINI! FIRST SECOND Shop for Healthcare with Castlight BE ELIGIBLE FOR A DRAWING TO RECEIVE AN IPAD MINI! Dermatologist We want to recognize members enrolled in IU-sponsored PPO plans for being smart healthcare consumers!

More information

The IoT/CPS Big Data Challenge

The IoT/CPS Big Data Challenge The IoT/CPS Big Data Challenge Stamatis Karnouskos SAP Road4FAME EU-Consultation Meeting, 22 May 2015, Brussels, Belgium Data acquisition becoming easy, finegrained, real-time, low-cost 0 sync (msec) Implicit

More information

Innovation value pools for Utilities or Advanced Information and Communications (ICT) Technology in Energy

Innovation value pools for Utilities or Advanced Information and Communications (ICT) Technology in Energy Innovation value pools for Utilities or Advanced Information and Communications (ICT) Technology in Energy Tony Court Director, Cisco Consulting Services Oct 2014 3 R s for Utility Success in 21 st Century

More information

Industrial and Systems Engineering Master of Science Program Data Analytics and Optimization

Industrial and Systems Engineering Master of Science Program Data Analytics and Optimization Industrial and Systems Engineering Master of Science Program Data Analytics and Optimization Department of Integrated Systems Engineering The Ohio State University (Expected Duration: Semesters) Our society

More information

Open & Big Data for Life Imaging Technical aspects : existing solutions, main difficulties. Pierre Mouillard MD

Open & Big Data for Life Imaging Technical aspects : existing solutions, main difficulties. Pierre Mouillard MD Open & Big Data for Life Imaging Technical aspects : existing solutions, main difficulties Pierre Mouillard MD What is Big Data? lots of data more than you can process using common database software and

More information

BIG DATA. Value 8/14/2014 WHAT IS BIG DATA? THE 5 V'S OF BIG DATA WHAT IS BIG DATA?

BIG DATA. Value 8/14/2014 WHAT IS BIG DATA? THE 5 V'S OF BIG DATA WHAT IS BIG DATA? WHAT IS BIG DATA? BIG DATA DR. KLARA NELSON THE UNIVERSITY OF TAMPA "Volumes of data that are unusually large, or types of data that are unstructured" Thomas Davenport, Keeping Up with the Quants, 2013,

More information

Expanding Uniformance. Driving Digital Intelligence through Unified Data, Analytics, and Visualization

Expanding Uniformance. Driving Digital Intelligence through Unified Data, Analytics, and Visualization Expanding Uniformance Driving Digital Intelligence through Unified Data, Analytics, and Visualization The Information Challenge 2 What is the current state today? Lack of availability of business level

More information

Supporting the BPM lifecycle with FileNet

Supporting the BPM lifecycle with FileNet Supporting the BPM lifecycle with FileNet Mariska Netjes Hajo A. Reijers Wil. M.P. van der Aalst Outline Introduction Evaluation approach Evaluation of FileNet Conclusions Business Process Management Supporting

More information

Data Mining and Analytics in Realizeit

Data Mining and Analytics in Realizeit Data Mining and Analytics in Realizeit November 4, 2013 Dr. Colm P. Howlin Data mining is the process of discovering patterns in large data sets. It draws on a wide range of disciplines, including statistics,

More information

Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot

Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot www.etidaho.com (208) 327-0768 Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot 3 Days About this Course This course is designed for the end users and analysts that

More information

University of Central Florida Class Specification Administrative and Professional. Web Operations Manager

University of Central Florida Class Specification Administrative and Professional. Web Operations Manager Web Operations Manager Job Code: 2572 Manage enterprise web site project development and programming. Serve as the top technical administrator for web development strategies. Work with senior management

More information

Participatory Cloud Computing and the Privacy and Security of Medical Information Applied to A Wireless Smart Board Network

Participatory Cloud Computing and the Privacy and Security of Medical Information Applied to A Wireless Smart Board Network Participatory Cloud Computing and the Privacy and Security of Medical Information Applied to A Wireless Smart Board Network Lutando Ngqakaza ngqlut003@myuct.ac.za UCT Department of Computer Science Abstract:

More information

Exploiting the power of Big Data

Exploiting the power of Big Data Exploiting the power of Big Data Timos Sellis School of Computer Science and Information Technology timos.sellis@rmit.edu.au ITECHLAW Asia-Pacific Conference, February 26-28, 2014 Melbourne Australia Timeline

More information

From Big Data to Smart Data Thomas Hahn

From Big Data to Smart Data Thomas Hahn Siemens Future Forum @ HANNOVER MESSE 2014 From Big to Smart Hannover Messe 2014 The Evolution of Big Digital data ~ 1960 warehousing ~1986 ~1993 Big data analytics Mining ~2015 Stream processing Digital

More information

BIG Data Analytics Move to Competitive Advantage

BIG Data Analytics Move to Competitive Advantage BIG Data Analytics Move to Competitive Advantage where is technology heading today Standardization Open Source Automation Scalability Cloud Computing Mobility Smartphones/ tablets Internet of Things Wireless

More information

Application of Process Mining in Healthcare A Case Study in a Dutch Hospital

Application of Process Mining in Healthcare A Case Study in a Dutch Hospital Application of Process Mining in Healthcare A Case Study in a Dutch Hospital R.S. Mans 1, M.H. Schonenberg 1, M. Song 1, W.M.P. van der Aalst 1, and P.J.M. Bakker 2 1 Department of Information Systems

More information

IBM Cognos Analysis for Microsoft Excel

IBM Cognos Analysis for Microsoft Excel IBM Cognos Analysis for Microsoft Excel Explore and analyze data in a familiar spreadsheet format Highlights Explore and analyze data drawn from IBM Cognos TM1 models and IBM Cognos Business Intelligence

More information

Introduction to Information and Computer Science: Information Systems

Introduction to Information and Computer Science: Information Systems Introduction to Information and Computer Science: Information Systems Lecture 1 Audio Transcript Slide 1 Welcome to Introduction to Information and Computer Science: Information Systems. The component,

More information

Proposal for the Theme on Big Data. Analytics. Qiang Yang, HKUST Jiannong Cao, PolyU Qi-man Shao, CUHK. May 2015

Proposal for the Theme on Big Data. Analytics. Qiang Yang, HKUST Jiannong Cao, PolyU Qi-man Shao, CUHK. May 2015 Proposal for the Theme on Big Data Analytics May 2015 Qiang Yang, HKUST Jiannong Cao, PolyU Qi-man Shao, CUHK Motivation The world's technological per-capita capacity to store information doubled every

More information

Monitor and Manage Your MicroStrategy BI Environment Using Enterprise Manager and Health Center

Monitor and Manage Your MicroStrategy BI Environment Using Enterprise Manager and Health Center Monitor and Manage Your MicroStrategy BI Environment Using Enterprise Manager and Health Center Presented by: Dennis Liao Sales Engineer Zach Rea Sales Engineer January 27 th, 2015 Session 4 This Session

More information

Big Data / FDAAWARE. Rafi Maslaton President, cresults the maker of Smart-QC/QA/QD & FDAAWARE 30-SEP-2015

Big Data / FDAAWARE. Rafi Maslaton President, cresults the maker of Smart-QC/QA/QD & FDAAWARE 30-SEP-2015 Big Data / FDAAWARE Rafi Maslaton President, cresults the maker of Smart-QC/QA/QD & FDAAWARE 30-SEP-2015 1 Agenda BIG DATA What is Big Data? Characteristics of Big Data Where it is being used? FDAAWARE

More information

Business Process Modeling

Business Process Modeling Business Process Concepts Process Mining Kelly Rosa Braghetto Instituto de Matemática e Estatística Universidade de São Paulo kellyrb@ime.usp.br January 30, 2009 1 / 41 Business Process Concepts Process

More information

I m using modern technology to create designs that push the boundaries of the fashion industry

I m using modern technology to create designs that push the boundaries of the fashion industry GRADUATE SCHOOL 2015-2016 I m using modern technology to create designs that push the boundaries of the fashion industry Graduate program Industrial design * This major is formally part of the Computer

More information

ANALYTICS PREDICTIVE. Tool of Providence or the End of Coincidence? He who does not expect the unexpected will not find it out.

ANALYTICS PREDICTIVE. Tool of Providence or the End of Coincidence? He who does not expect the unexpected will not find it out. PREDICTIVE ANALYTICS Tool of Providence or the End of Coincidence? He who does not expect the unexpected will not find it out. Unless you expect the unexpected you will ever find truth, for it is hard

More information

Waiting from the Hospital Perspective

Waiting from the Hospital Perspective Waiting from the Hospital Perspective A Successful Approach to Understanding and Addressing the Problem John Marshall John Lott Waiting from the Hospital Perspective The Problem. from the Hospital s Perspective

More information

Predictive analytics for the business analyst: your first steps with SAP InfiniteInsight

Predictive analytics for the business analyst: your first steps with SAP InfiniteInsight Predictive analytics for the business analyst: your first steps with SAP InfiniteInsight Pierpaolo Vezzosi, SAP SESSION CODE: 0605 Summary Who said you need a PhD to do sophisticated predictive analysis?

More information

Internet of Things. Opportunity Challenges Solutions

Internet of Things. Opportunity Challenges Solutions Internet of Things Opportunity Challenges Solutions Copyright 2014 Boeing. All rights reserved. GPDIS_2015.ppt 1 ANALYZING INTERNET OF THINGS USING BIG DATA ECOSYSTEM Internet of Things matter for... Industrial

More information

Intelligent KPI. Leveraging Key Performance Indicators for Business Process Improvement

Intelligent KPI. Leveraging Key Performance Indicators for Business Process Improvement Intelligent KPI Leveraging Key Performance Indicators for Business Process Improvement Sequence Kinetics, an ibpms which Leverages KPI Businesses today are realizing that key performance indicators are

More information

Augmented Search for Software Testing

Augmented Search for Software Testing Augmented Search for Software Testing For Testers, Developers, and QA Managers New frontier in big log data analysis and application intelligence Business white paper May 2015 During software testing cycles,

More information

APPROACHABLE ANALYTICS MAKING SENSE OF DATA

APPROACHABLE ANALYTICS MAKING SENSE OF DATA APPROACHABLE ANALYTICS MAKING SENSE OF DATA AGENDA SAS DELIVERS PROVEN SOLUTIONS THAT DRIVE INNOVATION AND IMPROVE PERFORMANCE. About SAS SAS Business Analytics Framework Approachable Analytics SAS for

More information

APPLICATION OF ENTERPRISE AND PROCESS ARCHITECTURE PATTERNS IN HOSPITALS

APPLICATION OF ENTERPRISE AND PROCESS ARCHITECTURE PATTERNS IN HOSPITALS APPLICATION OF ENTERPRISE AND PROCESS ARCHITECTURE PATTERNS IN HOSPITALS Oscar Barros and Cristian Julio The Project In a previous paper in BPTrends [7], of which this is a sequel, we presented our approach

More information

GE Healthcare. Centricity PACS and PACS-IW with Universal Viewer* Where it all comes together

GE Healthcare. Centricity PACS and PACS-IW with Universal Viewer* Where it all comes together GE Healthcare Centricity PACS and PACS-IW with Universal Viewer* Where it all comes together The healthcare industry is going through an unprecedented period of change with providers being called upon

More information

Philips Learning Center

Philips Learning Center Philips Learning Center Continuing education at your convenience The Philips Learning Center offers more than 1200 online courses for healthcare professionals. Topics cover a range of clinical, departmental,

More information

BI en Salud: Registro de Salud Electrónico, Estado del Arte!

BI en Salud: Registro de Salud Electrónico, Estado del Arte! BI en Salud: Registro de Salud Electrónico, Estado del Arte! Manuel Graña Romay! ENGINE Centre, Wrocław University of Technology! Grupo de Inteligencia Computacional (GIC); UPV/EHU; www.ehu.es/ ccwintco!

More information

The Canadian Realities of Big Data and Business Analytics. Utsav Arora February 12, 2014

The Canadian Realities of Big Data and Business Analytics. Utsav Arora February 12, 2014 The Canadian Realities of Big Data and Business Analytics Utsav Arora February 12, 2014 Things to think about for today How Important is Big Data for me? Why do I need to implement Big Data and Analytics

More information

Nirikshan: Process Mining Software Repositories to Identify Inefficiencies, Imperfections, and Enhance Existing Process Capabilities

Nirikshan: Process Mining Software Repositories to Identify Inefficiencies, Imperfections, and Enhance Existing Process Capabilities Nirikshan: Process Mining Software Repositories to Identify Inefficiencies, Imperfections, and Enhance Existing Process Capabilities Monika Gupta monikag@iiitd.ac.in PhD Advisor: Dr. Ashish Sureka Industry

More information

Data-intensive HPC: opportunities and challenges. Patrick Valduriez

Data-intensive HPC: opportunities and challenges. Patrick Valduriez Data-intensive HPC: opportunities and challenges Patrick Valduriez Big Data Landscape Multi-$billion market! Big data = Hadoop = MapReduce? No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard,

More information

Process Mining Online Assessment Data

Process Mining Online Assessment Data Process Mining Online Assessment Data Mykola Pechenizkiy, Nikola Trčka, Ekaterina Vasilyeva, Wil van der Aalst, Paul De Bra {m.pechenizkiy, e.vasilyeva, n.trcka, w.m.p.v.d.aalst}@tue.nl, debra@win.tue.nl

More information

BI forward: A full view of your business

BI forward: A full view of your business IBM Software Business Analytics Business Intelligence BI forward: A full view of your business 2 BI forward: A full view of your business Contents 2 Introduction 3 BI for today and the future 4 Predictive

More information

Business Intelligence and Process Modelling

Business Intelligence and Process Modelling Business Intelligence and Process Modelling F.W. Takes Universiteit Leiden Lecture 7: Network Analytics & Process Modelling Introduction BIPM Lecture 7: Network Analytics & Process Modelling Introduction

More information

GROW YOUR ANALYTICS MATURITY

GROW YOUR ANALYTICS MATURITY GROW YOUR ANALYTICS MATURITY Gain and Sustain a Competitive Edge FROM DATA TO ACTION YOU VE HEARD THE BIG DATA BUZZ. WE RE SWIMMING IN MORE DATA THAN EVER. But it s not about the amount of data, the different

More information

TECHNOLOGY TRANSFER PRESENTS JEN UNDERWOOD ADVANCED WORKSHOP MAY 6, 2015 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231 ROME (ITALY)

TECHNOLOGY TRANSFER PRESENTS JEN UNDERWOOD ADVANCED WORKSHOP MAY 6, 2015 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231 ROME (ITALY) TECHNOLOGY TRANSFER PRESENTS JEN UNDERWOOD ADVANCED ANALYTICS WORKSHOP MAY 6, 2015 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231 ROME (ITALY) info@technologytransfer.it www.technologytransfer.it ADVANCED

More information

Integrating Predictive Analytics Into Clinical Practice For Improved Outcomes & Financial Performance

Integrating Predictive Analytics Into Clinical Practice For Improved Outcomes & Financial Performance Transforming the HHS Experience Improving the relationship between payers, providers and consumers Integrating Predictive Analytics Into Clinical Practice For Improved Outcomes & Financial Performance

More information

Big Data Use Cases Update

Big Data Use Cases Update Big Data Use Cases Update Sanat Joshi Industry Solutions Manufacturing Industries Business Unit 1 Data Explosion Web & social networks experienced it first Infographic by Go-gulf.com 2 Number Of Connected

More information

The Challenge of Handling Large Data Sets within your Measurement System

The Challenge of Handling Large Data Sets within your Measurement System The Challenge of Handling Large Data Sets within your Measurement System The Often Overlooked Big Data Aaron Edgcumbe Marketing Engineer Northern Europe, Automated Test National Instruments Introduction

More information

The Internet of Things... Hype or not?

The Internet of Things... Hype or not? The Internet of Things... Hype or not? Filip De Maeyer Philip Leenders 2013 global revenues of USD 5.8 billion Client-centric, services-focused business 73% of Global Fortune 100 and 59% of Global Fortune

More information

RAPIDMINER FREE SOFTWARE FOR DATA MINING, ANALYTICS AND BUSINESS INTELLIGENCE. Luigi Grimaudo 178627 Database And Data Mining Research Group

RAPIDMINER FREE SOFTWARE FOR DATA MINING, ANALYTICS AND BUSINESS INTELLIGENCE. Luigi Grimaudo 178627 Database And Data Mining Research Group RAPIDMINER FREE SOFTWARE FOR DATA MINING, ANALYTICS AND BUSINESS INTELLIGENCE Luigi Grimaudo 178627 Database And Data Mining Research Group Summary RapidMiner project Strengths How to use RapidMiner Operator

More information

IBM QRadar Security Intelligence April 2013

IBM QRadar Security Intelligence April 2013 IBM QRadar Security Intelligence April 2013 1 2012 IBM Corporation Today s Challenges 2 Organizations Need an Intelligent View into Their Security Posture 3 What is Security Intelligence? Security Intelligence

More information

BIG DATA & DATA SCIENCE

BIG DATA & DATA SCIENCE BIG DATA & DATA SCIENCE ACADEMY PROGRAMS IN-COMPANY TRAINING PORTFOLIO 2 TRAINING PORTFOLIO 2016 Synergic Academy Solutions BIG DATA FOR LEADING BUSINESS Big data promises a significant shift in the way

More information

3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India

3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC-2016) March 10-11, 2016 VIT University, Chennai, India Call for Papers Cloud computing has emerged as a de facto computing

More information

GETTING STARTED WITH THE ISCAN ONLINE DATA BREACH PREVENTION LIFECYCLE

GETTING STARTED WITH THE ISCAN ONLINE DATA BREACH PREVENTION LIFECYCLE GETTING STARTED WITH THE ISCAN ONLINE DATA BREACH PREVENTION LIFECYCLE iscan Online 5600 Tennyson Parkway Suite 343 Plano, Tx 75024 Table of Contents Overview... 3 Data Breach Prevention... 4 Choosing

More information

IBM Cloud Security Draft for Discussion September 12, 2011. 2011 IBM Corporation

IBM Cloud Security Draft for Discussion September 12, 2011. 2011 IBM Corporation IBM Cloud Security Draft for Discussion September 12, 2011 IBM Point of View: Cloud can be made secure for business As with most new technology paradigms, security concerns surrounding cloud computing

More information

I N T E L L I G E N T S O L U T I O N S, I N C. DATA MINING IMPLEMENTING THE PARADIGM SHIFT IN ANALYSIS & MODELING OF THE OILFIELD

I N T E L L I G E N T S O L U T I O N S, I N C. DATA MINING IMPLEMENTING THE PARADIGM SHIFT IN ANALYSIS & MODELING OF THE OILFIELD I N T E L L I G E N T S O L U T I O N S, I N C. OILFIELD DATA MINING IMPLEMENTING THE PARADIGM SHIFT IN ANALYSIS & MODELING OF THE OILFIELD 5 5 T A R A P L A C E M O R G A N T O W N, W V 2 6 0 5 0 USA

More information

Next Internet Evolution: Getting Big Data insights from the Internet of Things

Next Internet Evolution: Getting Big Data insights from the Internet of Things Next Internet Evolution: Getting Big Data insights from the Internet of Things Internet of things are fast becoming broadly accepted in the world of computing and they should be. Advances in Cloud computing,

More information

The IBM Solution Architecture for Energy and Utilities Framework

The IBM Solution Architecture for Energy and Utilities Framework IBM Solution Architecture for Energy and Utilities Framework Accelerating Solutions for Smarter Utilities The IBM Solution Architecture for Energy and Utilities Framework Providing a foundation for solutions

More information

George J. Klir. State University of New York (SUNY) Binghamton, New York 13902, USA gklir@binghamton.edu

George J. Klir. State University of New York (SUNY) Binghamton, New York 13902, USA gklir@binghamton.edu POSSIBILISTIC INFORMATION: A Tutorial Combining business process & data discovery techniques for analyzing and improving integrated care pathways George J. Klir Dr. Jonas Poelmans (Katholieke Universiteit

More information

Harnessing the power of advanced analytics with IBM Netezza

Harnessing the power of advanced analytics with IBM Netezza IBM Software Information Management White Paper Harnessing the power of advanced analytics with IBM Netezza How an appliance approach simplifies the use of advanced analytics Harnessing the power of advanced

More information

HISP: a data-driven portal for hadron therapy

HISP: a data-driven portal for hadron therapy HISP: a data-driven portal for hadron therapy Faustin Laurentiu Roman CERN / IFIC Prototype architecture Tools, implementation & services Conclusions (& demo) 1 One slide situation: ereferral and escience

More information